Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (202x), pp. 1–xx ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On intuitionistic fuzzy congruence of a near-ring module

P. K. Sharma

Received 4 April 2024; Revised 23 April 2024; Accepted 29 May 2024

ABSTRACT. This study aims to examine intuitionistic fuzzy congruences and intuitionistic fuzzy submodules on an R-module (near-ring module). The relationship between intuitionistic fuzzy congruences and intuitionistic fuzzy submodules of an R-module is also obtained. Furthermore, the intuitionistic fuzzy quotient R-module of an R-module over an intuitionistic fuzzy submodule is defined. The correspondence between intuitionistic fuzzy congruences on an R-module and intuitionistic fuzzy congruences on the intuitionistic fuzzy quotient R-module of an R-module over an intuitionistic fuzzy submodule of an R-module of an R-module over an intuitionistic fuzzy submodule of an R-module is also obtained.

2010 AMS Classification: 08A72, 08A30, 03F55, 16Y30, 16D10.

Keywords: Congruence; *R*-module, Intuitionistic fuzzy submodule, Quotient module; Intuitionistic fuzzy congruence.

Corresponding Author: P. K. Sharma (pksharma@davjalandhar.com)

1. INTRODUCTION

The concept of a fuzzy set was introduced by Zadeh [1] in 1965. Since then, there has been a tremendous interest in the subject due to its diverse applications ranging from engineering and computer science to social behaviour studies. The concept of fuzzy relations on a set was defined by Zadeh [1, 2]. Fuzzy relations on group has been studied by Bhattacharya and Mukharjee [3], and those in rings and groups by Malik and Modeson in [4]. The detailed applications of fuzzy relations are given by Baets and Kerre in [5]. The construction of a fuzzy congruence relation generated by a fuzzy relation on a vector space was given by Khosravi et al. in [6]. Dutta and Biswas [7] applied the concept of fuzzy congruence in the nearring module. As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [8] in 1983. After that time, several researchers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] applied the notion of intuitionistic fuzzy sets to relations, algebra, topology, and topological structures. In particular, Bustince and

Burillo [20], and Deschrijver and Kerre [21] applied the concept of intuitionistic fuzzy sets to relations. Also, Hur et al. [14] investigated several properties of intuitionistic fuzzy congruences. Moreover, Hur and his colleagues [22] introduce the notion of intuitionistic fuzzy congruences on a lattice and a semigroup, and investigate some of their properties. Basnet in [11, 12] studied many properties of intuitionistic fuzzy congruence on groups was introduced by Emam [23], and that of universal algebra was studied by Cuvalcioglu and Tarsuslu (Yilmaz) in [24, 25]. Rasuli in [26, 27] studied intuitionistic fuzzy congruence on groups and rings under the *t*-norm, respectively.

Since the correspondence theorem provides a bridge between algebraic structures, and their quotients, allowing us to study properties, factorizations, and relationships in a more manageable way. Its applications extend beyond pure algebra and have implications in various mathematical areas. The main objective of this paper is to establish a connection between intuitionistic fuzzy congruences and intuitionistic fuzzy submodules on an R-module (where R is a near-ring) and quotient R-module over an intuitionistic fuzzy submodule of an R-module. This is achieved by establishing a one-to-one correspondence between the set of intuitionistic fuzzy submodules and the set of intuitionistic fuzzy congruences of a R-module. Lastly, we study the intuitionistic fuzzy congruence of a quotient R-module over an intuitionistic fuzzy submodule and obtain a correspondence theorem.

2. Preliminaries

We recall some definitions and results that are used in this paper. For details, see the references quoted therein.

Definition 2.1 ([28, 29]). A *near-ring* R is a system with two binary operations, addition and multiplication, such that:

- (i) (R, +) is a group,
- (ii) (R, \cdot) is a semigroup,
- (iii) x(y+z) = xy + xz for all $x, y, z \in R$.

Definition 2.2 ([28]). An *R*-module (i.e. near-ring module) M is a system consisting of an additive group M, a near-ring R, and a mapping $(m, r) \rightarrow mr$ of $M \times R$ into M such that

- (i) m(x+y) = mx + my for all $m \in M$ and for all $x, y \in R$,
- (ii) m(xy) = (mx)y for all $m \in M$ and for all $x, y \in R$.

Definition 2.3 ([28]). An *R*-homomorphism f of an *R*-module M into an *R*-module M' is a mapping from M to M' such that for all $m; m_1, m_2 \in M$ and for all $r \in R$, (i) $f(m_1 + m_2) = f(m_1) + f(m_2)$,

(ii) f(m)r = f(mr).

A non-empty subset N of an R-module M that forms with the restrictions of the operations on M (addition and scalar multiplication) to N itself an R-module is called a *submodule* of M. The *kernel* of an R-module homomorphism $f: M \to M'$, denoted by *kerf* is defined as:

$$kerf = \{x \in M : f(x) = 0'\}$$

It may be noted that kerf is a submodule of M.

The submodules of an R-module M are defined to be the kernels of R-homomorphisms.

Proposition 2.4 ([28]). An additive normal subgroup N of an R-module M is a submodule if and only if $(m+b)r - mr \in N$ for each $m \in M$, $b \in N$ and $r \in R$.

Definition 2.5 ([14]). A relation ρ on an *R*-module *M* is called a *congruence* on M, if it is an equivalence relation on M such that $(a,b) \in \rho$ and $(c,d) \in \rho$ imply that $(a + c, b + d) \in \rho$ and $(ar, br) \in \rho$ for all a, b, c, d in M and for all r in R.

Definition 2.6 ([8, 9, 10]). An *intuitionistic fuzzy set* (IFS) A in X can be represented as an object of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$, where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

The intutionistic fuzzy whole [resp. empty] set in X, denoted by $\overline{1}$ [resp. $\overline{0}$], is an IFS in X defined as follows: for each $x \in X$,

$$\overline{1}(x) = (1,0)$$
 [resp. $\overline{0}(x) = (0,1)$].

The set of all IFSs of X will be written as IFS(X).

Remark 2.7 ([10, 12]). (1) When $\mu_A(x) + \nu_A(x) = 1 \ \forall x \in X$, A is a fuzzy set. (2) If $p, q \in [0, 1]$ such that $p + q \leq 1$, then $A \in IFS(X)$ defined by $\mu_A(x) = p$ and $\nu_A(x) = q$ for all $x \in X$, is called a *constant IFS* of X.

If A, $B \in IFS(X)$, then $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \mu_B(x)$ $\nu_B(x) \ \forall x \in X$. For any subset Y of X, the intuitionistic fuzzy characteristic function (IFCF) χ_Y is an intuitionistic fuzzy set of X, defined as $\chi_Y(x) = (1,0) \ \forall x \in Y$ and $\chi_Y(x) = (0,1) \ \forall x \in X \setminus Y$. Let $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$. Then the crisp set

$$A_{(\alpha,\beta)} = \{ x \in X : \mu_A(x) \ge \alpha \text{ and } \nu_A(x) \le \beta \}$$

is called the (α, β) -level subset of A (See[12]).

Definition 2.8 ([13]). A nonempty IFS of an additive group G is called an *intuitionistic fuzzy normal subgroup* of G, if for all x, y in G,

(i) $\mu_A(x+y) \ge \min\{\mu_A(x), \mu_A(y)\}, \nu_A(x+y) \le \max\{\nu_A(x), \nu_A(y)\}, \nu_A(x+y) \le \max\{\nu_A(x), \nu_A(y)\}, \nu_A(y) \le \max\{\nu_A(y), \nu_A(y)\}, \nu_A(y), \nu_A(y)\}, \nu_A(y) \le \max\{\nu_A(y), \nu_A(y), \nu_A(y)\}, \nu_A(y), \nu_A(y), \nu_A(y), \nu_A(y)\}, \nu_A(y), \nu_A($ (ii) $\mu_A(-x) = \mu_A(x), \nu_A(-x) = \nu_A(x),$ (iii) $\mu_A(y+x-y) = \mu_A(x), \nu_A(y+x-y) = \nu_A(x).$

Definition 2.9 ([13]). Let A be an intuitionistic fuzzy normal subgroup of an addivide group G and $x \in G$. Then the IFS x + A in G defined by

 $\mu_{(x+A)}(y) = \mu_A(y-x)$ and $\nu_{(x+A)}(y) = \nu_A(y-x)$ for all y in G is called the *intuitionistic fuzzy coset of* A *with respect to* x.

3. INTUITIONISTIC FUZZY SUBMODULE (IFSM)

Definition 3.1. Let A be a non-empty IFS of an R-module M. Then A is said to be an intuitionistic fuzzy submodule (IFSM) of M, if for all x, $y \in M$, $r \in R$,

(i) A is an IF normal subgroup of M,

(ii) $\mu_A((x+y)r - xr) \ge \mu_A(y)$ and $\nu_A((x+y)r - xr) \le \nu_A(y)$.

Example 3.2. Consider the additive group $(M = \{0, 1, 2, 3\}, +_4)$ and the near-ring $R = (M_{2\times 2}, +, .)$ of 2×2 matrices over the real numbers under the usual operation of addition and multiplication of matrices. Let $.: M \times R \to M$ be the mapping defined as mX = m + m + m + m + m (|X| times), where |X| denotes the determinant of matrix $X \in R$. Then M is an R-module.

Define the IFS A on M as follows:

$$\mu_A(x) = \begin{cases} 1, & \text{if } x = 0, 2\\ 0.6, & \text{if } x = 1, 3 \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x = 0, 2\\ 0.3, & \text{if } x = 1, 3. \end{cases}$$

Then it is a routine matter to check that the conditions (i) and (ii) of Definition 3.1 hold. Thus A is an IFSM of an R-module M.

Proposition 3.3. Let K be a non-empty subset of an R-module M. Then the IF characteristic function χ_K is an IFSM of M if and only if K is a submodule of M.

The proposition can be directly verified.

Proposition 3.4. Let A be an IFSM of an R-module M. Then the (α, β) -level set $A_{(\alpha,\beta)} = \{x \in M : \mu_A(x) \ge \alpha, \nu_A(x) \le \beta\}$ is a submodule of M

Proof. The proof is omitted.

Definition 3.5. Let A be an IFSM of an R-module M. Then the submodule $A_{(\alpha,\beta)}$ is called the (α,β) -level submodule of M.

Proposition 3.6. For a non-empty IFS A of an R-module M, the following assertion are equivalent:

- (1) A is an IFSM of M,
- (2) the (α, β) -level set $A_{(\alpha, \beta)}$ are submodules of M

Proof. Since the proof is a simple matter of verification, we omit it. \Box

Proposition 3.7. Let A is an IFNSG of an additive group G. Then x + A = y + A if and only if $\mu_A(y - x) = \mu_A(0), \nu_A(y - x) = \nu_A(0)$ for all $x, y \in G$.

Proof. The proof is straightforward.

Theorem 3.8. Let A be an IFSM of an R-module M. Then the set M/A of all IF cosets of A is an R-module w.r.t. the operation defined by (x + A) + (y + A) = (x + y) + A and (x + A)r = (xr + A) for all $x, y \in M, r \in R$.

If $f: M \to M/A$ is a surjective mapping defined by f(x) = x + A for all $x \in M$, then f is an R-homomorphism with $Kerf = \{x \in M : \mu_A(x) = \mu_A(0), \nu_A(x) = \nu_A(0)\}.$

Proof. We shall first show that the given operations are well-defined. Let $x, y, u, v \in M$ be such that x + A = u + A and y + A = v + A. Then $\mu_A(x - u) = \mu_A(0), \nu_A(x - u) = \nu_A(0)$ and $\mu_A(y - v) = \mu_A(0), \nu_A(y - v) = \nu_A(0)$. On the other hand, we have

$$\mu_A(x+y-v-u) = \mu_A(-u+x+y-v) \\ \ge \min\{\mu_A(-u+x), \mu_A(y-v)\} \\ = \mu_A(0)$$

$$\geq \mu_A(x+y-v-u).$$

Thus $\mu_A(x+y-v-u) = \mu_A(0)$. Similarly, we can show that $\nu_A(x+y-v-u) = \nu_A(0)$. So x + y + A = u + v + A, i.e., (x + A) + (y + A) = (u + A) + (v + A). Hence the first operation is well-defined.

Let x, y be two elements of M such that x + A = y + A. Let $r \in R$. Then $\mu_A(x-y) = \mu_A(0), \ \nu_A(x-y) = \nu_A(0)$. Thus we get

$$\mu_A(xr - yr) = \mu_A((y - y + x)r - yr) \ge \mu_A(y - x) = \mu_A(x - y) = \mu_A(0).$$

Again $\mu_A(0) = \mu_A((0 + xr - yr)0_R - 00_R) \ge \mu_A(xr - yr)$. So $\mu_A(xr - yr) = \mu_A(0)$. Similarly, we can show that $\nu_A(xr - yr) = \nu_A(0)$. Hence xr + A = yr + A. Therefore the second operation is well-defined.

Now let f be the mapping from M to M/A defined by f(x) = x + A for all x in M. Then we have

$$f(x+y) = x + y + A = (x+A) + (y+A) = f(x) + f(y).$$

Also, we get

$$f(xr) = xr + A = (x + A)r = f(x)r$$
 for $x, y \in M$ and $r \in R$.

Obviously f is surjective. Thus f is an R-epimorphism.

Lastly, $x \in Kerf \Leftrightarrow f(x) = 0 + A \Leftrightarrow x + A = 0 + A \Leftrightarrow \mu_A(x) = \mu_A(0), \nu_A(x) = \nu_A(0).$ So $Kerf = \{x \in M : \mu_A(x) = \mu_A(0), \nu_A(x) = \nu_A(0)\}.$

Definition 3.9. The *R*-module M/A is called the *quotient R-module* of *M* over its intuitionistic fuzzy submodule *A*.

4. Intuitionistic fuzzy congruence

Definition 4.1 ([11, 14]). Let M be an R-module. A nonempty intuitionistic fuzzy relation (IFR) ρ on M [i.e., a mapping $\rho : M \times M \to [0,1] \times [0,1]$] is called an *intuitionistic fuzzy equivalence relation* (IFER), if for all $x, y \in M$,

(i) $\mu_{\rho}(x, x) = 1, \nu_{\rho}(x, x) = 0$ (IF reflective),

(ii) $\mu_{\rho}(x,y) = \mu_{\rho}(y,x)$ and $\nu_{\rho}(x,x) = \nu_{\rho}(y,x)$ (IF symmetric),

(iii) $\mu_{\rho}(x, y) \ge \sup_{z \in M} \{\mu_{\rho}(x, z), \mu_{\rho}(z, y)\}$ and $\nu_{\rho}(x, y) \le \inf_{z \in M} \{\nu_{\rho}(x, z), \nu_{\rho}(z, y)\}$ (IF transitive).

Let ρ be an IFER on a set M and $a \in M$ be any element. Then the IFS ρ_a on M defined by $\mu_{\rho_a}(x) = \mu_{\rho}(a, x)$ and $\nu_{\rho_a}(x) = \nu_{\rho}(a, x) \quad \forall x \in M$ is called the *intuitionistic fuzzy equivalence class* of ρ containing a. The set $\{\rho_a : a \in M\}$ is called the *intuitionistic fuzzy quotient set* of M by ρ and is denoted by M/ρ .

Definition 4.2 ([14]). An IFER ρ on an *R*-module *M* is called an *intuitionistic* fuzzy congruence (IFC), if for all $a, b, c, d \in M$ and all $r \in R$.

(i) $\mu_{\rho}(a+c,b+d) \ge \min\{\mu_{\rho}(a,b),\mu_{\rho}(c,d)\}, \nu_{\rho}(a+c,b+d) \le \max\{\nu_{\rho}(a,b),\nu_{\rho}(c,d)\},$ (ii) $\mu_{\rho}(ar,br) \ge \mu_{\rho}(a,b), \nu_{\rho}(ar,br) \le \nu_{\rho}(a,b).$ **Example 4.3.** Consider $M = \mathbb{Z}_4$, $R = (\{0, 1\}, +_2, ._2)$. Then M is an R-module. Now we define the IFS ρ on $M \times M$ by

$$\mu_{\rho}((x,y)) = \begin{cases} 1, & \text{if } x = y \\ 0.5, & \text{if } (x,y) \in \{(2,3), (3,2)\} \\ 0.3, & \text{otherwise}, \end{cases}$$
$$\nu_{\rho}((x,y)) = \begin{cases} 0, & \text{if } x = y \\ 0.4, & \text{if } (x,y) \in \{(2,3), (3,2)\} \\ 0.6, & \text{otherwise}. \end{cases}$$

Then ρ is an IFER on M, but it is not an IFC, for $\mu_{\rho}(2+2,3+2) \not\ge \min\{\mu_{\rho}(2,3), \mu_{\rho}(2,2)\}$. **Example 4.4.** Consider the *R*-module M as in Example 3.2, we define the IFS ρ on $M \times M$ as follows

$$\mu_{\rho}((x,y)) = \begin{cases} 1, & \text{if } x = y \\ 0.6, & \text{if } x \neq y, \end{cases} \quad \nu_{\rho}((x,y)) = \begin{cases} 0, & \text{if } x = y \\ 0.3, & \text{if } x \neq y. \end{cases}$$

Then it is a routine matter to verify that the conditions of Definition 4.2 hold. Thus ρ is an IFC on M.

Theorem 4.5. Let λ be a relation on an *R*-module *M* and χ_{λ} be its intuitionistic fuzzy characteristic function. Then λ is a congruence relation on *M* if and only if χ_{λ} is an IFC on *M*.

Proof. The proof is omitted.

Definition 4.6 ([11, 14]). Let ρ be an IFR on an *R*-module *M*. For each $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta \leq 1$, the set

$$\rho_{(\alpha,\beta)} = \{(a,b) \in M \times M : \mu_{\rho}(a,b) \ge \alpha, \nu_{\rho}(a,b) \le \beta\}$$

is called a (α, β) -level set of ρ .

It is shown in [11] that ρ is an IFER if and only if $\rho_{(\alpha,\beta)}$ is an equivalence relation on M for all $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta \leq 1$."

Theorem 4.7. Let ρ be an IFER on an R-module M. Then ρ is an IFC on M if and only if $\rho_{(\alpha,\beta)}$ is a congruence on M for each $(\alpha,\beta) \in img(\rho)$ (Image of ρ).

Proposition 4.8. Let ρ be an IFC on an R-module M and A_{ρ} be an IFS of M defined by

$$\mu_{A_{\rho}}(a) = \mu_{\rho}(a, 0) \text{ and } \nu_{A_{\rho}}(a) = \nu_{\rho}(a, 0) \text{ for all } a \in M.$$

Then A_{ρ} is an IFSM of M.

Proof. Since $\mu_{A_{\rho}}(0) = \mu_{\rho}(0,0) = 1$ and $\nu_{A_{\rho}}(0) = \nu_{\rho}(0,0) = 0$. Also, $\mu_{A_{\rho}}(a+b) = \mu_{\rho}(a+b,0) \ge \min\{\mu_{\rho}(a,0),\mu_{\rho}(b,0)\} = \min\{\mu_{A_{\rho}}(a),\mu_{A_{\rho}}(b)\}$ Similarly, $\nu_{A_{\rho}}(a+b) = \nu_{\rho}(a+b,0) \le \max\{\nu_{\rho}(a,0),\nu_{\rho}(b,0)\} = \max\{\nu_{A_{\rho}}(a),\nu_{A_{\rho}}(b)\}$. Then we have

$$\mu_{A_{\rho}}(-a) = \mu_{\rho}(-a,0) = \mu_{\rho}(-a+0,-a+a)$$

$$\geq \min\{\mu_{\rho}(-a,-a),\mu_{\rho}(0,a)\}$$

$$= \mu_{\rho}(0,a) = \mu_{\rho}(a,0)$$

$$= \mu_{A_{\rho}}(a).$$

6

Similarly, we can show $\mu_{A_{\rho}}(a) \geq \mu_{A_{\rho}}(-a)$. Thus $\mu_{A_{\rho}}(-a) = \mu_{A_{\rho}}(a)$. In the same way, we can show that $\nu_{A_{\rho}}(-a) = \nu_{A_{\rho}}(a)$. Also, we have

$$\mu_{A_{\rho}}(a+b-a) = \mu_{\rho}(a+b-a,0) = \mu_{\rho}(a+b-a,a+0-a) \ge \mu_{\rho}(b,0) = \mu_{A_{\rho}}(b).$$

Similarly, we can show that $\nu_{A_{\rho}}(a+b-a) \leq \nu_{A_{\rho}}(b)$. So A_{ρ} is an IFNSG of an *R*-module *M*.

Now for $a, b \in M$ and $r \in R$, we have

$$\mu_{A_{\rho}}((a+b)r-ar) = \mu_{\rho}((a+b)r-ar,0) = \mu_{\rho}((a+b)r-ar,ar-ar)$$

$$\geq \min\{\mu_{\rho}((a+b)r,ar),\mu_{\rho}(-ar,-ar)\} = \mu_{\rho}((a+b)r,ar)$$

$$\geq \mu_{\rho}((a+b),a)$$

$$\geq \mu_{\rho}(b,0)$$

$$= \mu_{A_{\rho}}(b).$$

Similarly, we can show that $\nu_{A_{\rho}}((a+b)r-ar) \leq \nu_{A_{\rho}}(b)$. Hence A_{ρ} is an IFSM of M.

Example 4.9. Consider the *R*-module *M* as in Example 3.2, we define the IFS ρ on $M \times M$ as follows

$$\mu_{\rho}((x,y)) = \begin{cases} 1, & \text{if } x = y \\ 0.6, & \text{if } x \neq y \end{cases}; \quad \nu_{\rho}((x,y)) = \begin{cases} 0, & \text{if } x = y \\ 0.3, & \text{if } x \neq y. \end{cases}$$

Then ρ is an IFC on M (See Example 4.4). Let A_{ρ} be an IFS of M, defined by $\mu_{A_{\rho}}(a) = \mu_{\rho}(a, 0)$ and $\nu_{A_{\rho}}(a) = \nu_{\rho}(a, 0)$ for all $a \in M$. Then it is a easy to check that

$$\mu_{A_{\rho}}(a) = \begin{cases} 1, & \text{if } a = 0\\ 0.6, & \text{if } a \neq 0, \end{cases} \quad \nu_{A_{\rho}}(a) = \begin{cases} 0, & \text{if } a = 0\\ 0.3, & \text{if } a \neq 0. \end{cases}$$

Thus A_{ρ} is an IFSM of M.

Remark 4.10. From Examples 3.2 and 4.9, one can easily check that $(\rho)_{A_{\rho}} \neq A$.

Proposition 4.11. Let A be an IFSM of an R-module M. Let ρ_A be an IFR on M defined by

$$\mu_{\rho_A}(x,y) = \mu_A(x-y) \text{ and } \nu_{\rho_A}(x,y) = \nu_A(x-y) \text{ for all } x, y \in M.$$

Then ρ_A is an IFC on M.

Proof. Let $x \in M$. Then we have

$$\mu_{\rho_A}(x,x) = \mu_A(x-x) = \mu_A(0) = 1, \ \nu_{\rho_A}(x,x) = \nu_A(x-x) = \nu_A(0) = 0$$

Thus ρ_A is IF reflexive. It is clear that ρ_A is IF symmetric. Now let $x, y \in M$. Then we get

$$\mu_{\rho_A}(x,y) = \mu_A(x-y) = \mu_A(x-z+z-y) \\
\geq \min\{\mu_A(x-z), \mu_A(z-y)\} \\
= \min\{\mu_{\rho_A}(x,z), \mu_{\rho_A}(z,y)\} \; \forall z \in M.$$
7

Thus $\mu_{\rho_A}(x,y) \ge \sup_{z \in M} \min\{\mu_{\rho_A}(x,z), \mu_{\rho_A}(z,y)\}$. Similarly, we can show that $\nu_{\rho_A}(x,y) \leq \inf_{z \in M} \max\{\nu_{\rho_A}(x,z), \nu_{\rho_A}(z,y)\}$. So ρ_A is an IF equivalence relation on M. On the other hand, we have

$$\mu_{\rho_A}(x+u,y+v) = \mu_A(x+u-v-y) = \mu_A(-y+x+u-v) \geq \min\{\mu_A(-y+x),\mu_A(u-v)\} = \min\{\mu_A(x-y),\mu_A(u-v)\} = \min\{\mu_{\rho_A}(x,y),\mu_{\rho_A}(u,v)\}.$$

Similarly, we can show that $\nu_{\rho_A}(x+u,y+v) \leq \max\{\nu_{\rho_A}(x,y),\nu_{\rho_A}(u,v)\}$. Again

$$\mu_{\rho_A}(xr, yr) = \mu_A(xr - yr) = \mu_A((y - y + x)r - yr) \geq \mu_A(-y + x) = \mu_A(x - y) = \mu_{\rho_A}(x, y).$$

Similarly, we can show that $\nu_{\rho_A}(xr-yr) \leq \nu_{\rho_A}(x,y)$. Hence ρ_A is an IFC on M. \Box

Remark 4.12. Note ρ_A is called the *IFC induced by* A and A_{ρ} is called the *IFSM* induced by ρ .

Example 4.13. Consider R, M and IFSM A as in Example 3.2. Define the IFS ρ_A on $M \times M$ as

$$\mu_{\rho_A}(x,y) = \mu_A(x-y)$$
 and $\nu_{\rho_A}(x,y) = \nu_A(x-y)$ for all $x, y \in M$.
hen we have

Th

$$\mu_{\rho_A}((x,y)) = \begin{cases} 1, & \text{if } x - y \in \{0,2\}\\ 0.6, & \text{if } x - y \in \{1,3\}, \end{cases} \quad \nu_{\rho_A}((x,y)) = \begin{cases} 0, & \text{if } x - y \in \{0,2\}\\ 0.3, & \text{if } x - y \in \{1,3\}. \end{cases}$$

It is easy to check that ρ_A is an IFC on M induced by A.

Remark 4.14. It can be easily seen that $(A_{\rho})_A \neq \rho$.

Theorem 4.15. Let M be an R-module. Then there exists an inclusion preserving bijection from the set $\mathcal{IFM}(\mathcal{M})$ of all IFSMs of M to the set of $\mathcal{IFC}(\mathcal{M})$ of all IFCs.

Proof. We define mappings $\psi : \mathcal{IFM}(\mathcal{M}) \to \mathcal{IFC}(\mathcal{M})$ and $\phi : \mathcal{IFC}(\mathcal{M}) \to \mathcal{IFC}(\mathcal{M})$ $\mathcal{IFM}(\mathcal{M})$, respectively by $\psi(A) = \rho_A$ and $\phi(\rho) = A_\rho$ for $A \in \mathcal{IFM}(\mathcal{M})$ and $\rho \in \mathcal{IFC}(\mathcal{M})$. It is obvious that

$$(\phi \circ \psi)(A) = \phi(\psi(A)) = \phi(\rho_A) = A_{(\rho_A)}.$$

Let $a \in M$. Then we get

$$\mu_{A_{(\rho_A)}}(a) = \mu_{\rho_A}(a,0) = \mu_A(a-0) = \mu_A(a), \ \nu_{A_{(\rho_A)}}(a) = \nu_{\rho_A}(a,0) = \nu_A(a-0) = \nu_A(a)$$

Thus $A_{(\rho_A)} = A_A = A_A$

Thus $A_{(\rho_A)} = A$. So $(\phi \circ \psi)(A) = A = \mathrm{Id}(\mathcal{IFC}(\mathcal{M}))(A)$. Hence ψ is injective.

Let $A_1, A_2 \in \mathcal{IFM}(\mathcal{M})$ be such that $A_1 \subseteq A_2$. Then for all $(x, y) \in \mathcal{M} \times \mathcal{M}$,

$$\mu_{\rho_{A_2}}(x,y) = \mu_{A_2}(x-y) \ge \mu_{A_1}(x-y) = \mu_{\rho_{A_1}}(x,y)$$

and

$$\nu_{\rho_{A_2}}(x,y) = \nu_{A_2}(x-y) \le \nu_{A_1}(x-y) = \nu_{\rho_{A_1}}(x,y).$$

Thus $\rho_{A_1} \subseteq \rho_{A_2}$. So $\psi(A_1) \subseteq \psi(A_2)$. Hence ψ is inclusion preserving.

Now let $\rho \in \mathcal{IFC}(\mathcal{M})$. Then A_{ρ} is an IFSM of \mathcal{M} . Note that $\rho_{A_{\rho}}$ is an IFC of M. It is clear that

$$(\psi \circ \phi)(\rho) = \psi(\phi(\rho)) = \psi(A_{\rho}) = \rho_{A_{\rho}}.$$

Let $(x, y) \in M \times M$. Then we have

$$\mu_{\rho_{A_{\rho}}}(x,y) = \mu_{A_{\rho}}(x-y) = \mu_{\rho}(x-y,0) = \mu_{\rho}(x,y)$$

and

$$\nu_{\rho_{A_{\rho}}}(x,y) = \nu_{A_{\rho}}(x-y) = \nu_{\rho}(x-y,0) = \nu_{\rho}(x,y).$$

Thus $\rho_{A_{\rho}} = \rho$. So $(\psi \circ \phi)(\rho) = \psi(\phi(\rho)) = \rho = Id(\mathcal{IFC}(\mathcal{M}))(\rho)$ for all $\rho \in \mathcal{IFC}(\mathcal{M})$. Hence $\phi \circ \psi = Id(\mathcal{IFC}(\mathcal{M}))$ which implies that ψ is surjective. Therefore ψ is an inclusion preserving bijection from $\mathcal{IFM}(\mathcal{M})$ to $\mathcal{IFC}(\mathcal{M})$.

Proposition 4.16. Let ρ be an IFC on an *R*-module *M* and A_{ρ} be an IFSM induced by ρ . Let $(\alpha, \beta) \in Img(\rho)$. Then

$$\rho_{(\alpha,\beta)} = \{ x \in M : x \equiv 0(\rho_{(\alpha,\beta)}) \}$$

is a submodule induced by the congruence $\rho_{(\alpha,\beta)}$.

A

Proof. Let $a \in M$. Then $a \in A_{\rho_{(\alpha,\beta)}} \Leftrightarrow \mu_{A_{\rho}}(a) \ge \alpha, \nu_{A_{\rho}}(a) \le \beta$ $\Leftrightarrow \mu_{\rho}(a,0) \ge \alpha, \nu_{\rho}(a,0) \le \beta \Leftrightarrow (a,0) \in \rho_{(\alpha,\beta)} \Leftrightarrow a \in \{x \in M : x \equiv 0(\rho_{(\alpha,\beta)})\}.$ Thus $A_{\rho_{(\alpha,\beta)}}$ is a submodule induced by the congruence $\rho_{(\alpha,\beta)}$.

Proposition 4.17. Let A be an IFSM of an R-module M and ρ_A be the IFC induced by A. Let $(\alpha, \beta) \in Img(A)$. Then $\rho_{A_{(\alpha,\beta)}}$ is the congruence on M induced by $A_{(\alpha,\beta)}$.

Proof. Let λ be the congruence on M induced by $A_{(\alpha,\beta)}$. Then

$$(x,y) \in \lambda \Leftrightarrow x - y \in A_{(\alpha,\beta)}$$

Let $(x,y) \in \rho_{A_{(\alpha,\beta)}}$. Then $\mu_{\rho_A}(x,y) \ge \alpha$, $\nu_{\rho_A}(x,y) \le \beta$. Thus we have

$$\mu_A(x-y) \ge \alpha, \ \nu_A(x-y) \le \beta \ \Rightarrow \ x-y \in A_{(\alpha,\beta)} \ \Rightarrow \ x-y \in \lambda.$$

So $\rho_{A_{(\alpha,\beta)}} \subseteq \lambda$. By reversing the above argument, we get $\lambda \subseteq \rho_{A_{(\alpha,\beta)}}$. Hence $\rho_{A_{(\alpha,\beta)}} = \lambda$.

Definition 4.18. Let M be an R-module and ρ be an IFC on M. An IFC λ on M is said to be ρ -invariant, if for all $(x, y), (u, v) \in M \times M$,

$$\mu_{\rho}(x,y) = \mu_{\rho}(u,v) \text{ and } \nu_{\rho}(x,y) = \nu_{\rho}(u,v) \Rightarrow \mu_{\lambda}(x,y) = \mu_{\lambda}(u,v) \text{ and}$$

 $\nu_{\lambda}(x,y) = \nu_{\lambda}(u,v).$

Lemma 4.19. Let M be an R-module and A be an IFSM of M. Let ρ_A be the IFC on M induced by A. Then the IFR ρ_A/ρ_A on M/A defined by

$$(\rho_A/\rho_A)(x+A,y+A) = \rho_A(x,y)$$

is an IFC on M/A.

Proof. Assume that x + A = u + A and y + A = v + A. Then we have

$$\mu_A(x-u) = \mu_A(0) = 1, \ \nu_A(x-u) = \nu_A(0) = 0$$

and

$$\mu_A(y-v) = \mu_A(0) = 1, \ \nu_A(y-v) = \nu_A(0) = 0.$$

Thus we get

$$\mu_{\rho_A}(x, y) \ge \min\{\mu_{\rho_A}(x, u), \mu_{\rho_A}(u, y)\}$$
9

$$= \mu_{\rho_A}(u, y)$$

$$\geq \min\{\mu_{\rho_A}(u, v), \mu_{\rho_A}(v, y)\}$$

$$= \mu_{\rho_A}(u, v).$$

Similarly, we can show $\mu_{\rho_A}(u,v) \ge \mu_{\rho_A}(x,y)$. So $\mu_{\rho_A}(x,y) = \mu_{\rho_A}(u,v)$. Similarly, we get $\nu_{\rho_A}(x, y) = \nu_{\rho_A}(u, v)$. Hence ρ_A/ρ_A is meaningful.

Now the rest of the proof is a routine matter of verification.

Theorem 4.20. Let M be an R-module and A be an IFSM of M. Let ρ_A be the IFC on M induced by A. Then there exists a one-to-one correspondence between the set $\mathcal{IFC}_{\rho_{\mathcal{A}}}(\mathcal{M})$ of ρ_{A} -invariant IFCs of M and the set $\mathcal{IFC}_{\rho_{\mathcal{A}}/\rho_{\mathcal{A}}}(\mathcal{M}/\mathcal{A})$ of ρ_A/ρ_A -invariant IFCs on M/A.

Proof. Let λ be an ρ_A -invariant IFC on M. Define

$$(\lambda/\rho_A)(x+A, y+A) = \lambda(x, y)$$
 for all $x, y \in M$.

Let x+A = u+A and y+A = v+A. These imply that $\rho_A(x,y) = \rho_A(u,v)$. Since λ is ρ_A -invariant, we have $\lambda(x,y) = \lambda(u,v)$. Then the definition of λ/ρ_A is meaningful. It is easy to show that λ/ρ_A is ρ_A/ρ_A -invariant IFC on M/A. We define a map $\theta : \mathcal{IFC}_{\rho_{\mathcal{A}}}(\mathcal{M}) \to \mathcal{IFC}_{\rho_{\mathcal{A}}/\rho_{\mathcal{A}}}(\mathcal{M}/\mathcal{A}) \text{ by } \theta(\lambda) = \lambda/\rho_{\mathcal{A}}. \text{ Let } \lambda_1, \ \lambda_2 \in \mathcal{IFC}_{\rho_{\mathcal{A}}}(\mathcal{M}) \text{ such }$ that $\lambda_1(x, y) \neq \lambda_2(x, y)$. Then we have

$$(\lambda_1/\rho_A)(x+A,y+A) = \lambda_1(x,y) \neq \lambda_2(x,y) = (\lambda_2/\rho_A)(x+A,y+A).$$

Thus θ is injective.

Let λ' be a ρ_A/ρ_A -invariant IFC on M/A. We define an IFR λ on M as follow:

$$\lambda(x, y) = \lambda'(x + A, y + A).$$

Then $\mu_{\lambda}(x,x) = \mu_{\lambda'}(x+A,x+A) = 1$ and $\nu_{\lambda}(x,x) = \nu_{\lambda'}(x+A,x+A) = 0.$ Similarly, we can show that $\lambda(x, y) = \lambda(y, x)$. Also, we get

$$\mu_{\lambda}(x,y) \ge \sup_{z \in M} \min\{\mu_{\lambda}(x,z), \mu_{\lambda}(z,y)\}$$

and

$$\nu_{\lambda}(x,y) \leq \inf_{z \in M} \max\{\nu_{\lambda}(x,z), \nu_{\lambda}(z,y)\}.$$

Thus λ is an IFR on M. On the other hand, we get

$$\begin{aligned} \mu_{\lambda}(x+a,y+b) &= & \mu_{\lambda'}(x+a+A,y+b+A) \\ &= & \mu_{\lambda'}(x+A+a+A,y+A+b+A) \\ &\geq & \min\{\mu_{\lambda'}(x+A,y+A),\mu_{\lambda'}(a+A,b+A)\} \\ &= & \min\{\mu_{\lambda}(x,y),\mu_{\lambda}(a,b)\}. \end{aligned}$$

Similarly, we can show that $\nu_{\lambda}(x+a, y+b) \leq \max\{\nu_{\lambda}(x, y), \nu_{\lambda}(a, b)\}$. Also, we have

$$\begin{array}{lll} \mu_{\lambda}(xr,yr) &=& \mu_{\lambda'}(xr+A,yr+A) \\ &=& \mu_{\lambda'}((x+A)r,(y+A)r) \\ &\geq& \mu_{\lambda'}(x+A,y+A). \end{array}$$

Similarly, we can show that $\nu_{\lambda}(xr, yr) \leq \nu_{\lambda}(x, y)$. So λ is an IFC on M. Since $\rho_A(x,y) = \rho_A(u,v), \ \rho_A/\rho_A(x+A,y+A) = \rho_A/\rho_A(u+A,v+A).$ This implies 10

that $\lambda'(x + A, y + A) = \lambda'(u + A, v + A)$. Hence $\lambda(x, y) = \lambda(u, v)$. Therefore λ is ρ_A -invariant.

Now let $(x + A, y + A) \in M/A \times M/A$. Then $(\lambda/\rho)(x + A, y + A) = \lambda(x, y) = \lambda'(x + A, y + A)$. Thus $\lambda' = \lambda/\rho_A = \theta(\lambda)$. So θ is surjective. Hence θ is bijective. \Box

CONCLUSION

In this paper, we develop and study the notions of intuitionistic fuzzy submodules, intuitionistic fuzzy congruences of an R-module (where R is a near-ring) and quotient R-modules over an intuitionistic fuzzy submodule of an R-module. We exhibit a one-to-one correspondence between the set of intuitionistic fuzzy submodules and the set of intuitionistic fuzzy congruences of an R-module. Finally, we established an intuitionistic fuzzy congruence of the quotient R-module over an intuitionistic fuzzy submodule of the R-module of the R-module and obtained a correspondence theorem.

Acknowledgement

The author express his gratitude to the anonymous reviewers for providing valuable feedback and suggestions that significantly enhanced the quality of the paper.

References

- [1] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.
- [2] L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971) 177–200.
- [3] P. Bhattacharya and N. P. Mukharjee, Fuzzy relations and fuzzy groups, Information Sciences 36 (1985) 267–282.
- [4] D. S. Malik and D. S. Mordeson, Fuzzy relations on rings and groups, Fuzzy Sets and Systems 43 (1991) 117–123.
- [5] B. D. Baets and E. E. Kerre, Fuzzy relations and Applications, Advances in Electronics and Electron Physics 89 (1994) 255–324.
- [6] S. Khosravi, R. A. Borzooei and R. Moradian, Fuzzy congruence relation generated by a fuzzy relation in vector spaces, Journal of Intelligent and Fuzzy Systems 35 (2) (2018) 1–11.
- [7] T. K. Dutta and B. K. Biswas, On fuzzy congruence of a near-ring module, Fuzzy Sets and Systems 112 (2000) 343–348.
- [8] K. T. Atanassov, Intuitionistic fuzzy sets, In: Sgurev v(ed) vii ITKR's session, Central Science and Technology Library of the Bulgarian Academy of Sci, Sofia 1983.
- [9] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986) 87–96.
- [10] K. T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg 1999.
- [11] D. K. Basnet, A Note on Intuitionistic Fuzzy Equivalence Relation, International Mathematical Forum 67 (5) (2010) 3301–3307.
- [12] D. K. Basnet, Topics in intuitionistic fuzzy algebra, Lambert Academic Publishing, 2011.
- [13] K. Hur, S. Y. Jang and K.C. Lee, Intuitionistic fuzzy normal subgroup and intuitionistic fuzzy cosets, Honam Math. J. 24 (4) (2004) 559–587.
- [14] K. Hur, S. Y. Jang and Y.B. Jun, Intuitionistic Fuzzy Conguences, Far East Journal of Mathematical Sciences 17 (1) (2005) 1–29.
- [15] S. Rahman and H. K. Saikia, Some aspects of Atanassov's intuitionistic fuzzy submodules, International Journal of Pure and Applied Mathematics 77 (3) (2013) 369–383.
- [16] P. K. Sharma, (α, β) -cut of intuitionistic fuzzy modules, International Journal of Mathematical Sciences and Applications 1 (3) (2011) 1489–1492.
- [17] P. K. Sharma, S. A. Habib and M. Yamin, Intuitionistic fuzzy database for medical diagnosis, Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, 1408–1411.

- [18] P. K. Sharma and Kanchan, On the topological structure of spectrum of intuitionistic L-fuzzy prime submodules, Ann. Fuzzy Math. Informa. 21 (2) (2021) 195–215.
- [19] P. K. Sharma, An investigation of *F*-closure of intuitionistic fuzzy submodule of a module, South East Asian J. of Mathematics and Mathematical Sciences 19 (2) (2023) 261–272.
- [20] H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations Fuzzy Sets and Systems 78 (1996) 293–303.
- [21] G. Deschrijver and E. E. Keere, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems 136 Keere, 333–378.
- [22] K. Hur, S. Y. Jang and K. W. Kang, Intuitionistic Fuzzy congruences on a lattice, Journal of Applied Mathematics and Computing 18 (1-2) (2005) 465–486.
- [23] E. G. Emam, Intuitionistic fuzzy relations compatible with the group Z_n, Journal of the Egyptian Mathematical Society 29 (54) (2019) 1–14.
- [24] G. Cuvalcioglu and S. Tarsuslu (Yilmaz), Universal algebra in intuitionistic fuzzy set theory, Notes on Intuitionistic Fuzzy Sets 23 (1) (2017) 1–5.
- [25] G. Cuvalcioglu and S. Tarsuslu (Yilmaz), Isomorphism Theorems on Intuitionistic Fuzzy Abstract Algebras, Communications in Mathematics and Applications 12 (1) (2021) 109–126.
- [26] R. Rasuli, Fuzzy equivalence relation, fuzzy congruence relation and fuzzy normal subgroups on group G over t-norms, Asian Journal of Fuzzy and Applied Mathematics 7 (2019) 14–28.
- [27] R. Rasuli, Norms over intuitionistic fuzzy congruence relations on rings, Notes on Intuitionistic Fuzzy Sets 27 (3) (2021) 51–68.
- [28] J. C. Beidleman, On near-rings and near-ring modules, Ph.D. thesis, The Pennysylvania State University, United States (1964).
- [29] G. Pilz, Near-Rings, Volume 23 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 2nd edition 1983.

<u>P.K.SHARMA</u> (pksharma@davjalandhar.com)

Post-Graduate Department of mathemathics, D.A.V.College, Jalandhar, Punjab, India