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Abstract. In this paper, we introduce and study some new soft prop-
erties namely, soft R0 and soft R1(SRi, for short i = 0, 1) by using the
concept of distinct soft points and we obtain some of their properties. We
show how they relate to some soft separation axioms in [21]. Also we, show
that the properties SR0, SR1 are special cases of soft regularity. We fur-
ther, show that in the case of soft compact spaces, SR1 is equivalent to soft
regularity. Finally, the relations between these properties in soft topologies
and that in crisp topologies are studied. Moreover, some counterexamples
are given.
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1. Introduction

Molodtsov [13] initiated the theory of soft sets as a new mathematical tool
for dealing with uncertainties. Research works on soft set theory and its applica-
tions are progressing rapidly in various fields, for example topology [3, 5, 7, 12,
17, 18, 19, 20, 22], algebra [1, 2, 6, 9], decision making [4, 10, 11] and so on. In
[20], Shabir and Naz introduced the concept of soft topological spaces and studied
some related concepts. Soft separation axioms studied in some papers (see, for ex-
ample, [12, 14, 16, 20]). Recently, O. Tantawy et. al [21] defined soft separation
axioms by using soft pints and studied some of their properties. In this work, we
have continued to study soft separation axioms, we generalize some soft separations
axioms [21] by defining the properties SRi, i = 0, 1, investigating some nice results
and relations for them. We mention that this work is a soft version of our paper [15].

This paper is organized as follows. In section 2, we recall some basic definitions
which will be needed throughout this work. In section 3, we present new definitions
and characterizations concerning the properties SRi , i = 0, 1, and study some of
their properties. In section 4, some nice results and relations of them are obtained
with some counterexamples.
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2. Some basic definitions

Throughout this work, X refers to an initial universe set, E be the set of all
parameters for X and P (X) is the power set of X.

Definition 2.1 ([13]). A soft set FE = (F,E) over X is a mapping F : E −→ P (X).
Then FE can be represented by the set FE = {(e, F (e)) : e ∈ E and F (e) ∈ P (X)}.
We denote the family of all soft sets over X by SS(X,E).

Definition 2.2 ([11, 12, 13]). Let FE , GE are soft sets over X and x ∈ X.
(i) FE is called a null denoted, by ∅E , if F (e) = ∅ for all e ∈ E and is called an

absolute soft set, denoted by XE , if F (e) = X for all e ∈ E.
(ii) If F (e) = {x} and F (e

′
) = ∅ for all e

′ ∈ E − {e}, then FE is called a soft
point in XE , denoted by xe. The complement of a soft point xe is a soft set over X
denoted by (xe)

c
. The soft point xe∈̃FE , if for the element e ∈ E, x ∈ F (e) . The

set of all soft points in XE is denoted by SP (X,E).
(iii) The soft pints xe, ye in XE are called distinct, if x 6= y.
(iv) The complement of FE denoted by F cE , where F c : E −→ P (X) is a mapping

given by, (F (e))
c

= X − F (e) for all e ∈ E. Clearly, (F cE)
c

= FE .

(v) FE is a soft subset of GE , denoted by FE⊆̃GE , if F (e) ⊆ G(e) for all e ∈ E.
(vi) FE and GE are equal, if FE⊆̃GE and GE⊆̃FE . It is denoted by FE = GE .
(vii) The soft union of FE and GE is a soft set HE given by H (e) = F (e)∪G (e)

for all e ∈ E and denoted by, FE∪̃GE .
(viii) The soft intersection of FE and GE is a soft set HE defined by H (e) =

F (e) ∩G (e) for all e ∈ E and denoted by FE∩̃GE .
Definition 2.3 ([17, 20]). Let FE ∈ SS(X,E) , ∅ 6= Y ⊂ X and x ∈ X.

(i) x∈̃FE , if x ∈ F (e) for all e ∈ E, and x /∈ FE , if x/̃∈F (e) for some e ∈ E.
(ii) If F (e) = {x} for all e ∈ E, then FE is called a soft singleton point, denoted

by xE . And we have, xE⊆̃FE ⇐⇒ x∈̃FE ⇐⇒ xe∈̃FE for all e ∈ E.
(iii) YE = (Y,E) denotes the soft set over X for which, Y (e) = Y for all e ∈ E.

Definition 2.4 ([20, 22]). A soft topological space is the triple (X, τ∗, E), where X
is universe set, E is the fixed set of parameters and τ∗ is the collection of soft sets
over X, which are satisfies:

(i) ∅E , XE ∈ τ∗,
(ii) the soft intersection of any two soft sets in τ∗ is in τ∗,
(iii) the soft union of any number of soft sets in τ∗ is in τ∗.
In this case, any member in τ∗ is called an open soft set in X. A soft set FE is

called closed soft in X if F cE ∈ τ∗. The family of all closed soft sets in X, denoted
by τ∗c.

Definition 2.5 ([22]). A soft set FE is said to be a soft neighborhood of a soft point

xe in (X, τ∗, E), if there exists UE ∈ τ∗ such that xe∈̃ UE⊆̃FE .

Notation. For xe ∈ SP (X,E) the soft set Oxe refers to a soft open set contains xe
and Oxe

is called a soft open neighborhood of xe.

Definition 2.6 ([20]). Let (X, τ∗, E) be a soft topological space and FE ∈ SS(X,E).
Then the soft closure of FE , denoted by FE , is the intersection of all soft closed super
sets of FE , that is, FE = ∩̃{GE : GE ∈ τ∗c and FE⊆̃GE}.
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Theorem 2.7 ([20, 21]). Let (X, τ∗, E) be a soft topological space over X and FE ,
GE are two soft sets over X. Then

(1) FE is a closed soft set ⇐⇒ FE = FE,

(2) FE⊆̃GE =⇒ FE⊆̃GE,
(3) xe∈̃ FE ⇐⇒ GE∩̃FE 6= ∅E for all GE ∈ τ∗, xe∈̃GE .

Definition 2.8 ([20]). Let (X, τ∗, E) be a soft topological space over X and Y be
a nonempty subset of X. Then τ∗Y = {YE∩̃FE : FE ∈ τ∗} is called the soft relative
topology on Y and (Y, τ∗Y , E) is called a soft subspace of (X, τ∗, E).

Proposition 2.9 ([20]). Let (Y, τ∗Y , E) be a soft subspace of (X, τ∗, E) and FE be a
soft set over Y . Then FE is an open soft set in Y if and only if FE = YE∩̃GE, for
some GE ∈ τ∗.

Definition 2.10. (i) Let (X, τ∗, E) be a soft topological space. Then the collection
τe = {F (e) : FE ∈ τ∗} for all e ∈ E, defines a topology on X (See [20]).

(ii) Let (X, τ) be a topological space. Then the family τ∗τ = {FE : F (e) = A ∀e ∈
E and ∀ A ∈ τ}, defines a soft topology on X (See Example 3.4 in [7]).

Definition 2.11 ([14]). (i) A soft topological space (X, τ∗, E) is called a soft sin-
gleton point space if τ∗ = {UE : U (e) = U ∀e ∈ E and ∀ U ⊂ X}. In this case,
every soft singleton points xE are open soft set.

(ii) If (X, τ∗, E) is a soft singleton point space, then every soft element of (X, τ∗, E)
is both soft open, closed set, and (X, τe) is a discrete space for all e ∈ E.

Note. If (X, τ) is a discrete topological space, then the soft topology τ∗τ which is
defined in (ii) of Definition 2.10, is a soft singleton point topology on X.

Definition 2.12. A soft topological space (X, τ∗, E) is said to be:
(i) soft T0 (ST0, for short), if for every two soft points xe, ye with x 6= y, there

exists GE ∈ τ∗ such that xe∈̃GE , ye /̃∈GE or there exists HE ∈ τ∗ such that

ye∈̃HE , xe /̃∈HE [21],
(ii) soft T1 (ST1, for short), if for every two soft points xe , ye with x 6= y, there

exist GE , HE ∈ τ∗ such that xe∈̃GE , ye /̃∈GE and ye∈̃HE , xe /̃∈HE [21],
(iii) soft T2 (ST2, for short), if for every two soft points xe , ye with x 6= y, there

exist GE , HE ∈ τ∗ such that xe∈̃GE , ye∈̃HE and GE∩̃HE = ∅E [21],

(iv) soft regular, if for every FE ∈ τ∗c and xe ∈ SP (X,E) with xe /̃∈FE , there

exist GE , HE ∈ τ∗ such that xe∈̃GE , FE ⊆̃HE and GE∩̃HE = ∅E [21],
(v) Soft compact, if every soft open cover of XE has a finite subcover of XE [22].

Theorem 2.13. (1) ST2 =⇒ ST 1 =⇒ ST 0 [21].
(2) Every soft closed subset of a soft compact space is compact [22].

Definition 2.14 ([8]). A topological space (X, τ) is said to be:
(i) R0, if for every pair of distinct points x, y ∈ X with x 6= y, x ∩ y = ∅ ,
(ii) R1, if for every pair of distinct points x, y ∈ X with x 6= y, there exist disjoint

open sets U, V such that x ∈ U , y ∈ V.

3. Soft R0 and soft R1 Spaces.

Definition 3.1. A soft topological space (X, τ∗, E) is said to be:
3



/Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

(i) soft R0 (SR0, for short), if for every pair of distinct soft points xe, ye with
xe∈̃ye implies ye∈̃xe,

(ii) soft R1 (SR1, for short), if for every pair of distinct soft points xe, ye with
xe 6=ye, there exist FE , GE∈̃τ∗ such that xe∈̃GE , ye∈̃HE and FE∩̃GE = ∅E .

In the following, we introduce some characterizations of SR0 and SR1 spaces.

Theorem 3.2. Let (X, τ∗, E) be a soft topological space. Then the following prop-
erties are equivalent:

(1) (X, τ∗, E) is SR0 ,

(2) xe⊆̃UE for all UE ∈ τ∗ , xe∈̃UE.

Proof. (1) =⇒ (2): Let (X, τ∗, E) be SR0. Suppose that xe˜6⊆UE , for some UE ∈ τ∗,
xe∈̃UE . Then there exists soft point ye with ye∈̃xe and ye /̃∈UE . Thus ye∩̃UE =

∅E , for some UE ∈ τ∗ , xe∈̃UE and xe, ye distinct soft points. So xe /̃∈ye. This
contradiction. Hence xe⊆̃UE , for all UE ∈ τ∗, xe∈̃UE .

(2) =⇒ (1): Let xe /̃∈ye. Then there exists an open soft set VE containing xe with

ye∩̃VE = ∅E . Thus ye /̃∈VE . Since xe⊆̃VE , ye /̃∈xe. So (X, τ∗, E) is SR0. �

Theorem 3.3. For a soft topological space (X, τ∗, E) and xe ∈ SP (X,E), the
following properties are equivalent:

(1) (X, τ∗, E) is a SR0 space,

(2) for any FE ∈ τ∗c with xe /̃∈FE, xe∩̃FE = ∅E ,
(3) for any distinct soft points xe , ye, either xe 6= ye or xe∩̃ye = ∅E .

Proof. (1) =⇒ (2): It follows directly from the above theorem.
(2) =⇒ (3): Let xe, ye are distinct soft points with xe 6= ye. Then there exists

ze∈̃xe and ze /̃∈ye. Thus there exists UE ∈ τ∗ such that ye /̃∈UE , ze∈̃UE . So xe∈̃UE .

Hence xe /̃∈ye. Therefore by (2), xe∩̃ye = ∅E . The proof of the other case is similar.

(3) =⇒ (1): Let xe, ye are distinct soft points with xe /̃∈ye. Then xe 6= ye . Thus

by (3), we get xe∩̃ye = ∅E =⇒ ye∈̃ ye⊂̃xec =⇒ ye /̃∈xe. So the result holds. �

By using the above theorems, one can shows the following corollary.

Corollary 3.4. A soft topological space (X, τ∗, E) is SR0 if and only if for any
distinct soft points xe, ye with xe 6= ye , implies xe∩̃ye = ∅E.

Definition 3.5. Let (X, τ∗, E) be a soft topological space and FE ∈ SS(X,E). The
soft kernel of FE , denoted by SK(FE), is the soft set defined by:

SK(FE) = ∩̃{GE ∈ τ∗ : FE⊆̃GE}.

In particular, the soft kernel of xe ∈ SP (X,E), is the soft set given by:

SK(xe) = ∩̃{GE ∈ τ∗ : xe∈̃GE}.

Lemma 3.6. Let (X, τ∗, E) be a soft topological space and FE ∈ SS(X,E). Then

SK(FE) = ∪̃{xe ∈ SP (X,E) : xe∩̃FE 6= ∅E}.
4
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Proof. Let xe∈̃SK (FE) and xe∩̃FE = ∅E . Then FE⊆̃xec = UE ∈ τ∗ and xe /̃∈UE .
This is contradiction with xe∈̃SK (FE). Thus xe∩̃FE 6= ∅E . So

SK(FE)⊆̃∪̃{xe ∈ SP (X,E) : xe∩̃FE 6= ∅E}.

On other hand, let xe∩̃FE 6= ∅E and xe /̃∈SK (FE). Then there exists VE ∈ τ∗

such that FE⊆̃VE , xe /̃∈VE . Let ye∈̃xe∩̃FE 6= ∅E . Then VE is an open soft contain

ye, which xe /̃∈VE . By this contradiction, xe∈̃SK (FE). Thus the result holds. �

Lemma 3.7. Let (X, τ∗, E) be a soft topological space and xe ∈ SP (X,E). Then
ye∈̃SK (xe) if and only if xe∈̃ye.

Proof. It is obvious. �

Proposition 3.8. Let (X, τ∗, E) be a soft topological space. Then the following
properties are equivalent:

(1) (X, τ∗, E) is SR0 ,

(2) xe⊆̃SK (xe), for all xe ∈ SP (X,E).

Proof. It follows from the above Lemma and Theorem 3.2. �

By using Lemma 3.7 and the above proposition, one can verify the following
corollary.

Corollary 3.9. A soft topological space (X, τ∗, E) is SR0 if and only if for any soft
point xe in XE, xe = SK (xe) .

Theorem 3.10. Let (X, τ∗, E) be a soft topological space. Then the following prop-
erties are equivalent:

(1) (X, τ∗, E) is SR0 ,
(2) if FE is soft closed, then FE = SK(FE),

(3) if FE is soft closed with xe∈̃FE, then SK(xe)⊆̃FE,
(4) if xe ∈ SP (X,E), then SK(xe)⊆̃ xe.

Proof. (1) =⇒ (2): Let FE be soft closed and xe /̃∈FE . Then xe∈̃F cE which is soft

open set containing xe. Since (X, τ∗, E) is SR0, xe⊆̃F cE =⇒ xe∩̃FE = ∅E . thus by

Lemma 3.6, xe /̃∈SK(FE). So FE = SK(FE).

(2) =⇒ (3): It follows from the fact, AE⊆̃BE =⇒ SK(AE)⊆̃SK(BE).
(3) =⇒ (4): It is obvious.
(4) =⇒ (1): Let xe , ye are distinct soft points with xe∈̃ye. Then by Lemma

3.7, ye∈̃SK (xe) . Since xe∈̃xe which is soft closed, by (4), ye∈̃SK (xe) ⊆̃xe, that is,
ye∈̃xe. So (X, τ∗, E) is a SR0 space. �

Lemma 3.11. Let (X, τ∗, E) be a soft topological space and xe , ye ∈ SP (X,E).
Then SK(xe) 6= SK(ye) if and only if xe 6= ye.

Proof. Necessity: Let SK(xe) 6= SK(ye). Then there exists ze ∈ SP (X,E) such

that ze∈̃SK(xe) and ze /̃∈SK(ye). If ze∈̃SK(xe), then by Lemma 3.6, xe∩̃ze 6=
∅E =⇒ xe∈̃ze, that is, xe⊆̃ze. Similarly, if ze /̃∈SK(ye), then ye /̃∈ze. Since xe⊂̃ze
and ye /̃∈ze, ye /̃∈xe. Thus xe 6= ye.

5
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Conversely, let xe 6= ye . Then there exists ze ∈ SP (X,E) such that ze∈̃xe and

ze /̃∈ye. Thus there exists a soft open set containing ze. So xe but not ye. Hence

ye /̃∈SK(xe). Therefore SK(xe) 6= SK(ye). �

Theorem 3.12. A soft topological space (X, τ∗, E) is SR0 if and only if for every
distinct soft points xe, ye with SK(xe) 6= SK(ye), SK(xe)∩̃SK(ye) = ∅E.

Proof. Necessity: Let (X, τ∗, E) is SR0 and xe, ye are two distinct soft points with
SK(xe) 6= SK(ye). Then by Lemma 3.11, xe 6= ye. Suppose SK(xe)∩̃SK(ye) 6=
∅E . Then there exists ze∈̃SK(xe)∩̃SK(ye). If ze∈̃SK(xe), then by Lemma 3.7,
xe∈̃ze =⇒ xe⊂̃ze. Since xe∈̃xe, by Corollary 3.4, xe = ze. Similarity, if ze∈̃SK(ye),
then ye = ze = xe. This contradiction. Thus SK (xe) ∩̃SK (ye) = ∅E .

Conversely, letxe, ye are distinct soft points with xe 6= ye. Then by Lemma
3.11, SK(xe) 6= SK(ye). Thus by hypothesis, SK(xe)∩̃SK(ye) = ∅E . Suppose
that xe∩̃ye 6= ∅E . Then there exists zein XE such that ze∈̃xe, ze∈̃ye. Thus by
Lemma 3.7, xe∈̃SK(ze) and ye∈̃SK(ze). By Lemma 3.6, SK(xe)∩̃SK(ze) 6= ∅E
and SK(ye)∩̃SK(ze) 6= ∅E . By hypothesis, SK (xe) = SK(ze) and SK (ye) =
SK(ze) = SK(xe). So SK(xe)∩̃SK(ye) 6= ∅E . This contradiction. Hence xe∩̃ye =
∅E . Therefore by Corollary 3.4, (X, τ∗, E) is SR0. �

Theorem 3.13. Let (X, τ∗, E) be a soft topological space. Then (X, τ∗, E) is SR1

if and only if for every distinct soft points xe ,ye with SK(xe) 6= SK(ye), there exist

FE , GE ∈ τ∗ such that xe⊆̃FE , ye⊆̃GE and FE∩̃GE = ∅E.

Proof. It follows from Lemma 3.7. �

From Definition 3.1, Lemma 3.11 and the above theorem, one can verify the
following corollary.

Corollary 3.14. For a soft topological space (X, τ∗, E), the following properties are
equivalent:

(1) (X, τ∗, E) is soft R1,

(2) for every distinct soft points xe, ye with xe /̃∈ye, there exist FE , GE ∈ τ∗ such
that xe∈̃FE , ye∈̃GE and FE∩̃GE = ∅E.

(3) for every distinct soft points xe, ye with xe 6= ye, there exist FE , GE ∈ τ∗

such that xe⊆̃FE , ye⊆̃GE and FE∩̃GE = ∅E.

Theorem 3.15. A soft singleton point space (X, τ∗, E) is SRi, i = 0, 1.

Proof. As a sample, we prove the case i = 1. Let (X, τ∗, E) be a soft singleton point
space and xe , ye are two distinct soft points with xe 6=ye. Then there exist soft open
sets xE , yE ∈ τ∗ such that xe∈̃xE , ye∈̃yE and xE ∩̃yE = ∅E . �

Theorem 3.16. Every SR1 space is a SR0 space.

Proof. Obvious. �

Note. The following example shows that the converse of the above theorem is not
necessary true.

6
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Example 3.17. Let X be a non-empty infinite set and let τ∗∞ = {∅E} ∪ {FE ∈
SS (X,E) : (F (e))

c
is a finite subset of X for all e ∈ E}. The space (X, τ∗∞, E) is

a soft topological space, called a soft cofinite space (See [21]). Now, to show that
(X, τ∗∞, E) is SR0 but not SR1. Let xe , ye be distinct soft points with xe∈̃yce. Since

xce , y
c
e ∈ τ∗∞, xe is closed soft set, that is, xe = xe. thus xe = xe ⊆̃yce. So by Theorem

3.2, (X, τ∗∞, E) is SR0 .
On other hand, suppose (X, τ∗∞, E) is SR1. Then for every distinct soft points

xe , ye with xe 6=ye, there exist FE , GE ∈ τ∗∞ such that xe∈̃FE , ye∈̃GE and
FE∩̃GE = ∅E . Thus (F (e))

c ∪ (G (e))
c

= X. Since (F (e))
c
, (G (e))

c
are two finite

subset of X, X is finite. This is contradiction. So (X, τ∗∞, E) is not SR1.

Theorem 3.18. Every soft subspace (Y, τ∗Y , E) of SRi (X, τ∗, E) is SRi,i = 0, 1.

Proof. As a sample, we prove the case, i = 1. Let xe, ye be distinct soft points
in (Y,E) with xe 6=ye. Then xe, ye are distinct soft points in (X,E) with xe 6=ye.
Since (X, τ∗, E) is SR1, there exist FE , GE ∈ τ∗ such that xe∈̃FE , ye∈̃GE with
FE∩̃GE = ∅E . Thus there exist soft open sets, UYE = YE∩̃FE ∈ τ∗Y and V YE =
YE∩̃GE ∈ τ∗Y which are contains xe, ye, respectively with UYE ∩̃V YE = ∅E . So
(Y, τ∗Y , E) is a SR1 space. �

4. Some relations and results.

Theorem 4.1. Every STi space (X, τ∗, E) is SRi−1, i = 1, 2 .

Proof. For the case i = 1, let UE∈̃τ∗ with xe∈̃UE . We will show that xe⊆̃UE . Let

ye /̃∈UE . Then xe /̃∈ye and xe, ye are distinct soft points. Since (X, τ∗, E) is ST1,

there exists GE∈̃τ∗ such that ye∈̃GE , xe /̃∈GE . thus ye /̃∈xe. So xe⊆̃UE . Hence the
result holds. The proof of the other case is clear. �

Note. The following example shows that the converse of the above theorem is not
true in general.

Example 4.2. Let X = {x, y} , E = {e1, e2} and τ∗ = {∅E , XE , FE , GE}, where
FE = {(e1, X)}, GE = {(e2, X)}. Then (X, τ∗, E) is a soft topological space. Now
one can check that (X, τ∗, E) is SR0 and SR1.

On other hand, for two distinct soft points xe1 , ye1 , the only open soft sets which
are containing xe1 are XE and FE = {(e1, X)} but also, they are containing ye1 .
Then (X, τ∗, E) not ST 1 and thus, not ST 2. Indeed, for soft points xe1 , ye1 , there
no exist disjoint open soft sets UE , VE such that xe1 ∈̃UE and ye1 ∈̃VE .

Theorem 4.3. Let (X, τ∗, E) be a soft topological space. Then
(1) (X, τ∗, E) is ST1 if and only if is both SR0 and ST 0,
(2) (X, τ∗, E) is ST 2 if and only if is both SR1 and ST0.

Proof. (1) Necessity: It follows from Theorems 4.1 and 2.13.
Conversely, let xe, ye are distinct soft points in XE . Since (X, τ∗, E) is ST 0 and

SR0, xe 6= ye. Then by Corollary 3.4, xe∩̃ye = ∅E . Thus ye
c∈̃τ∗ which is contain

xe, not ye and xe
c∈̃τ∗ which contains ye, not xe. So (X, τ∗, E) is ST1.

(2) Necessity: It follows from Theorems 4.1 and 2.13.
7
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Conversely, let xe, ye be distinct soft points of XE with xe /̃∈ye. Since (X, τ∗, E)

is SR0, ye /̃∈xe. Thus xe 6= ye. Also (X, τ∗, E) is SR1. So there exist disjoint open
soft sets UE , VE containing xe , ye respectively. Hence (X, τ∗, E) is ST 2. �

Theorem 4.4. A soft space (X, τ∗, E) is ST 2 if and only if is both SR1 and ST1.

Proof. The proof is consequence of that of the above theorem. �

Theorem 4.5. Every soft regular space (X, τ∗, E) is a SRi space, i = 0, 1.

Proof. For the case, i = 1. Let xe, ye be distinct soft points with xe 6= ye. Then

either xe /̃∈ye or ye /̃∈xe. Without loss of generality, assume that xe /̃∈ye, where ye is

closed soft with xe /̃∈ye. Since (X, τ∗, E) is soft regular, there exist disjoint soft open

sets UE , VE with xe∈̃UE and ye∈̃ ye⊆̃VE . Thus (X, τ∗, E) is SR1.
The proof of the other case is similar. �

Note. The next example shows that the converse of the above theorem is not true
in general.

Example 4.6. Let X = {x, y} and E = {e1, e2}. Then the family τ∗ = {∅E , XE ,
FE , GE , HE , ME}, where FE = {(e1, {x})} , GE = {(e1, {x}) , (e2, {y})}, HE =
{(e1, {y}) , (e2, {x})} and ME = {(e1, X) , (e2, {x})} is a soft topology on X. Now
one can check that (X, τ∗, E) is SR0 and SR1 but not soft regular. Indeed, for

the soft closed set F cE = {(e1, {y}) , (e2, X)}, xe1 /̃∈F cE , there exists FE ∈ τ∗ with

xe1 ∈̃FE and the only open soft set which is containing F cE is XE , but XE not disjoint
from FE .

Theorem 4.7. Let (X, τ∗, E) be a soft compact space. Then (X, τ∗, E) is SR1 if
and only if is soft regular.

Proof. Necessity: Let (X, τ∗, E) be a soft compact and SR1 space. To prove that

(X, τ∗, E) is soft regular, let us HE ∈ τ∗c and xe ∈ SP (X,E) with xe /̃∈HE . Now

for all ye∈̃HE , ye⊆̃HE . Since xe /̃∈HE , xe /̃∈ye and thus, xe 6= ye. Since (X, τ∗, E) is
SR1, for all ye∈̃HE , there exist disjoint open soft sets F yeE , GyeE such that xe∈̃F yeE ,
ye∈̃GyeE . So {GyeE : ye∈̃HE} is an open cover of HE . By (2) of Theorem 2.13,
HE is soft compact. Hence there exists a finite subfamily {G1E , G2E , . . . , GnE}
of {GyeE : ye∈̃HE} that covers HE . Now let {F1E , F2E , . . . , FnE} a corresponding

subfamily of {F yeE : ye∈̃HE}. Then it is clear that, UE = ∩̃ni=1FiE and VE = ∪̃ni=1GiE
are open soft sets and UE disjoint from VE , because UE⊆̃FiE ∀i which is disjoint
from the corresponding GiE with xe∈̃UE and HE⊆̃VE . Therefore (X, τ∗, E) is soft
regular. The proof of the converse follows from Theorem 4.5. �

Theorem 4.8. If (X, τ∗, E) is a SRi space, then (X, τe) is Ri , ∀ e ∈ E, i = 0, 1.

Proof. For the case i = 1, let x, y ∈ X and x 6= y with x 6= y. Then either
x /∈ y or y /∈ x and thus, xe /∈ ye or ye /∈ xe, then xe 6= ye. Since (X, τ∗, E) is SR1,
there exist UE , VE ∈̃τ∗ such that xe∈̃UE , ye∈̃VE and UE ∩̃ VE = ∅E . So there
exist U (e) , V (e) ∈ τe such that x ∈ U (e) , y ∈ V (e) and U (e) ∩ V (e) = ∅, for all
e ∈ E. Hence (X, τe) is R1 ∀e ∈ E. The proof of the other case is similar. �
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Note. The next example shows that the converse of the above theorem is not true
in general.

Example 4.9. Let X = {x, y} and E = {e1, e2}. Then the family τ∗ = {∅E , XE ,
F1E , F2E , F3E , F4E }, where F1E = {(e1, {x})} , F2E = {(e1, {x}) , (e2, {x})}
, F3E = {(e1, {x}) , (e2, {y})} and F4E = {(e1, {x}) , (e2, X)} is a soft topology on
X and the family τe2 = {∅, X, {x} , {y}} is a topology on X. It is clear that (X, τe2)
is R1 and R0, but (X, τ∗, E) is not SR0. Indeed, for distinct soft points xe1 , ye1we
have, XE = xe1 6= ye1 = ye1but xe1 ∩̃ye1 6= ∅E , and so, (X, τ∗, E) is not SR1.

Corollary 4.10. Let (X, τ∗, E) be a soft singleton point space. Then (X, τ∗, E) is
SRi if and only if (X, τe) is Ri, ∀ e ∈ E, i = 0, 1.

Proof. For the case i = 1. Necessity: It follows from Theorem 4.8.
Conversely, let xe, ye be distinct soft points with xe 6= ye. Then x 6= y with

x 6= y. Since (X, τe) is R1, there exist open subsets A, B of X such that x ∈ A ,
y ∈ B and A ∩ B = ∅. Thus there exist UE , VE∈̃τ∗τ such that A = U (e) and
B = V (e) ∀ e ∈ E with xe∈̃UE , ye∈̃VE and UE∩̃VE = ∅E . So the result holds.
The proof of the other case is similar. �

Theorem 4.11. A topological space (X, τ) is Ri if and only if (X, τ∗τ , E) is SRi,
i = 0, 1.

Proof. For the case i = 1. Necessity: The proof is analogues to that of the converse
part in the above corollary.

Conversely, let x, y ∈ X and x 6= y with x 6= y. Then either x /∈ y or y /∈ x
and thus, xe /∈ ye or ye /∈ xe. So xe 6= ye. Since (X, τ∗τ , E) is SR1, there exist
UE , VE ∈̃τ∗τ such that xe∈̃UE , ye∈̃VE and UE ∩̃VE = ∅E . Hence there exist
disjoint open sets F, G ∈ τ such that x ∈ U (e) = F and y ∈ V (e) = G, for all
e ∈ E. Therefore (X, τ) is R1. The proof of the other case is similar. �

5. Conclusion.

In this paper, we defined and studied some new properties are called soft R0

and R1 properties in soft topological spaces. Some characterizations of them are
obtained. Also we, studied some nice results and relations. We hope these basic
results will help the researchers to enhance and promote the research on soft set
theory and its applications.

Acknowledgements. The author is grateful thanks to referees and Prof. Kul
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ing this paper.
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