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Abstract. Over the years, many researchers have introduced differ-
ent types of topological spaces. One of these spaces is the octahedron
topological spaces, which was introduced and studied by Lee et al. [37].
In this study, very important results were found and it was decided that
very important scientific findings could be obtained by developing them.
For this reason, some findings such as octahedron topological group in the
sense of Forster and relative octahedron homeomorphism which are new
scientific data, have been found and proven for the first time in this article.
Moreover, the authors are interested to find octahedron quotient space and
octahedron quotient topological group. This study is therefore organized
the analogies between the concepts of octahedron topological groups, on
the other, are strongly emphasized.
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1. Introduction

Historically topological groups arose in connection with the study of groups of
continuous transformations. The theory of topological groups is one of the branches
of analysis and its study was initiated by Schreier [1] in 1926. In fact, a topological
group is obtained by uniting the concepts of group and of topological space. Then
the basic facts and concepts pertinent to groups, and to topological spaces are simply
translated more or less immediately into the context of topological groups.

In 1965, Zadeh [2] had proposed the concept of fuzzy sets as the generalization
of crisp sets in order to deal with various real-life problems. After then, Foster [3]
studied initially a fuzzy topological group which unites a fuzzy group in a group
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with a relative fuzzy topology on the fuzzy group. However, Yu and Ma [4] defined
a fuzzy topological group as the ordered pair of a group and a fuzzy topology on the
group (See [5–18] for the further studies). In particular, Hošková-Mayerovková [19]
proposed the concept of a fuzzy topological hypergroupoid and dealt with some
of its properties [20, 21]. Moreover, some researchers [22–25] discussed with fuzzy
topological algebraic structures based on some algebras.

In 1983, Atanassov [26] introduced the notion of intuitionistic fuzzy sets as the
generalization of fuzzy sets. Hur et al. [27] defined an intuitionistic fuzzy topological
group in Foster’s sense and obtained some of its basic properties. But Padmapriya et
al. [28] investigated topological group structures based on intuitionistic fuzzy sets in
the sense of Yu and Ma [4] (See [29–32] for further researches). Abbas [33] introduce
the concept of an intuitionistic fuzzy ideal topological group and deal with its various
properties.

Recently, in order to reduce possible information loss, Lee et al. [34] proposed an
octahedron set combined with an interval-valued fuzzy set, intuitionistic fuzzy set
and fuzzy set as a tool to solve complex problems. After that time, Şenel et al. [35]
discussed with MCGDM problems by using similarity measures for octahedron sets.
Also, Lee et al. [36] proposed the concept of octahedron subgroups and subrings,
and obtained some of their properties. Moreover, Lee et al. [37] studied topological
structures based on octahedron sets.

Our research’s aim is to study topological group structures based on octahedron
sets in the sense of Foster [3]. To accomplish this, we proceed with the research
in the following order: In Section 2, we recall basic concepts and notations related
to octahedron sets. In Section 3, we define an octahedron topology on a set in the
sense of Lowen [38] and study further results except properties discussed with Lee
et al. [37]. In Section 4, we deal with some results except properties obtained by Lee
et al. [36]. Section 5 is devoted to investigate octahedron topological groups.

2. Preliminaries

In this section, we list some basic definitions and notations needed in the next
sections. Throughout this paper, I denotes the unit closed interval [0, 1] in the set
of real numbers R.

Let I ⊕ I = {ā = (a∈, a6∈) ∈ I × I : a∈ + a6∈ ≤ 1}. Then each member ā of I ⊕ I
is called an intuitionistic point or intuitionistic number. In particuar, we denote
(0, 1) and (1, 0) as 0̄ and 1̄, respectively. Refer to [39] for the definitions of ≤ and
= on I ⊕ I, the complement of an intuitionistic number, and the infimum and the
supremum of any intuitionistic numbers.

Let [I] be the set of all closed subintervals of I. Then each member ã of [I] is
called an interval numbers, where ã = [a−, a+] and 0 ≤ a− ≤ a+ ≤ 1. In particular,
if a− = a+, then we write as ã = a. Refer to [40] for the definitions of ≤ and =
on I ⊕ I, the complement of an interval-valued number, and the infimum and the
supremum of any interval-valued numbers.
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Each member ˜̄a of [I]× (I ⊕ I)× I is called an octahedron numbers, where˜̄a =< ã, ā, a >=< [a−, a−], (a∈, a6∈), a > .

The equality and order relation between ˜̄a and ˜̄b (See [34]) are defined by:

(i) (Order) ˜̄a ≤ ˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a6∈ ≥ b6∈, a ≤ b.
(i) (Equality) ˜̄a = ˜̄b⇔ ˜̄a ≤ ˜̄b and ˜̄b ≤ ˜̄a, i.e., ã = b̃, ā = b̄, a = b.

For a set X, a mapping A : X → I is called a fuzzy set in X and the set of all
fuzzy sets in X is denoted by IX or FS(X). Refer [2,41] to basic operations on IX .

Definition 2.1 ( [42]). For a nonempty set X, a mapping Ā : X → I ⊕ I is called
an intuitionistic fuzzy set (briefly, IF set) in X, where for each x ∈ X, Ā(x) =
(A∈(x), A6∈(x)), and A∈(x) and A 6∈(x) represent the degree of membership and the
degree of nonmembership of an element x to Ā, respectively. Let (I⊕I)X or IFS(X)
denote the set of all IF sets in X and for each Ā ∈ (I⊕ I)X , we write A = (A∈, A6∈).
In particular, 0̄ and 1̄ denote the IF empty set and the IF whole set in X defined
by, respectively: for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

Definition 2.2 ( [43,44]). For a nonempty set X, a mapping Ã : X → [I] is called
an interval-valued fuzzy set (briefly, an IVF set) in X. Let [I]X or IV S(X) denote

the set of all IVF sets in X. For each Ã ∈ [I]X and x ∈ X, Ã(x) = [A−(x), A+(x)] is

called the degree of membership of an element x to Ã, where A−, A+ ∈ IX are called

a lower fuzzy set and an upper fuzzy set in X, respectively. For each Ã ∈ [I]X , we

write Ã = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty
set and the interval-valued fuzzy whole set in X defined by, respectively: for each
x ∈ X,

0̃(x) = 0 and 1̃(x) = 1.

Refer to [34, 40] for the definitions of ⊂ and = on [I]X , the complement of an
interval-valued set, and the union and the intersection of any interval-valued sets.

Definition 2.3 ( [34]). Let X be a nonempty set and let Ã = [A−, A+] ∈ [I]X , Ā =

(A∈, A6∈) ∈ (I⊕I)X , A ∈ IX . Then the triple A =
〈
Ã, Ā, A

〉
is called an octahedron

set in X. In fact, A : X → [I]× (I ⊕ I)× I is a mapping.
We can consider following special octahedron sets in X:〈

0̃, 0̄, 0
〉

= 0̈,〈
0̃, 0̄, 1

〉
,
〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 0
〉
,〈

0̃, 1̄, 1
〉
,
〈

1̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉
,〈

1̃, 1̄, 1
〉

= 1̈.

In this case, 0̈ (resp. 1̈) is called an octahedron empty set (resp. octahedron whole
set) in X. We denote the set of all octahedron sets as O(X).
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Definition 2.4 ( [34]). Let X be a nonempty set and let A =
〈
Ã, Ā, A

〉
, B =〈

B̃, B̄, B
〉
∈ O(X). Then the inclusion and the equality between A and B are

defined by:

(i) (Inclusion) A ⊂ B ⇔ Ã ⊂ B̃, Ā ⊂ B̄, A ⊂ B,

(ii) (Equality) A = B ⇔ A ⊂ B and B ⊂ A, i.e., Ã = B̃, Ā = B̄, A = B.

Definition 2.5 ( [34]). LetX be a nonempty set and let (Aj)j∈J = (
〈
Ãj , Āj , Aj

〉
)j∈J

be a family of octahedron sets in X. Then the union ∪ and the intersection ∩ of
(Aj)j∈J are defined as follows, respectively:

(i) (Union)
⋃
j∈J Aj =

〈⋃
j∈J Ãj ,

⋃
j∈J Āj ,

⋃
j∈J Aj

〉
,

(ii) (Intersection)
⋂
j∈J Aj =

〈⋂
j∈J Ãj ,

⋂
j∈J Āj ,

⋂
j∈J Aj

〉
.

Definition 2.6 ( [34]). Let X, Y be two sets, let f : X → Y be a mapping and let
A ∈ O(X), B ∈ O(Y ).

(i) The preimage of B under f , denoted by f−1(B) =
〈
f−1(B̃), f−1(B̄), f−1(B)

〉
,

is the octahedron set in X defined as follows: for each x ∈ X,

f−1(B)(x) =
〈
[(B− ◦ f)(x), (B+ ◦ f)(x))], ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)), (B ◦ f)(x)

〉
.

(ii) The image of A under f , denoted by f(A) =
〈
f(Ã), f(Ā), f(A)

〉
, is the

octahedron set in Y defined as follows: for each y ∈ Y ,

f(Ã)(y) =

{
[
∨
x∈f−1(y)A

−(x),
∨
x∈f−1(y)A

+(x)] if f−1(y) 6= φ

0 otherwise,

f(Ā)(y) =

{
(
∨
x∈f−1(y)A

∈(x),
∧
x∈f−1(y)A

6∈(x)) if f−1(y) 6= φ

0̄ otherwise,

f(A)(y) =

{ ∨
x∈f−1(y)A(x) if f−1(y) 6= φ

0 otherwise.

It is obvious that f(x˜̄a) = [f(x)]˜̄a, for each x˜̄a ∈ OP (X).

Result 2.7 ( [34], Proposition 5.5). Let A, A1, A2 ∈ O(X), (Aj)j∈J ⊂ O(X), let
B, B1, B2 ∈ O(Y ), (Bj)j∈J ⊂ O(Y ) and let f : X → Y be a mapping. Then

(1) if A1 ⊂ A2, then f(A1) ⊂ f(A2),
(2) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B2),
(3) A ⊂ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂ B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(6) f−1(
⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),

(7) f(
⋃
j∈J Aj) =

⋃
j∈J f(Aj),

(8) f(
⋂
j∈J Aj) ⊂

⋂
j∈J f(Aj) and if f is injective, then f(

⋂
j∈J Aj) =

⋂
j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂1 f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1(0̈) = 0̈, f−1(1̈) = 1̈, f−1(
〈

0̃, 0̄, 1
〉

) =
〈

0̃, 0̄, 1
〉

,

4
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f−1(
〈

0̃, 1̄, 0
〉

) =
〈

0̃, 1̄, 0
〉

, f−1(
〈

1̃, 0̄, 0
〉

) =
〈

1̃, 0̄, 0
〉

,

f−1(
〈

0̃, 1̄, 1
〉

) =
〈

0̃, 1̄, 1
〉

, f−1(
〈

1̃, 0̄, 1
〉

) =
〈

1̃, 0̄, 1
〉

,

f−1(
〈

1̃, 1̄, 0
〉

) =
〈

1̃, 1̄, 0
〉

.

(12) f(0̈) = 0̈ and if f is surjective, then the following hold:

f(
〈

0̃, 0̄, 1
〉

) =
〈

0̃, 0̄, 1
〉
, f(

〈
0̃, 1̄, 0

〉
) =

〈
0̃, 1̄, 0

〉
,

f(
〈

1̃, 0̄, 0
〉

) =
〈

1̃, 0̄, 0
〉
, f(

〈
0̃, 1̄, 1

〉
) =

〈
0̃, 1̄, 1

〉
,

f(
〈

1̃, 0̄, 1
〉

) =
〈

1̃, 0̄, 1
〉
, f(

〈
1̃, 1̄, 0

〉
) =

〈
1̃, 1̄, 0

〉
, f(1̈) = 1̈.

3. Further results in octahedron topological spaces

In this section, we define an octahedron topological space in the sense Lowen [38]
and obtain some of its properties. In particular, we give a characterization of relative
octahedron continuity and a sufficient condition which the relative product mapping
is relatively octahedron open.

Definition 3.1 ( [37]). Let τ ⊂ O(X). Then τ is called an octahedron topology on
X, if it satisfies the following axioms:

[OO1] 0̈, 1̈ ∈ τ,
[OO2] A ∩ B ∈ τ for any A, B ∈ τ ,
[OO3]

⋃
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ .

It is obvious that the above definition is the sense of Chang [41]. We can give
the definition of an octahedron topological space in the sense of Lowen [38] in a
natural way. Now we will denote a constant fuzzy set [resp. intuitionistic fuzzy set,
interval-valued fuzzy set and octahedron set] with the value a ∈ I [resp. ā ∈ I ⊕ I,
ã ∈ [I] and ˜̄a ∈ [I]× (I ⊕ I)× I] in a set X as Ca [resp. Cā, Cã and C˜̄a] and defined
by Ca(x) = a [resp. Cā(x) = ā, Cã(x)) = ã and C˜̄a(x) = ˜̄a] for each x ∈ X.

Definition 3.2. Let τ ⊂ O(X). Then τ is called an octahedron topology on X in
the sense of Lowen, if it satisfies the following axioms:

[LOO1] C˜̄a ∈ τ,
[LOO2] A ∩ B ∈ τ for any A, B ∈ τ ,
[LOO3]

⋃
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ .

The pair (X, τ) is called an octahedron topological space. The members of τ are
called an octahedron open set (briefly, an OOS) in X and we denote the set of all
OOSs in X as OOS(X). A ∈ O(X) is called an octahedron closed set in X, if Ac ∈ τ .
We denote the collection of all octahedron topologies on X in the sense of Lowen as
OTL(X).

Remark 3.3. Let FTL(X) [resp. IFTL(X) and IV TL(X)] denote the set of all
fuzzy [resp. intuitionistic fuzzy and interval-valued fuzzy] topologies on X in the
sense of Lowen [38] [resp. Çoker [45], and Mondal and Samanta [40]].

Suppose τ ∈ OTL(X). Then we have

τ
IV
∈ IV TL(X), τ

IF
∈ IFTL(X), τ

F
∈ FTL(X),

5
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where τ
IV

= {Ũ ∈ IV S(X) : U ∈ τ}, τ
IF

= {Ū ∈ IFS(X) : U ∈ τ},
τ
F

= {U ∈ FS(X) : U ∈ τ}.
Furthermore, we have five fuzzy topologies on X in the sense of Lowen:

τ−
IV
, τ+

IV
, τ∈

IF
, τ /∈

IF
, τ

F
,

where τ−
IV

= {U− ∈ IX : U ∈ τ}, τ+
IV

= {U+ ∈ IX : U ∈ τ},
τ∈
IF

= {U∈ ∈ IX : U ∈ τ}, τ /∈
IF

= {U /∈c ∈ IX : U ∈ τ} (See Remark 3.3 (1)
in [37]).

Example 3.4. (1) Let (X,T ) an ordinary topological space and let χA denote the
characteristic function of a subset A of X. Consider three families given by:

τ
F,T

= {χU ∈ IX : U ∈ T} ∪ {Ca ∈ IX : a ∈ I},

τ
IF,T

= {(χU , χUc) ∈ IFS(X) : U ∈ T} ∪ {Cā ∈ IFSX : ā ∈ I ⊕ I},
τ
IV,T

= {[χU , χU ] ∈ IV S(X) : U ∈ T} ∪ {Cã ∈ IV SX : ã ∈ [I]}.
Then we can easily check that τ

F,T
∈ FTL(X), τ

IF,T
∈ IFTL(X) and τ

IV,T
∈

IV TL(X). Furthermore, it is clear that

τ
O,T

= {〈[χU , χU ], (χU , χUc), χU 〉 ∈ O(X) : U ∈ T}∪{C˜̄a ∈ O(X) : ˜̄a ∈ [I]×(I⊕I)×I}
is an octahedron topology in Lowens’s type.

(2) Let T ∈ FTL(X). Consider the following family of octahedron sets in X:

τ
FT

= {〈[U,U ], (U,U c), U〉 ∈ O(X) : U ∈ T} .
Then clearly, τ

FT
∈ OTL(X). In this case, τ

FT
is called an octahedron topology on

X generated by the fuzzy topology T .
(3) Let T ∈ IV TL(X) and let τ

IV T
be the family of octahedron sets in X given

by:

τ
IV T

=
{〈
Ũ , (U−, U+c), U−

〉
∈ O(X) : Ũ ∈ T

}
.

Then it is obvious that τ
IV T
∈ OTL(X). In this case, τ

FT
is called an octahedron

topology on X generated by the interval valued fuzzy topology T .
(4) Let T ∈ IFTL(X). Consider the following family of octahedron sets in X:

τ
IFT

=
{〈

[U∈, U /∈c], Ū , U∈
〉
∈ O(X) : Ū ∈ T

}
.

Then it is clear that τ
IFT
∈ OTL(X). In this case, τ

FT
is called an octahedron

topology on X generated by the intuitionistic fuzzy topology T .
(5) Let τ be the set of all constant octahedron set in a set X. Then it is obvious

that τ is an octahedron topology. In this case, τ is called a constant octahedron
topology on X and denoted by τ

OT
.

Unless otherwise stated, an octahedron [resp. a fuzzy, an intuitionistic fuzzy and
interval-valued fuzzy] topological space mean the octahedron topological space in
the viewpoint of Lowen in this section and the rest.

Definition 3.5 (See [37]). Let (X, τ) and (Y, γ) be two octahedron topological
spaces and let f : X → Y be a mapping. Then f is said to be:

(i) octahedron continuous, if f−1(V) ∈ τ for each V ∈ γ,
(ii) octahedron open, if f(A) ∈ γ for each A ∈ τ .

6
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Proposition 3.6. Let (X, τ), (Y, γ) be octahedron topological spaces and let c :
(X, τ) → (Y, γ) the constant mapping c(x) = y0 ∈ Y for each x ∈ X. Then c is
octahedron continuous.

Proof. Let V ∈ γ and let x ∈ X. Then by Definition 2.6 (i),

c−1(V)(x) = V(c(x)) = V(y0) = C˜̄a(x) (Say).

Thus c−1(V) = C˜̄a. Since C˜̄a ∈ τ , c−1(V) ∈ τ . So c is octahedron continuous. �

The following is an immediate result of Definition 3.5.

Proposition 3.7. Let (X, τ), (Y, γ), (Z, η) be octahedron topological spaces and let
f : (X, τ) → (Y, γ), g : (Y, γ) → (Z, η) be octahedron open. Then g ◦ f : (X, τ) →
(Z, η) is octahedron open.

Definition 3.8 (See Proposition 4.1, [37]). Let (X, τ) be an octahedron topological
space and let A ∈ O(X). Then the family τA of octahedron sets in X given by:

τA = {A ∩ U : U ∈ τ}

is called a relative octahedron topology on A determined by τ and the pair (A, τA)
is called an octahedron subspace of (X, τ). The members of τA is called relatively
octahedron open sets or simply octahedron open sets in A.

Note that the relative octahedron topology does not hold satisfy the axiom [LOO1]
in general. However we can see that it satisfies the axioms [LOO2] and [LOO3] from
Proposition 4.1 in [37].

Remark 3.9. (1) Let (X, τ) be a fuzzy [resp. an intuitionstic fuzzy and an interval-
valued fuzzy] topological space and let A ∈ FS(X) [resp. Ā ∈ IFS(X) and

Ã ∈ IV S(X). We can define a relative fuzzy topology τ
A

(See [3]) [resp. relative
intuitionistic fuzzy topology τ

Ā
(See [27]) and relative interval-valued fuzzy topology

τ
Ã

] on A [resp. Ā and Ã] as follows:

τ
A

= {U ∩A : U ∈ τ} [resp. τ
Ā

= {{Ū ∩ Ā : Ū ∈ τ} and τ
Ã

= {{Ũ ∩ Ã : Ũ ∈ τ}].

It is obvious that the first axiom of each topology is not satisfied in general.
(2) Let (A, τA) be an octahedron subspace of an octahedron topological space

(X, τ). From Remark 3.3 and (1), we can easily check that (Ã, τ
IV

Ã
) [resp. (Ā, τ

IF Ā
)

and (A, τ
F A

)] is an interval-valued fuzzy [resp. intuitionistic fuzzy and fuzzy] sub-

space of an interval-valued fuzzy [resp. an intuitionistic fuzzy and a fuzzy] topological
space (X, τ

IV
) [resp. (X, τ

IF
) and (X, τ

F
)].

Definition 3.10 ( [3, 27]). (i) Let (X, τ) and (Y, γ) be two fuzzy spaces, let f :
X → Y be a mapping and let (A, τ

A
), (B, γ

B
) be fuzzy subspaces of (X, τ), (Y, γ)

respectively. Then f is called a mapping of (A, τ
A

) into (B, γ
B

), denoted by f :
(A, τ

A
)→ (B, γ

B
), if f(A) ⊂ B.

(ii) Let (X, τ) and (Y, γ) be two intuitionistic spaces, let f : X → Y be a mapping
and let (Ā, τ

Ā
), (B̄, γ

Ā
) be intuitionistic fuzzy subspaces of (X, τ), (Y, γ) respectively.

Then f is called a mapping of (Ā, τ
Ā

) into (B, γ
B̄

), denoted by f : (A, τ
A

)→ (B̄, τ
B̄

),
if f(Ā) ⊂ B̄.

7
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We obtain the following modifications corresponding to Definition 3.10.

Definition 3.11. Let (X, τ) and (Y, γ) be two octahedron [resp. interval-valued
fuzzy] topological spaces, let f : X → Y be a mapping, and let (A, τA), (B, γB) [resp.

(Ã, τ
Ã

), (B̃, γ
B̃

)] be octahedron [resp. interval-valued fuzzy] subspaces of (X, τ),

(Y, γ) respectively. Then f is called a mapping of (A, τA) [resp. (Ã, τ
Ã

)] into (B, γB)

[resp. (B̃, γ
B̃

)], denoted by f : (A, τA) → (B, γB) [resp. f : (Ã, τ
Ã

) → (B̃, γ
B̃

)], if

f(A) ⊂ B [resp. f(Ã) ⊂ B̃].

Definition 3.12 ( [3, 27]). (1) Let (X, τ) and (Y, γ) be two fuzzy topological
spaces, let (A, τ

A
), (B, γ

B
) be fuzzy subspaces of (X, τ), (Y, γ) respectively. Then

f : (A, τ
A

)→ (B, γ
B

) is said to be:
(i) relatively fuzzy continuous, if f−1(V ) ∩A ∈ τ

A
for each V ∈ γ

B
,

(ii) relatively fuzzy open, if f(U) ∈ γ
B

for each U ∈ τ
A

.
(2) Let (X, τ) and (Y, γ) be two intuitionistic fuzzy topological spaces, let (Ā, τ

Ā
),

(B̄, τ
B̄

) be fuzzy subspaces of (X, τ), (Y, γ) respectively. Then f : (Ā, τ
Ā

)→ (B̄, τ
B̄

)
is said to be:

(i) relatively intuitionistic fuzzy continuous, if f−1(V̄ ) ∩ Ā ∈ τ
Ā

for each
V̄ ∈ γ

B̄
,
(ii) relatively intuitionistic fuzzy open, if f(Ū) ∈ γ

B̄
for each Ū ∈ τ

Ā
.

Also we obtain the following modifications corresponding to Definition 3.12.

Definition 3.13. Let (X, τ) and (Y, γ) be two octahedron [resp. interval-valued

fuzzy] topological spaces, let (A, τA), (B, γB) [resp. (Ã, τ
Ã

), (B̃, γ
B̃

)] be octahe-
dron [resp. interval-valued fuzzy] subspaces of (X, τ), (Y, γ) respectively. Then

f : (A, τA)→ (B, γB) [resp. f : (Ã, τ
Ã

)→ (B̃, γ
B̃

)] is said to be:

(i) relatively octahedron [resp. interval-valued fuzzy] continuous, if f−1(V) ∩A ∈
τA [resp. f−1(Ṽ ) ∩ Ã ∈ τ

Ã
] for each V ∈ γB [resp. Ṽ ∈ γ

B̃
],

(ii) relatively octahedron [resp. interval-valued fuzzy] open, if f(U) ∈ γB [resp.

f(Ū) ∈ γ
B̄

and f(Ũ) ∈ γ
B̃

] for each U ∈ τA [resp. Ū ∈ τ
Ā

and Ũ ∈ τ
Ã

].

From Remark 3.3, and Definitions 3.12 and 3.13, it is obvious that for any two
octahedron topological spaces (X, τ) and (Y, γ), if f : (A, τA)→ (B, τB) is relatively

octahedron continuous [resp. open], then f : (Ã, τ
IV

Ã
) → (B̃, τ

IV
B̃

) is a relatively

interval-valued fuzzy continuous [resp. open], f : (Ā, τ
IF Ā

) → (B̄, τ
IF B̄

) is a rela-

tively intuitionistic fuzzy continuous [resp. open] and f : (A, τ
F A

) → (B, τ
F B

) is a

relatively fuzzy continuous [resp. open].

Proposition 3.14. Let (X, τ) and (Y, γ) be two octahedron topological spaces, let
(A, τA), (B, γB) be octahedron subspaces of (X, τ), (Y, γ) respectively and let f :
(X, τ) → (Y, γ) be octahedron continuous such that f(A) ⊂ B. Then f : (A, τA) →
(B, γB) is a relatively octahedron continuous.

Proof. Let V ∈ γB . Then clearly, there is U ∈ γ such that V = U ∩ B. Since f is
octahedron continuous, f−1(U) ∈ τ . On the other hand, by Result 2.7 (6), we have

f−1(V) ∩ A = f−1(U) ∩ f−1(B) ∩ A.
8
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Since V = U∩B, f−1(U)∩f−1(B)∩A = f−1(U)∩A. Thus f−1(V)∩A = f−1(U)∩A.
So f−1(V) ∩ A ∈ τA . Hence the result holds. �

Proposition 3.15. Let (X, τ), (Y, γ), (Z, η) be octahedron topological spaces, let
(A, τA), (B, γB), (C, ηC ) be octahedron subspaces of (X, τ), (Y, γ), (Z, η) respectively.
Suppose f : (A, τA) → (B, γB) and g : (B, γB) → (C, ηC ) are relatively octahedron
continuous [resp. relatively octahedron open]. Then g ◦ f : (A, τA) → (C, ηC ) is
relatively octahedron continuous [resp. relatively octahedron open].

Proof. Suppose f and g are relatively octahedron continuous. Let W
′ ∈ ηC . Then

g−1(W
′
) ∩ B ∈ γB . Thus we have

f−1(g−1(W
′
) ∩ B) ∩ A ∈ τA .

Since f(A) ⊂ B, we get

f−1(g−1(W
′
) ∩ B) ∩ A = (g ◦ f)−1(W

′
) ∩ A.

So g ◦ f is relatively octahedron continuous. The remainder’s proof is obvious. �

Definition 3.16 ( [37]). Let τ1, τ2 ∈ OTL(X). Then we say that τ1 is coarser than
τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2, i.e., the identity mapping id : (X, τ2) → (X, τ1)
is octahedron continuous.

Definition 3.17 ( [37]). Let (X, τ) be an octahedron topological space and let
β ⊂ τ . Then β is called an octahedron base for τ , if for each U ∈ τ , U = 0̈ or there is
a β

′ ⊂ β such that U =
⋃
β
′
, i.e., each member of τ can be expressed as the union

of β.

Definition 3.18. Let τ ∈ OTL(X), let A ∈ O(X) and let β
′ ⊂ τA Then β

′
is called

an octahedron base for τA , if each member of τA can be expressed as the union of β
′
.

It is well-known that if β is an octahedron topology on a set X and A ∈ O(X),
then βA = {B∩A : B ∈ β} is an octahedron base for τA (See Proposition 4.5 in [37]).

From Definitions 3.5, 3.17 and 3.18, we have the following results.

Theorem 3.19 (See Theorem 5.6, [37]). Let (X, τ), (Y, γ) be octahedron topological
spaces, let f : (X, τ) → (Y, γ) be a mapping and let β ⊂ γ. Then f is octahedron
continuous if and only if f−1(B) ∈ τ for each B ∈ β.

Theorem 3.20. Let (X, τ), (Y, γ) be octahedron topological spaces, let (A, τA), (B, γB)

be octahedron subspaces of (X, τ), (Y, γ) respectively and let β
′ ⊂ γB Then a mapping

f : (A, τA)→ (B, γB) is relatively octahedron continuous if and only if f−1(B′)∩A ∈
τA for each B′ ∈ β′ .
Definition 3.21 (See Proposition 5.13, [37]). Let f : X → Y be a mapping and let
γ ∈ OTL(Y ). Then the coarsest octahedron topology τ on X for which f : (X, τ)→
(Y, γ) is octahedron continuous is called the initial octahedron topology on X or the
inverse image under f of γ. In fact, τ = f−1(γ) = {f−1(U) ∈ O(X) : U ∈ γ}.
Definition 3.22 (See Proposition 5.7, [37]). Let f : X → Y be a mapping and let
τ ∈ OTL(X). Then the finest octahedron topology γ on Y for which f : (X, τ) →
(Y, γ) is octahedron continuous is called the final octahedron topology on X or the
image under f of τ . In fact, γ = f(τ) = {V ∈ O(Y ) : f−1(V) ∈ τ}.

9
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Definition 3.23 (See [37]). Let (Xj , τj)j∈J be a family of octahedron topological
spaces, let X = Πj∈JXj and let (πj : X → (Xj , τj))j∈J be a family of mappings,
where πj is the projection mapping. Then the initial octahedron topology τ on X
induced by (πj)j∈J is called the octahedron product topology on X and denoted by
τ = Πj∈Jτj .

Proposition 3.24. Let (Xj , τj)j∈J be a family of octahedron topological spaces,
let (X, τ) be the octahedron product topological space. Then the set of all finite
intersections of octahedron sets of the form π−1

j (Uj) is an octahedron base for τ ,
where Uj ∈ τj, j ∈ J .

Proof. The proof is similar to one of such classical case. �

Let {Xj}, j = 1, 2, · · · , n, be a family of sets and let Aj ∈ O(Xj) for each
j = 1, 2, · · · , n. Then the octahedron product of {Aj}, j = 1, 2, · · · , n, de-
noted by Πn

j=1Aj , is an octahedron set in X = Πn
j=1Xj defined as follows: for each

(x1, x2, · · · , xn) ∈ X,

A(x1, x2, · · · , xn) = A1(x1) ∧ A2(x2) ∧ · · · ∧ An(xn),

where A = Πn
j=1Aj . Then we can easily check that πj(A) ⊂ Aj for each j =

1, 2, · · · , n.

Remark 3.25. From Proposition 3.24, it follows that if τj ∈ OTL(Xj), j =
1, 2, · · · , n, then the set of octahedron product sets of the form Πn

j=1Uj is an octahe-
dron base for the octahedron product topology onX, where Uj ∈ τj , j = 1, 2, · · · , n.

Proposition 3.26. Let (Xj , τj)j∈J be a family of octahedron topological spaces and
let (X, τ) be the octahedron product topological space. For each j = 1, 2, · · · , n,
let A1 ∈ O(Xj), let A be the octahedron product set in X and let τA be the relative
octahedron topology on A. Then the set of octahedron product sets of the form
Πn
j=1U

′

j is an octahedron base for τA , where U ′j ∈ τjA , j = 1, 2, · · · , n.

Proof. From Remark 3.25, it is clear that the following family of octahedron sets in
X

β = {Πn
j=1Uj ∈ O(X) : Uj ∈ τj , j = 1, 2, · · · , n}

is an octahedron base for τ . Then we can easily see that

βA = {(Πn
j=1Uj) ∩ A : Uj ∈ τj , j = 1, 2, · · · , n}

is an octahedron base for τA . On the other hand, (Πn
j=1Uj) ∩ A = Πn

j=1(Uj ∩ A).

Thus the result follows that U ′j = Uj ∩ A ∈ τjA , j = 1, 2, · · · , n. �

Theorem 3.27 (See Theorem 5.19, [37]). Let (Xj , τj)j∈J be a family of octahedron
topological spaces, let (X, τ) be the octahedron product topological space and let (Y, γ)
be an octahedron topological space. Then a mapping f : (Y, γ)→ (X, τ) is octahedron
continuous if and only if πj ◦ f is octahedron continuous for each j ∈ J .

Proof. The proof is almost similar to one of Theorem 5.19 in [37]. �
10
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Corollary 3.28. Let (Xj , τj)j∈J , (Yj , γj)j∈J be two families of octahedron topo-
logical spaces, and let (X, τ), (Y, γ) be the respective octahedron product topological
space. For each j ∈ J , let fj : (Xj , τj)→ (Yj , γj) be a mapping and let f = Πj∈Jfj :
(X, τ)→ (Y, γ) be the product mapping defined by: for each x = (xj) ∈ X,

f(x) = (fj(xj)).

If fj is octahedron continuous for each j ∈ J , then f is octahedron continuous.

Proof. Let x = (xj) ∈ X. Then clearly, f(x) = (fj(πj(x))) = (fj ◦ πj)(x), i.e.,
f = fj ◦ πj . Thus by Theorem 3.27, fj ◦ πj is octahedron continuous for each j ∈ J.
So f is octahedron continuous. �

Theorem 3.29. Let (Xj , τj)j∈J be a finite family of octahedron topological spaces,
j = 1, 2, · · · , n, let (X, τ) be the octahedron product topological space and let (Y, γ)
be an octahedron topological space. Let f : (B, γB) → (A, τA) be a mapping. Then
f is relatively octahedron continuous if and only if πj ◦ f : is relatively octahedron
continuous for each j = 1, 2, · · · , n.

Proof. Suppose f is relatively octahedron continuous. It is clear that πj : (X, τ)→
(Xj , τj) is octahedron continuous such that πj(A) ⊂ Aj for each j ∈ J . Then by
Proposition 3.14, πj : (A, τA)→ (Aj , (τj)Aj

) is relatively octahedron continuous for

each j ∈ J . Thus πj ◦ f : is relatively octahedron continuous for each j ∈ J .
Conversely, suppose πj ◦ f : is relatively octahedron continuous for each j ∈ J

and let U ′ = Πn
j=1U

′

j , where U ′j ∈ τjAj
, j = 1, 2, · · · , n. Then by Proposition 3.26,

the set of such U ′ forms an octahedron base for τA . On the other hand,

f−1(U ′) ∩ B = f−1(π−1
1 (U ′1) ∩ π−1

2 (U ′2) ∩ · · · ∩ (π−1
n (U ′n)) ∩ B

=
⋂n
j=1((πj ◦ f)−1(U ′j) ∩ B).

Thus by the hypothesis, (πj ◦f)−1(U ′j)∩B ∈ γB for each j ∈ J . So f−1(U ′)∩B ∈ γB .
So by Theorem 3.20, f is relatively octahedron continuous. �

Corollary 3.30. Let (Xj , τj)j∈J , (Yj , γj)j∈J be two families of octahedron topologi-
cal spaces, and let (X, τ), (Y, γ) be the respective octahedron product topological space.
For each j ∈ J , let Aj ∈ O(Xj), Bj ∈ O(Yj) and let fj : (Aj , (τj)Aj

)→ (Bj , (γj)Bj )

be a mapping. Let A = Πn
j=1Aj, B = Πn

j=1Bj be the octahedron product sets in X, Y
respectively and let f = Πj∈Jfj : (X, τ) → (Y, γ) be the product mapping defined in
Corollary 3.28. If fj is relatively octahedron continuous for each j = 1, 2, · · · , n,
then f : (A, τA)→ (B, γB) is relatively octahedron continuous.

Proof. The proof is analogous to one of Corollary 3.28. �

Proposition 3.31. Let (Xj , τj)j∈J , (Yj , γj)j∈J be two families of octahedron topo-
logical spaces and let (X, τ), (Y, γ) be the respective octahedron product topological
space. For each j ∈ J , let fj : (Xj , τj) → (Yj , γj) be a mapping. Let f = Πj∈Jfj :
(X, τ)→ (Y, γ) be the product mapping defined in Corollary 3.28. If fj is octahedron
open for each j = 1, 2, · · · , n, then f is octahedron open.

11
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Proof. Suppose fj is octahedron open for each j ∈ J and let U ∈ τ . Then there are
Ujm ∈ τj , m ∈M , j = 1, 2, · · · , n such that

U =
⋃
m∈M

Πn
j=1Ujm .

Since U =
〈
Ũ , Ū , U

〉
and Ujm =

〈
Ũjm , Ūjm , Ujm

〉
, we have

Ũ =
⋃
m∈M

Πn
j=1Ũjm , Ū =

⋃
m∈M

Πn
j=1Ūjm , U =

⋃
m∈M

Πn
j=1Ujm .

Thus f(U) =
〈
f(Ũ), f(Ū), f(U)

〉
. Let y ∈ Y such that f−1(y) 6= ∅. Then by

Definition 2.6 (ii), we have the following:

f(Ũ)(y) = f(
⋃
m∈M Πn

j=1Ũjm)(y)

=
∨
m∈M [

∨
x∈f−1(y) Πn

j=1U
−
jm

(x),
∨
x∈f−1(y) Πn

j=1U
+
jm

(x)]

=
∨
m∈M [

∨
x1∈f−1(y1) · · ·

∨
xn∈f−1(yn)(U

−
1m

(x1) ∧ · · · ∧ U−nm
(xn)),∨

x1∈f−1(y1) · · ·
∨
xn∈f−1(yn)(U

+
1m

(x1) ∧ · · · ∧ U+
nm

(xn))]

=
∨
m∈M [(

∨
x1∈f−1(y1) U

−
1m

(x1)) ∧ · · · ∧ (
∨
xn∈f−1(yn) U

−
nm

(xn)),

(
∨
x1∈f−1(y1) U

+
1m

(x1)) ∧ · · · ∧ (
∨
xn∈f−1(yn) U

+
nm

(xn))]

=
∨
m∈M [f(U−1m

)(y1) ∧ · · · f(U−nm
)(yn),

f(U+
1m

)(y1) ∧ · · · f(U+
nm

)(yn)]

=
∨
m∈M (Πn

j=1fj(Ũjm)(y))

= (
⋃
m∈M Πn

j=1fj(Ũjm))(y).

Similarly, we get f(Ū)(y) = (
⋃
m∈M Πn

j=1fj(Ūjm))(y). Also by the proof of Propo-
sition 3.6 in [3], we obtain f(U)(y) = (

⋃
m∈M Πn

j=1fj(Ujm))(y). Thus we have

f(Ũ) =
⋃
m∈M

Πn
j=1fj(Ũjm), f(Ū)(y) =

⋃
m∈M

Πn
j=1fj(Ūjm),

f(U) =
⋃
m∈M

Πn
j=1fj(Ujm).

So f(U) =
⋃
m∈M Πn

j=1fj(Ujm). Since fj(Ujm) is octahedron open for each j =
1, 2, · · · , n, f(U) ∈ γ. Hence f is octahedron open. �

Proposition 3.32. Let (Xj , τj)j∈J , (Yj , γj)j∈J be two families of octahedron topo-
logical spaces and let (X, τ), (Y, γ) be the respective octahedron product topological
space. For each j ∈ J , let Aj ∈ O(Xj), Bj ∈ O(Yj) and let fj : (Aj , (τj)Aj

) →
(Bj , (γj)Bj ) be a mapping. Let A = Πn

j=1Aj, B = Πn
j=1Bj be the octahedron prod-

uct sets in X, Y respectively and let f = Πj∈Jfj : (X, τ) → (Y, γ) be the prod-
uct mapping defined in Corollary 3.28. If fj is relatively octahedron open for each
j = 1, 2, · · · , n, then f is relatively octahedron open.

Proof. Suppose fj is relatively octahedron open for each j = 1, 2, · · · , n and let

U ′ ∈ τA . Then by Proposition 3.26, there are U ′jm ∈ (τj)Aj
, m ∈M , j = 1, 2, · · · , n

such that

U
′

=
⋃
m∈M

U
′

jm .

12
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As in the proof of Proposition 3.31, we get

f(U
′
) =

⋃
m∈M

Πn
j=1fj(U

′

jm).

Thus by the hypothesis, f(U ′) ∈ γB . So f is relatively octahedron open. �

Proposition 3.33. Let (X1, τ1), (X2, τ2) be two octahedron topological spaces and
let (X, τ) be the octahedron product topological space. For each a1 ∈ X1, let i :
(X2, τ2)→ (X, τ) be the mapping given by: for each x2 ∈ X2,

i(a1) = (a1, x2).

Then i is octahedron continuous.

Proof. Consider the constant mapping c : (X2, τ2) → (X1, τ1) given by c(x2) = a1

for each x2 ∈ X2. Then by Proposition 3.6, c is octahedron continuous. From by
Proposition 5.4 (1) in [37], it is clear that the identity mapping id : (X2, τ2) →
(X2, τ2) is octahedron continuous. Thus by Theorem 3.27, i = c ◦ id is octahedron
continuous. �

Proposition 3.34. Let (X1, τ1), (X2, τ2) be two octahedron topological spaces and let
(X, τ) be the octahedron product topological space. Let A1 ∈ O(X1), A2 ∈ O(X2),let
A be the octahedron product set in X and let i : (X2, τ2) → (X, τ) be the mapping
given in Proposition 3.33. Suppose A1(a1) ≥ A2(x2) for each a1 ∈ X1 and each
x2 ∈ X2. Then i : (A2, τ2A2

)→ (A, τA) is relatively octahedron continuous.

Proof. From Definition 2.6 (ii) and the hypothesis, we can easily check that i(A2) ⊂
A. Then i : (A2, τ2A2

) → (A, τA). Thus by the proof of the octahedron continuity
of i in Proposition 3.33, we can show that i is relatively octahedron continuous. �

4. Further properties of octahedron subgroups

In this section, first of all, we recall some definitions and results with respect to
octahedron subgroups introduced by Lee et al. [36]. Next, we find some additional
properties for octahedron subgroups.

Definition 4.1 (See [36]). Let X be a group and let G ∈ O(X). Then G is called
an octahedron group in X, if it satisfies the following axioms:

(i) G(xy) ≥ G(x) ∧ G(y) for any x, y ∈ X,
(ii) G(x−1) ≥ G(x) for each x ∈ X.
We denote the set of all octahedron groups in X as OG(X).

Note that Lee et al. [36] refers to G as an octahedron subgroup of X.

Result 4.2 (Proposition 17, [36]). Let G be an octahedron group in a group X. Then
G(x) = G(x−1) and G(e) ≥ G(x) for each x ∈ X, where e is the identity element of
X.

Result 4.3 (Theorem 7, [36]). Let X be a group and let G ∈ O(X). Then G ∈
OG(X) if and only if G(xy−1) ≥ G(x) ∧ G(y) for any x, y ∈ X.

13
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Definition 4.4 ( [36]). Let X be a non-empty set and let A ∈ O(X). Then A is
said to have sup-property, if for each T ∈ 2X , there is t0 ∈ T such that

A(t0) =
∨
t∈T
A(t) =

〈∨
t∈T

Ã(t),
∨
t∈T

Ā(t),
∨
t∈T

A(t)

〉
.

It is obvious that A has sup-property if and only if Ã, Ā and A have sup-property
respectively (See [46–48]).

Result 4.5 (Proposition 12, [36]). Let f : X → Y be a group homomorphism and

let G ∈ OG(X), G′ ∈ OG(Y ).
(1) If G has the sup-property, then f(G) ∈ OG(Y ).

(2) f−1(G′) ∈ OG(X).

Definition 4.6 ( [36]). Let X, Y be sets, let f : X → Y be a mapping and let
A ∈ O(X). Then A is said to be f -invariant, if for any x, y ∈ X, f(x) = f(y)
implies A(x) = A(y).

It is clear that A is f -invariant if and only if Ã, Ā and A are f -invariant respec-
tively (See [46, 47, 49]). Furthermore, we can easily check that if A is f -invariant,
then f−1(f(A)) = A.

The following is an immediate consequence of Definition 4.6.

Proposition 4.7. Let f : X → Y be a group homomorphism and let G ∈ OG(X).
If G is f -invariant, then f(G) ∈ OG(Y ).

Result 4.8 (Proposition 19, [36]). Let X be a group and let G ∈ OG(X). Then

Ge = {x ∈ X : G(x) = G(e)}
is a subgroup of X.

For a fixed a ∈ X, let ra, la : X → X two mappings defined respectively as
follows: for each x ∈ X,

ra(x) = xa, la(x) = ax.

Then ra and la are called the right and left translations of X into itself.

Proposition 4.9. Let X be a group and let G ∈ OG(X). Then we have

ra(G) = la(G) = G for each a ∈ Ge.

Proof. Let a ∈ Ge and let x ∈ X. Then we get

ra(G)(x) =
〈∨

y∈r−1
a
G̃(y),

∨
y∈r−1

a
Ḡ(y),

∨
y∈r−1

a
G(y)

〉
[By Definition 2.6]

=
〈
G̃(xa−1), Ḡ(xa−1), G(xa−1)

〉
[Since r−1

a (x) = xa−1]

= G(xa−1)
≥ G(x) ∧ G(a) [By Result 4.3]
= G(x) ∧ G(e) [Since a ∈ Ge]
= G(x) [By Result 4.2]
= G(xa−1a) [Since X is a group]
≥ G(xa−1) ∧ G(a) [By Definition 4.11]
= G(xa−1) ∧ G(e) [Since a ∈ Ge]

14
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= G(xa−1) [By Result 4.2]
= ra(G)(x).

Thus ra(G) = G. The proof for la is similar. �

Definition 4.10 (See [36]). Let X be a group and let A, B ∈ O(X).
(i) The product of A and B, denoted by A◦B, is the octahedron set in X defined

as follows: for each x ∈ X,

(A ◦ B)(x) =
∨

x1x2=x

[A(x1) ∧ B(x2)].

(ii) The inverse of A, denoted by A−1, is the octahedron set in X defined as
follows: for each x ∈ X,

A−1(x) = A(x−1).

The following is an immediate consequence of Definition 4.10.

Proposition 4.11. Let X be a group and let A, B ∈ O(X). Then

(A ◦ B)−1 = B−1 ◦ A−1, (A−1)−1.

Proposition 4.12. Let X be a group and let A, B ∈ O(X).
(1) If A ⊂ B, then A ◦ C ⊂ B ◦ C, C ◦ A ⊂ C ◦ B for each C ∈ O(X).
(2) If A ◦ C = B ◦ C for each C ∈ O(X), then A = B.
(3) If A ⊂ B, then A−1 ⊂ B−1.
(4) The following holds: for any A, B, B ∈ O(X),

(A ◦ B) ◦ C = A ◦ (B ◦ C).

Proof. The proofs of (1), (3) and (4) are easy.
(2) Assume that A 6= B. Then there is x ∈ X such that

Ã(x) 6= B̃(x) or Ā(x) 6= B̄(x) or A(x) 6= B(x).

Let C be the octahedron set in X given by: for each y ∈ X,

C(y) =

{
〈[1, 1], (1, 0), 1〉 if y = e
〈[0, 0], (0, 1), 0〉 if y 6= e,

where e is the identity element of X. Then we can easily see that A◦C 6= B ◦ C. �

Proposition 4.13. Let f : X → Y be a group homomorphism. Then we have

f(A ◦ B) = f(A) ◦ f(B) for any A, B ∈ O(X).

Proof. Let y ∈ Y such that f−1(y) 6= ∅, say y = f(x). Then we have
f(A ◦ B)(y) =

∨
x∈X, y=f(x)A ◦ B(x)

=
∨
x∈X, y=f(x)(

∨
x1x2=x[A(x1) ∧ B(x2)])

=
∨
x1, x2∈X, y=f(x1)f(x2)[A(x1) ∧ B(x2)]),

[Since f is a homomorphism]
f(A) ◦ f(B)(y) =

∨
y1y2=y[f(A)(y1) ∧ f(B)(y2)]

=
∨
y1y2=y[(

∨
x1∈X, y1=f(x1)A(x1)) ∧ (

∨
x2∈X, y2=f(x2) B(x2))]

=
∨
x1, x2∈X, y=f(x1)f(x2)[A(x1) ∧ B(x2)]).

Thus the result holds. �
15
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The following is an immediate consequence of Result 4.3 and Definition 4.10 (ii).

Proposition 4.14. If G is an octahedron group in a group X, then so is G−1.

Definition 4.15 ( [36]). Let X be a group and let N ∈ O(X). Then N is called an
octahedron normal group in X, if it is an octahedron group in X and N (xy) = N (yx)
for any x, y ∈ X.

Result 4.16 (Propositions 22 and 23, [36]). Let X be a group and let N be an
octahedron normal group in X. If A is an octahedron group in X, then A◦N = N◦A
is an octahedron group in X.

5. Octahedron topological groups

In this section, we define an octahedron topological group in a groupX in Forster’s
sense and find its characterization (See Theorem 5.7), and we give the sufficient
conditions which the inverse image and the image of an octahedron set under a
group homomorphism is an octahedron topological group. Also, we introduce the
concept of a relative octahedron homeomorphism and obtain some of its properties.

Proposition 5.1. Let G be an octahedron group in a group X. Let α : X ×X → X
and β : X → X be the mappings respectively defined as follows:

α(x, y) = xy for each (x, y) ∈ X ×X and β(x) = x−1 for each x ∈ X.
Then α(G × G) ⊂ G and β(G) ⊂ G.

Proof. Let z ∈ X. Then we get
α(G × G)(z) =

∨
(x,y)∈α−1(z)[G(x) ∧ G(y)]

≤
∨

(x,y)∈α−1(z) G(xy) [By Definition 4.1 (i)]

= G(z),

β(G)(z) =
∨
x∈β−1(z) G(x)

=
∨
x∈β−1(z) G(x−1) [By Result 4.2]

= G(z). [Since z = β(x) = x−1]
Thus α(G × G) ⊂ G and β(G) ⊂ G. �

Remark 5.2. (1) From Proposition 5.1, it is obvious that if (X, τ) is an octahedron
topological space, then (G, τG ) is a octahedron subspace of (X, τ) and (G × G, τG ×
τG ) is an octahedron subspace of the octahedron product space (X × X, τ × τ).

Furthermore, from Remark 3.3, we can easily see that (G̃, τ
IV

G̃
) is an interval-valued

fuzzy subspace of (X, τ
IV

), (Ḡ, τ
IF Ḡ

) is an intuitionistic fuzzy subspace of (X, τ
IF

),

(G, τ
F G

) is an fuzzy subspace of (X, τ
F

) and (G̃ × G̃, τ
IV

G̃
× τ

IV
G̃

) is an interval-

valued fuzzy subspace of (X×X, τ
IV
×τ

IV
), (Ḡ× Ḡ, τ

IF Ḡ
×τ

IF Ḡ
) is an intuitionistic

fuzzy subspace of (X × X, τ
IF
× τ

IF
), (G × G, τ

F G
× τ

F G
) is an fuzzy subspace of

(X ×X, τ
F
× τ

F
).

(2) Let G be an octahedron group in a group X. Then from Proposition 4.14,
G−1 is an octahedron group in X. Moreover, we can easily check that

α(G−1 × G−1) ⊂ G−1 and β(G−1) ⊂ G−1.
16



Han et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

(3) Let X be a group, let N be an octahedron normal group in X and let A be
an octahedron group in X. Then from Result 4.16, A ◦ N is an octahedron group
in X. Moreover, we can easily see that

α(A ◦ N ×A ◦ N ) ⊂ A ◦ N and β(A ◦ N ) ⊂ A ◦ N .
Definition 5.3 ( [3, 27]). (1) Let X be a group and let τ ∈ FTL(X). Let G be a
fuzzy group in X and let (G, τ

G
) be a fuzzy subspace of (X, τ). Then G is called a

fuzzy topological group, if it satisfies the following axioms:
(i) α : (G×G, τ

G
× τ

G
)→ (G, τ

G
) is relatively fuzzy continuous,

(ii) β : (G, τ
G

)→ (G, τ
G

) is relatively fuzzy continuous.
(2) Let X be a group and let τ ∈ IFTL(X). Let Ḡ be an intuitionistic fuzzy

group in X and let (Ḡ, τ
Ḡ

) be an intuitionistic fuzzy subspace of (X, τ). Then Ḡ is
called an intuitionistic fuzzy topological group, if it satisfies the following axioms:

(i) α : (Ḡ× Ḡ, τ
Ḡ
× τ

Ḡ
)→ (Ḡ, τ

Ḡ
) is relatively intuitionistic fuzzy continuous,

(ii) β : (Ḡ, τ
Ḡ

)→ (Ḡ, τ
Ḡ

) is relatively intuitionistic fuzzy continuous.

Definition 5.4 ( [3, 27]). Let X be a group and let τ ∈ IV TL(X). Let G̃ be an

interval-valued fuzzy group in X and let (G̃, τ
G̃

) be an interval-valued fuzzy subspace

of (X, τ). Then G̃ is called an interval-valued topological group, if it satisfies the
following axioms:

(i) α : (G̃× G̃, τ
G̃
× τ

G̃
)→ (G̃, τ

G̃
) is relatively interval-valued fuzzy continuous,

(ii) β : (G̃, τ
G̃

)→ (G̃, τ
G̃

) is relatively interval-valued fuzzy continuous.

Definition 5.5. Let X be a group and let τ ∈ OTL(X). Let G be an octahedron
group in X and let (G, τG ) be an octahedron subspace of (X, τ). Then G is called an
octahedron topological group, if it satisfies the following axioms:

(i) α : (G × G, τG × τG )→ (G, τG ) is relatively octahedron continuous,
(ii) β : (G, τG )→ (G, τG ) is relatively octahedron continuous.

An octahedron group structure and a relative octahedron topology are said to be
compatible, if they satisfy axioms (i) and (ii).

Remark 5.6. From Remarks 3.3, 5.2 and Definitions 5.3, 5.4, 5.5, we can easily

check that G is an octahedron topological group, then G̃ is an interval-valued fuzzy
topological group, Ḡ is an intuitionistic fuzzy topological group and G is a fuzzy
topological group.

Theorem 5.7. Let X be a group with τ ∈ OTL(X), let G ∈ O(X) and let δ :
X ×X → X be the mapping defined by: for each (x, y) ∈ X ×X,

δ(x, y) = xy−1.

Then G is octahedron topological group in X if and only if the mapping δ : (G ×
G, τG × τG )→ (G, τG ) is relatively octahedron continuous.

Proof. Suppose G is octahedron topological group in X. It is clear that the identity
mapping id : (G, τG ) → (G, τG ) and the mapping β : (G, τG ) → (G, τG ) are relatively
octahedron continuous. Let f = id×β. Then by Corollary 3.28, f : (G×G, τG×τG )→
(G×G, τG ×τG ) is relatively octahedron continuous. On the other hand, it is obvious
that δ = α ◦ f . Thus δ is relatively octahedron continuous.

17



Han et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

Conversely, suppose δ is relatively octahedron continuous. Consider the canonical
injection i : X → X ×X defined by: for each y ∈ X,

i(y) = (e, y).

Then by Definition 2.6 (ii) and Result 4.2, i(G) ⊂ G × G. Since i : (X, τ) →
(X ×X, τ × τ) is octahedron continuous, the mapping i : (G, τG )→ (G × G, τG × τG )
is relatively octahedron continuous. Moreover, β = δ◦ i. Thus β is relatively octahe-
dron continuous. So β ◦ δ is relatively octahedron continuous and α = β ◦ δ. Hence
α is relatively octahedron continuous. Therefore G is an octahedron topological
group. �

We obtain the followings.

Corollary 5.8. Let G be an octahedron group in a group X. Then G−1 is an
octahedron topological group in X.

Proof. The proof is similar to Theorem 5.7. �

Corollary 5.9. Let X be a group, let N be an octahedron normal group in X and
let A be an octahedron group in X. Then A ◦ N is an octahedron topological group
in X.

Proof. The proof is similar to Theorem 5.7. �

Definition 5.10. Let (X, τ), (Y, γ) be two octahedron topological spaces and let
let f : X → Y be a bijective mapping. Let (A, τA) be an octahedron subspace of
(X, τ) and let (B, γB) be an octahedron subspace of (Y, γ).

(i) f : (X, τ)→ (Y, γ) is called an octahedron homeomorphism, if it is octahedron
continuous and open,

(ii) f : (A, τA) → (B, γB) is called a relative octahedron homeomorphism, if it is
relatively octahedron continuous and open.

Remark 5.11. Let G be an octahedron topological group in a group X with τ ∈
OTL(X) and for a fixed a ∈ X, let ra and la be translations. Then ra : (G, τG ) →
(G, τG ) and la : (G, τG )→ (G, τG ) are not relatively octahedron continuous, in general.
However, we have the special case.

Proposition 5.12. Let X be be a group with τ ∈ OTL(X) and let G be an octahe-
dron topological group. Then the translations ra, la : (G, τG ) → (G, τG ) are relative
octahedron homeomorphisms for each a ∈ Ge.

Proof. It is clear that la is bijective. Let a ∈ Ge. Then clearly, by Proposition
4.9, la(G) = G. Furthermore, la = α ◦ i, where i : X → X × X is the injection
defined by i(y) = (a, y) for each y ∈ X. Since a ∈ Ge, G(a) = G(e). By Result 4.2,
G(a) ≥ G(x) for each x ∈ X. Thus by Proposition 3.34, i : (G, τG )→ (G×G, τG × τG )
is relative octahedron continuous. So by the hypothesis, α is relative octahedron
continuous. Hence la is relative octahedron continuous. Since l−1

a = la−1 , la is
relatively octahedron open. Therefore la is a relative octahedron homeomorphism.

The proof of a relative octahedron homeomorphism of ra is similar. �
18
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Suppose f : X → Y is a group homomorphism with γ ∈ OTL(Y ) and G is an
octahedron topological group in Y . Then by Definition 3.21, f−1(γ) ∈ OTL(X),
say f−1(γ) = τ . Since f−1(G) ∈ OG(X) by Result 4.5 (2), (f−1(G), τ

f−1(G)
) is an

octahedron subspace of an octahedron topological space (X, τ).
The following shows that the relative octahedron topology on f−1(G) and the

octahedron group structure are compatible.

Proposition 5.13. Let f : X → Y be a group homomorphism with γ ∈ OTL(Y ) and
G be an octahedron topological group in Y . Then f−1(G) is an octahedron topological
group in X.

Proof. From Definition 3.21 and Result 4.5 (2), we can easily see that (X, τ) is
an octahedron topological space and f−1(G) ∈ OG(X), where τ = f−1(γ). Then
(f−1(G), τ

f−1(G)
) is an octahedron subspace of (X, τ). By Theorem 5.7, it is suf-

ficient to prove that the mapping δX : (f−1(G) × f−1(G), τ
f−1(G)

× τ
f−1(G)

) →
(f−1(G), τ

f−1(G)
) is relatively octahedron continuous, where δX : X × X → X is

the mapping defined by δX(x, y) = xy−1 for each (x, y) ∈ X ×X.

Let U ′ ∈ τ
f−1(G)

and let (x, y) ∈ X × X. By Definition 3.21 and Result 2.7

(4), f : (X, τ) → (Y, γ) is octahedron continuous and f(f−1(G)) ⊂ G. Then by
Proposition 3.14, f : (f−1(G), τ

f−1(G)
)→ (G, γG ) is relatively octahedron continuous.

Thus there is V ′ ∈ γG such that f−1(V ′) = U ′ . On the other hand, we have

δ−1
X (U ′)(x, y) = U ′(δX(x, y)) [By Definition 2.6 (i)]

= U ′(xy−1) [By the definition of δX ]

= f−1(V ′)(xy−1)

= V ′(f(xy−1))

= V ′(f(x)(f(y)−1). [Since f is a homomorphism]
Since G is an octahedron topological group in Y , the mapping δY : (G×G, γG×γG )→
(G, γG ) is relatively octahedron continuous, where δY : Y × Y → Y is the mapping

defined by δY (y1y2) = y1y
−1
2 for each (y1, y2) ∈ Y × Y . So by Corollary 3.30, the

product mapping f × f : (f−1(G)× f−1(G), τ
f−1(G)

× τ
f−1(G)

)→ (G, γG ) is relatively

octahedron continuous. But we get

V
′
(f(xy−1)) = δ−1

Y (V
′
)(f(x), f(y)) = (f × f)−1[δ−1

Y (V
′
)](x, y).

Furthermore, we have

δ−1
X (U

′
) ∩ (f−1(G)× f−1(G)) = (f × f)−1[δ−1

Y (V
′
)] ∩ (f−1(G)× f−1(G)).

Since (f × f)−1[δ−1
Y (V ′)] ∩ (f−1(G)× f−1(G)) ∈ τ

f−1(G)
× τ

f−1(G)
, it is clear that

δ−1
X (U

′
) ∩ (f−1(G)× f−1(G)) ∈ τ

f−1(G)
× τ

f−1(G)
.

Hence δX is relatively octahedron continuous. Therefore f−1(G) is an octahedron
topological group in X. �

The following shows that for some homomorphic images a similar situation holds.

Proposition 5.14. Let f : X → Y be a group homomorphism with τ ∈ OTL(X)
and let G be an octahedron topological group in X. If G is f -invariant, then f(G) is
an octahedron topological group in Y .
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Proof. Suppose G is f -invariant. Then clearly, by Proposition 4.7, f(G) ∈ OG(Y ).
From Definition 3.23, it is obvious that f(τ) ∈ OTL(Y ), say f(τ) = γ. It is sufficient
to prove that the mapping δY : (f(G)×f(G), γ

f(G)
×γ

f(G)
)→ (f(G), γ

f(G)
) is relatively

octahedron continuous.
From Definitions 3.5 (ii) and 3.23, it is clear that f : (X, τ)→ (Y, γ) is octahedron

open. Let U ′ ∈ τG . Then there is U ∈ τ such that U ′ = U ∩G. Since G is f -invariant,

f(U ′) = f(U) ∩ f(G). Since f is octahedron open, f(U) ∈ γ. Thus f(U ′) ∈ γ
f(G)

.

So f : (G, τG → (f(G), γ
f(G)

) is relatively octahedron open. By Proposition 3.32, the

product mapping f × f : (G × G, τG × τG )→ (f(G)× f(G), γ
f(G)
× γ

f(G)
) is relatively

octahedron open.
Now let V ′ ∈ γ

f(G)
and let (x, y) ∈ X ×X. Then we have

(f × f)−1[δ−1
Y (V

′
)](x, y) = V

′
(f(x)(f(y))−1) = (δ−1

X ◦ f
−1)(V

′
)(x, y),

where δX : X × X → X is the mapping defined by δX(x, y) = xy−1 for each
(x, y) ∈ X ×X. Since G is an octahedron topological group in X, δX : (G × G, τG ×
τG ) → (G, τG ) is relatively octahedron continuous and f : (G, τG ) → (f(G), γ

(G)
) is

relatively octahedron continuous. Since G is f -invariant, we get

(f × f)−1[δ−1
Y (V

′
)] ∩ (f(G)× f(G)) = (f × f)−1[δ−1

Y (V
′
)] ∩ (G × G).

Since (f × f)−1[δ−1
Y (V ′)] ∩ (G × G) ∈ τG × τG , it is clear that

(f × f)−1[δ−1
Y (V

′
)] ∩ (f(G)× f(G)) ∈ τG × τG .

Since f × f is relatively octahedron open,

(f × f)(f × f)−1[δ−1
Y (V

′
)] ∩ (f(G)× f(G)) ∈ γ

f(G)
× γ

f(G)
.

On the other hand, we have

(f × f)(f × f)−1[δ−1
Y (V

′
)] ∩ (f(G)× f(G)) = δ−1

Y (V
′
) ∩ (f(G)× f(G)).

Thus δ−1
Y (V ′)∩(f(G)×f(G)) ∈ γ

f(G)
×γ

f(G)
. So δY is relatively octahedron continuous.

Hence f(G) is an octahedron topological group in Y . �

Remark 5.15. Let X be a group with τ ∈ OTL(X), let G be an octahedron topo-
logical group, let N be a normal subgroup of X and let ϕ be the canonical mapping
of X onto the quotient group X/N . Then we can easily check that if G is constant
on N , then G is ϕ-invariant and thus by Proposition 4.7, ϕ(G) ∈ OG(X/N).

In this case, ϕ(G) is called an octahedron quotient group in X/N and denoted by
G/N .

Proposition 5.16. Let X be a group with τ ∈ OTL(X), let G be an octahedron
topological group, let N be a normal subgroup of X and let ϕ be the canonical mapping
of X onto the quotient group X/N . Let γ = ϕ(τ) ∈ OTL(X/N). If G is constant on
N , then the quotient group G/N is an octahedron topological group in X/N .

In this case, ϕ(τ) is called the octahedron quotient topology on X/N and G/N is
called an octahedron quotient topological group in X/N .

Proof. The proof is similar to one of Proposition 5.14. �
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Proposition 5.17. Let f : X → Y be a group epimorphism with τ ∈ OTL(X) and
γ ∈ OTL(Y ). Let f : (X, τ) → (Y, γ) be octahedron continuous and open. Let G be
an octahedron topological group in X such that G is constant on the kernel f−1(e)
of f and let the octahedron quotient group G/f−1(e) have the octahedron quotient
topology. Then

(1) the octahedron groups G/f−1(e) and f(G) are octahedron topological groups
in X/f−1(e) and Y respectively,

(2) the canonical isomorphism f̄ of X/f−1(e) onto Y is a relative homeomorphism
of G/f−1(e) onto f(G).

Proof. (1) It is clear that f−1(e) is a normal subgroup of X. Then by Proposition
5.16, G/f−1(e) is an octahedron topological group in X/f−1(e). Let V ∈ f(τ). Then
f−1(V) ∈ τ . Since f is sujective, f(f−1(V)) = V by Result 2.7 (4). Thus V ∈ γ.
So f(τ) ⊂ γ. Now let V ∈ γ. Since f is octahedron continuous, f−1(V) ∈ τ . Then
V ∈ f(τ). Thus γ ⊂ f(τ). So f(τ) = γ. Moreover, we can easily see that G is
f -invariant. Hence by Proposition 5.14, f(G) is an octahedron topological group in
Y .

(2) Let V ′ ∈ γ
f(G)

and let ϕ be the canonical homomorphismn ofX ontoX/f−1(e).

Then f−1(V ′) = ϕ−1(f̄−1(V ′)). Since f is relatively octahedron continuous, f−1(V ′) ∈
τG . Thus ϕ−1(f̄−1(V ′)) ∈ τG . So f̄−1(V ′) ∈ τ

G/f−1(e)
. Hence the mapping f̄ :

(G/f−1(e))→ (f(G), γ
f(G)

) is relatively octahedron continuous.

Now let U ∈ τ
G/f−1(e)

. Then ϕ−1(U) = f−1(f̄(U)). Since ϕ is relatively octahe-

dron continuous, ϕ−1(U) ∈ τG . Thus f−1(f̄(U)) ∈ τG . Since f is relatively octahe-
dron open and surjective, f̄(U) = f(f−1(f̄(U))) ∈ τG . So f̄ is relatively octahedron
open. Hence f̄ is a relative octahedron homeomorphism. �

Let {Xj}, j = 1, 2, · · · , n, be a finite family of groups and let X be the product
group of {Xj}. For each j = 1, 2, · · · , n, let τj ∈ OTL(Xj) and let Gj be an
octahedron topological group. Let G = Πn

j=1Gj be the octahedron product set in X
defined by: for each x = (x1, x2, · · · , xn) ∈ X,

G(x) = G1(x1) ∧ G2(x2) ∧ · · · ∧ Gn(xn).

Proposition 5.18. Let {Xj}, j = 1, 2, · · · , n, be a finite family of groups and let
X be the product group of {Xj}. For each j = 1, 2, · · · , n, let Gj be an octahedron
group in Xj. Then G = Πn

j=1Gj is an octahedron group in X.
In this case, G is called an octahedron product group of {Gj}.

Proof. The proof is easy from Result 4.3 and the definition of octahedron product
set. �

The following shows that the relative octahedron topology on G and the octahe-
dron group structure are compatible.

Proposition 5.19. Let {Xj}, j = 1, 2, · · · , n, be a finite family of groups with
τj ∈ OTL(Xj) and let X be the product group of {Xj}. For each j = 1, 2, · · · , n, let
Gj be an octahedron group in Xj and let (X, τ) be the octahedron topological space,
where τ is the octahedron product topology of {τj}. Then the octahedron product
group G is an octahedron topological group in X.
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In this case, G is called an octahedron product topological group of {Gj}.

Proof. Let δ1 : X × X → Πn
j=1(Xj × Xj) be two mapping defined as follows: for

each (x, y) = ((x1, x2, · · · , xn), (y1, y2, · · · , yn)) ∈ X ×X,

δ1(x, y) = ((x1, y1), (x2, y2), · · · , (xn, yn)).

Then by Theorem 3.27, δ1 : (X × X, τ × τ) → (Πn
j=1(Xj × Xj),Π

n
j=1(τj × τj)) is

octahedron continuous. It is obvious that δ1(G × G) ⊂ Πn
j=1(Gj × Gj). Thus by

Proposition 3.14, δ1 : (G × G, τG × τG ) → (Πn
j=1(Gj × Gj),Πn

j=1((τj)Gj × (τj)Gj )) is

relatively octahedron continuous. Let δ2 : Πn
j=1(Xj ×Xj)→ X be mapping defined

as follows: for each (x, y) = ((x1, y1), (x2, y2), · · · , (xn, yn)) ∈ Πn
j=1(Xj ×Xj),

δ2(x, y) = (x1y
−1
1 , x2y

−1
2 , · · · , xny−1

n ).

Then we can easily check that δ2 : (Πn
j=1(Xj × Xj),Π

n
j=1(τj × τj) → (X, τ) is

octahedron continuous and δ2(Πn
j=1(Gj × Gj)) ⊂ G. Thus by Corollary 3.30, δ2 :

(Πn
j=1(Gj ×Gj),Πn

j=1((τj)Gj × (τj)Gj )→ (G, τG ) is relatively octahedron continuous.

Now let δ = δ2 ◦ δ1 : X ×X → X. Then clearly, δ : X ×X → X be the mapping
given by δ(x, y) = xy−1 for each (x, y) ∈ X ×X. Thus δ : (X ×X, τ × τ)→ (X, τ)
is octahedron continuous and δ(G × G) ⊂ G. So δ : (G × G, τG × τG ) → (G, τG ) is
relatively octahedron continuous. Hence G is an octahedron topological group in
X. �

The following may be considered as the consequence combined to Propositions
5.16 and 5.18.

Proposition 5.20. Let {Xj}, j = 1, 2, · · · , n, be a finite family of groups with
τj ∈ OTL(Xj). For each j = 1, 2, · · · , n, let Nj be be a normal subgroup of
Xj and let Gj be an octahedron topological group in Xj such that Gj is constant
on Nj. Let X = Πn

j=1Xj with τ = Πn
j=1τj ∈ OTL(X), let N = Πn

j=1Nj and let
X/N be the quotient group such that ζ is the octahedron quotient topology on X/N .
For each j = 1, 2, · · · , n, let ηj be the octahedron quotient topology on Xj/Nj.
Suppose G = Πn

j=1Gj is an octahedron topological group in X. Then the canonical
isomorphism i of X/N onto Πn

j=1(Xj/Nj) is a relative octahedron homeomorphism
of octahedron quotient topological group G/N onto the octahedron product topological
group Πn

j=1(Gj/Nj).

Proof. Let ϕ : X → X/N be the canonical epimorphism defined by ϕ(x) = [x]
for each x ∈ X and for each j = 1, 2, · · · , n, let ϕj : Xj → Xj/Nj be the
canonical epimorphism defined by ϕ(xj) = [xj ] for each xj ∈ Xj . Let Πn

j=1ϕj : X →
Πn
j=1(Xj/Nj) be the product surjective mapping given by:

Πn
j=1ϕj(x) = Πn

j=1[xj ] for each x = (x1, x2, · · · , xn) ∈ X.

Then clearly, Πn
j=1ϕj = i ◦ ϕ. Let [x] ∈ X/N . Then we have

G/N([x]) = G(x) = Πn
j=1Gj(x1, x2, · · · , xn)

=
∧n
j=1 Gj(xj)

=
∧n
j=1 Gj/Nj([xj ])
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= Πn
j=1Gj/Nj(i([x])).

On the other hand, by Propositions 5.16 and 5.18, G/N and Πn
j=1(Gj/Nj) are octa-

hedron topological groups. Let η = Πn
j=1ηj be the relative octahedron topology on

Πn
j=1Xj/Nj and let V ′ ∈ η. Then we get

(i ◦ ϕ)−1(V
′
) = ϕ−1(i−1(V

′
)) = (Πn

j=1ϕj)
−1(V

′
).

By Propositions 3.27 and 3.14, Πn
j=1ϕj is relatively octahedron continuous. Thus

ϕ−1(i−1(V ′) = (Πn
j=1ϕj)

−1(V ′) ∈ τG . So (i ◦ ϕ)−1(V ′) ∈ τG . Since ϕ is relatively

octahedron open and surjective, i−1(V ′) ∈ ζG/N . Hence i is relatively octahedron
continuous.

Now let U ′ ∈ ζG/N . Then ϕ−1(U ′) ∈ τG . On the other hand, we get

(Πn
j=1ϕj)(ϕ

−1(U
′
)) = i(U

′
).

Since Πn
j=1ϕj is the product of relatively octahedron open mappings, Πn

j=1ϕj is rela-

tively octahedron open by Proposition 3.32. Thus (Πn
j=1ϕj)(ϕ

−1(U ′)) ∈ η
Πn
j=1

(Gj/Nj)
.

So i(U ′) ∈ η
Πn
j=1

(Gj/Nj)
. Hence i is relatively octahedron open. Therefore i is a rela-

tive octahedron homeomorphism. �

6. Conclusions

First of all, we obtained further properties in an octahedron topological space
and some properties in an octahedron group which are necessary to discuss with
properties of an octahedron topological group. Next, we defined an octahedron
topological group in the sense of Forster, and obtained its characterization and
some of its properties. In particular, we found the sufficient conditions which the
preimage and the image of an octahedron set under an group homomorphism are
an octahedron topological group. Also, we introduced the concept of a relative
octahedron homeomorphism and investigated some of its properties.

In the future, we hope that one can the notion of octahedron sets apply to a semi-
group, a BCK/BCI-algebra, an octahedron ideal topological group and decision-
making problems. Moreover, we expect that one study interval-valued fuzzy topo-
logical groups of Forster’s sense.

References

[1] O. Schreier, Abstrakte knotinuierliche grouppen, Hamb. Abh. 4 (1926) p. 15.
[2] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
[3] D. H. Foster, Fuzzy topological group, J. Math. Anal. Appl. 67 (1979) 549–564.

[4] C. Yu and J. Ma, Fuzzy topological groups (1), J. Northeastern Normal Univ. 3 (1982) 13–18.
[5] J. Ma and C. Yu, Fuzzy topological groups, Fuzzy Sets and Systems 12 (1984) 289–299.

[6] J. Fang, On fuzzy topological groups, Kexue Tongbao (China) 29 (6) (1984) 727–730.
[7] J. Ma and C. Yu, On the direct product of fuzzy topological groups, Fuzzy Sets and Systems

17 (1985) 91–97.
[8] C. Yu and J. Ma, On fuzzy topological groups, Fuzzy Sets and Systems 23 (1987) 281–287.
[9] G. I. Chae, A note on fuzzy topology, fuzzy groups and fuzzy topological groups, Pusan

Kyongnam Mathematical Journal 3 (1987) 97–111.

[10] C. Yu and J. Ma, L-fuzzy topological groups, Fuzzy Sets and Systems 44 (1991) 83–91.

23



Han et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

[11] I. Chon, Properties of fuzzy topological groups and fuzzy semigroups, Kangweon-Kyungki
Math. Jour. 8 (2) (2000) 103–110.

[12] I. Chon, Some properties of fuzzy topological groups, Fuzzy Sets and Systems 123 (2001)
197–201.

[13] M. Ganster, D. N. Georgiou and S. Jafari, On fuzzy topological groups and fuzzy continuous

functions, Hacettepe Journal of Mathematics and Statistics 34 S (2005) 35–43.
[14] V. L. G. Nayagam, D. Gauld, G. Venkateshwari and G. Sivaraman Strong fuzzy topological

groups, New Zealand Journal of Mathematics 38 (2008) 187–195.

[15] T. Ali and S. Das, Fuzzy topological transformation groups, Journal of Mathematics Research
1 (1) (2009) 78–86.

[16] F. Bayoumi and I. Ibedu, The uniformizability L-topological groups, The Journal of Fuzzy

Mathematics 17 (1) (2009) 35–52.
[17] S. Y. Zhang and C. G. Yan, L-fuzzifying topological groups, Iranian Journal of Fuzzy Systems

9 (4) (2012) 115–132.

[18] M. Rowthri and Dr. B. Amudhambigai, A view on fuzzy fine topological group structure spaces,
International Journal of Computational and Applied Mathematics 12 (1) (2017) 412–422.
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