Antti fuzzy ideals in BE-algebra

S. Abdullah, T. Anwar, N. Amin, M. Taimur

Received 16 February 2013; Revised 14 March 2013; Accepted 18 March 2013

Abstract. In this paper, we apply the Biswas idea to BE-algebras and introduce the notion of an anti fuzzy ideal in BE-algebras. Furthermore, these sets are considered in the context of transitive and self distributive BE-algebras and their ideals, providing characterizations of one type, the generalized lower sets, in other type, ideals.

2010 AMS Classification: 06F35, 03G25, 03E72

Keywords: BE-algebra, Ideal, Anti fuzzy ideal, (Generalized) lower set, Self distributive.

Corresponding Author: Saleem Abdullah (saleemabdullah81@yahoo.com)

1. Introduction

The concept of fuzzy sets was first initiated by Zadeh [11] 1965. Since then these ideas have been applied to other algebraic structures such as semigroup, group, ring, etc. Imai and Iseki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [6, 7]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [5], Hu and Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Jun et al., [8] introduced the notion of BH-algebra, which is a generalization of BCK/BCI/BCH-algebras. In [10], Kim and Kim introduced the notion of a BE-algebra as a dualization of generalization of a BCK-algebra. In 1990, S. Biswas introduced the concept of anti fuzzy subgroup of group [4]. Recently, Hong and Jun, modifying Biswas idea, apply the concept to BCK-algebras. So, they defined the notion of anti fuzzy ideal of BCK algebras and obtain some useful results on it. In [9] Jun and Song introduced the notion of fuzzy ideals in BE-algebras, and investigated related properties. Further more see [11, 2].

In this paper, we apply the Biswas idea to BE-algebras, and introduce the concept of anti fuzzy ideal in BE-algebras and investigate some related properties. Also we characterize anti fuzzy ideals in BE-algebras.
2. Preliminaries

We recall some definitions and results [3, 9, 10].

Definition 2.1. An algebra $(X; *, 1)$ of type $(2, 0)$ is called a BE-algebra [10] if

\begin{align*}
(2.1) & \quad x \ast x = 1 \text{ for all } x \in X, \\
(2.2) & \quad x \ast 1 = 1 \text{ for all } x \in X, \\
(2.3) & \quad 1 \ast x = x \text{ for all } x \in X, \\
(2.4) & \quad x \ast (y \ast z) = y \ast (x \ast z) \text{ for all } x, y, z \in X.
\end{align*}

A relation "\(\leq\)" on a BE-algebra \(X\) is defined by

\begin{equation}
(\forall x, y \in X) \ (x \leq y \iff x \ast y = 1).
\end{equation}

A BE-algebra \((X; *, 1)\) is said to be transitive [3] if it satisfies:

\begin{equation}
(\forall x, y, z \in X) \ (y \ast z \leq (x \ast y) \ast (x \ast z)).
\end{equation}

A BE-algebra \((X; *, 1)\) is said to be self distributive [10] if it satisfies:

\begin{equation}
(\forall x, y, z \in X) \ (x \ast (y \ast z) = (x \ast y) \ast (x \ast z)).
\end{equation}

Note that every self distributive BE-algebra is transitive, but the converse is not true in general [3]

Example 2.2 ([10]). Let \(X := \{1, a, b, c, d, 0\}\) be a set with the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Then \((X; *, 1)\) is a BE-algebra.

Definition 2.3 ([10]). A BE-algebra \((X; *, 1)\) is said to be self distributive if

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z) \text{ for all } x, y, z \in X. \]
Example 2.4 ([10]). Let $X := \{1, a, b, c, d\}$ be a set with the following table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>a</td>
<td>1</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>b</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

It is easy to see that X is a BE-algebra satisfying self distributivity. Note that the BE-algebra in Example 2.2 is not self distributive, since $d \ast (a \ast 0) = d \ast d = 1$, while $(d \ast a) \ast (d \ast 0) = 1 \ast a = a$.

Definition 2.5 ([9]). A non-empty subset I of X is called an ideal of X if

(2.8) $\forall x \in X$ and $\forall a \in I \implies x \ast a \in I$, i.e., $X \ast I \subseteq I$,

(2.9) $\forall x \in X, \forall a, b \in I$ imply $(a \ast (b \ast x)) \ast x \in I$.

In Example 2.2, $\{1, a, b\}$ is an ideal of X, but $\{1, a\}$ is not an ideal of X, since $(a \ast (a \ast b)) \ast b = (a \ast a) \ast b = 1 \ast b = b \notin \{1; a\}$.

It was proved that every ideal I of a BE-algebra X contains 1, and if $a \in I$ and $x \in X$, then $(a \ast x) \ast x \in I$. Moreover, if I is an ideal of X and if $a \in I$ and $a \leq x$, then $x \in I$ [9].

3. Major section

In this section we introduce anti fuzzy ideals in BE-algebras and discuss some fundamental results.

Definition 3.1. A fuzzy subset f of a BE-algebra X is called an anti fuzzy ideal of X if it satisfies:

(3.1) $(\forall x, y \in X)f(xy) \leq f(y)$

(3.2) $(\forall x, y, z \in X)(f((x \ast (y \ast z)) \ast z) \leq \max\{f(x), f(y)\})$.

Example 3.2. Consider the BE-algebra X described in Example 2.2. Now we define a fuzzy set f on X as:

$$f(x) = \begin{cases} 0.4 & \text{if } x \in \{1, a, b\} \\ 0.7 & \text{if } x \in \{c, d, 0\} \end{cases}$$

Then, by routine calculation f is an anti fuzzy ideal of X. Now we define a fuzzy set on X as:

$$f(x) = \begin{cases} 0.4 & \text{if } x \in \{1, a\} \\ 0.7 & \text{if } x \in \{b, c, d, 0\} \end{cases}$$

Then, f is a not an anti fuzzy ideal of X, i.e.,

$$f((a \ast (a \ast b)) \ast b) = f(b) = 0.7 > 0.4 = \max\{f(a), f(a)\}.$$
\begin{theorem} \normalfont Let \(f \) be a fuzzy set in \(X \). Then \(f \) is an anti fuzzy ideal of \(X \) if and only if it satisfies:
\[
(\forall \alpha \in [0,1])(L(f;\alpha) \neq \emptyset \implies L(f;\alpha) \text{ is an ideal of } X),
\]
where \(L(f;\alpha) := \{x \in X \mid f(x) \leq \alpha \} \).
\end{theorem}

\begin{proof} \normalfont Let \(f \) be an anti fuzzy ideal in \(X \). Let \(\alpha \in [0,1] \) be such that \(L(f;\alpha) \neq \emptyset \). Let \(x,y \in X \) be such that \(y \in L(f;\alpha) \). Then \(f(y) \leq \alpha \), and so \(f(x \ast y) \leq f(y) \leq \alpha \). Thus \(x \ast y \in L(f;\alpha) \). Let \(x \in X \) and \(a,b \in L(f;\alpha) \). Then \(f(a) \leq \alpha \), \(f(b) \leq \alpha \) and we have
\[
(f((a \ast (b \ast x)) \ast x) \leq \max\{f(a),f(b)\} \leq \alpha
\]
so that \((a \ast (b \ast x)) \ast x \in L(f;\alpha) \). Hence \(L(f;\alpha) \) is an ideal of \(X \).

Conversely, suppose that \(f \) satisfies (3). If \(f(a \ast b) > f(b) \) for some \(a,b \in X \), then \(f(a \ast b) > \alpha_0 > f(b) \) by taking \(\alpha_0 := (f(a \ast b) + f(b))/2 \). Hence \(a \ast b \notin U(f;\alpha_0) \) and \(b \in U(f;\alpha_0) \), which is a contradiction. Let \(a,b,c \in X \) be such that
\[
f((a \ast (b \ast x)) \ast x) > \max\{f(a),f(b)\}.
\]
Taking \(\beta_0 = (f((a \ast (b \ast x)) \ast x) + \max\{f(a),f(b)\}) \), we have \(\beta_0 \in [0,1] \) and
\[
f((a \ast (b \ast x)) \ast x) > \beta_0 > \max\{f(a),f(b)\}.
\]
it follows that \(a,b \in U(f;\beta_0) \) and \((a \ast (b \ast x)) \notin U(f;\beta_0) \). This is a contradiction and therefore \(f \) is an anti fuzzy ideal of \(X \).
\end{proof}

\begin{lemma} \normalfont Every anti fuzzy ideal of \(X \) satisfies the following inequality:
\[
(\forall x \in X)(\mu(1) \leq \mu(x)).
\]
\end{lemma}

\begin{proof} \normalfont Since in BE-algebra we have \(x \ast x = 1 \), thus we have
\[
\mu(1) = \mu(x \ast x) \leq \mu(x)
\]
for all \(x \in X \).
\end{proof}

\begin{proposition} \normalfont If \(f \) is an anti fuzzy ideal of \(X \), then
\[
(\forall x,y \in X)(f((x \ast y) \ast y) \leq f(x)).
\]
\end{proposition}

\begin{proof} \normalfont Taking \(y = 1 \) and \(z = y \) in (2), we get
\[
f((x \ast y) \ast y) = f((x \ast (1 \ast y)) \ast y) \leq \max\{f(x),f(1)\} = f(x)
\]
for all \(x,y \in X \).
\end{proof}

\begin{corollary} \normalfont Every anti fuzzy ideal \(f \) of \(X \) is reverse order preserving, that is, \(f \) satisfies:
\[
(\forall x,y \in X)(x \leq y \implies f(x) \geq f(y)).
\]
\end{corollary}

\begin{proof} \normalfont Let \(x,y \in X \) be such that \(x \leq y \). Then \(x \ast y = 1 \), and so
\[
f(y) = f(1 \ast y) = f((x \ast y) \ast y) \leq f(x)
\]
by (2.3) and (3.5).
\end{proof}
Proposition 3.7. Let \(f \) be a fuzzy set in \(X \) which satisfies (3.4) and
(3.6) \((\forall x, y, z \in X)(f(x \ast z) \leq \max\{f(x \ast (y \ast z)), f(y)\}). \)
Then, \(f \) is reverse order preserving.

Proof. Let \(x, y \in X \) be such that \(x \leq y \). Then \(x \ast y = 1 \), and so
\(f(y) = f(1 \ast y) \leq \max\{f(1 \ast (x \ast y)), f(x)\} = \max\{f(1 \ast 1), f(x)\} \)
by (2.1), (2.3), (3.7) and (3.4).

Theorem 3.8. Let \(X \) be a transitive BE-algebra. A fuzzy set \(f \) in \(X \) is an anti fuzzy ideal of \(X \) if and only if it satisfies conditions (3.4) and (3.7).

Proof. Let \(f \) be an anti fuzzy ideal of \(X \). By lemma (3.1), \(f \) satisfies (3.4). Since \(X \) is transitive, we have
\((y \ast z) \ast z \leq (x \ast (y \ast z)) \ast (x \ast z), \)
i.e., \((y \ast z)((x \ast (y \ast z)) \ast (x \ast z)) = 1\) for all \(x, y, z \in X \). It follows from (2.3), (3.2) and Proposition 3.1 that
\[f(x \ast z) = f(1 \ast (x \ast z)) = f((y \ast z) \ast z)((x \ast (y \ast z)) \ast (x \ast z)) \leq \max\{f((y \ast z) \ast z), f(x \ast (y \ast z))\} \leq \max\{f(x \ast (y \ast z)), f(y)\}. \]
Hence, \(f \) satisfies (3.7). Conversely suppose that \(f \) satisfies two conditions (3.4) and (3.7). Using (3.7), (2.1), (2.2) and (3.4), we have
\[f(x \ast y) \leq \max\{f(x \ast (y \ast y)), f(y)\} = \max\{f(x \ast 1), f(y)\} = \max\{f(1), f(y)\} = f(y) \]
and
\[f((x \ast y) \ast y) \leq \max\{f((x \ast y) \ast (x \ast y)), f(x)\} = \max\{f(1), f(x)\} = f(x) \]
for all \(x, y \in X \). Since \(f \) is reverse order preserving by Proposition 3.2, it follows from (3.8) that
\[f((y \ast z) \ast z) \geq f((x \ast (y \ast z)) \ast (x \ast z)) \]
and so from (3.7) and (3.10) that
\[f((y \ast z) \ast z) \leq \max\{f(((x \ast (y \ast z)) \ast (x \ast z)), f(x)\} \leq \max\{f((y \ast z) \ast z), f(x)\} \leq \max\{f(x), f(y)\} \]
for all \(x, y, z \in X \). Hence, \(f \) is a fuzzy ideal of \(X \).

Corollary 3.9. Let \(X \) be a self distributive BE-algebra. A fuzzy set \(f \) in \(X \) is an anti fuzzy ideal if and only if it satisfies condition (3.4) and (3.7).
Proof. Straightforward.

For every \(a, b \in X \), let \(f^b_a \) be a fuzzy set in \(X \) defined by

\[
f^b_a := \begin{cases}
\alpha & \text{if } a \ast (b \ast c) = 1 \\
\beta & \text{otherwise}
\end{cases}
\]

for all \(x \in X \) and \(\alpha, \beta \in [0,1] \) with \(\alpha < \beta \).

The following example shows that there exist \(a, b \in X \) such that \(f^b_a \) is not an anti fuzzy ideal of \(X \).

Example 3.10. Let \(X = \{1, a, b, c\} \) with the following Cayley table:

\[
\begin{array}{cccc}
1 & a & b & c \\
\hline
1 & 1 & a & b & c \\
\hline
a & 1 & 1 & a & a \\
b & 1 & 1 & 1 & a \\
c & 1 & 1 & a & 1 \\
\end{array}
\]

Then, \((X; \ast, 1) \) is a BE-algebra [3]. But \(f^1_a \) is not an anti fuzzy ideal of \(X \) since

\[
f^1_b((a \ast (a \ast c)) \ast c) = f^1_b((a \ast a) \ast c) = f^1_b(1 \ast c) = f^1_b(c) = \beta > \alpha = \max\{f^1_b(a), f^1_b(c)\}.
\]

Theorem 3.11. If \(X \) is self distributive, then the fuzzy set \(f^b_a \) in \(X \) is an anti fuzzy ideal of \(X \) for all \(a, b \in X \).

Proof. Let \(a, b \in X \). For every \(x, y \in X \), if \(a \ast (b \ast y) \neq 1 \), then \(f^b_a(y) = \beta \geq f^b_a(x \ast y) \).

Assume that \(a \ast (b \ast y) = 1 \). Then

\[
a \ast (b \ast (x \ast y)) = a \ast ((b \ast x) \ast (b \ast y)) = (a \ast (b \ast x)) \ast (a \ast (b \ast y)) = (a \ast (b \ast x)) \ast 1 = 1,
\]

and so \(f^b_a(x \ast y) = \alpha = f^b_a(y) \). Hence \(f^b_a(x \ast y) \leq f^b_a(y) \) for all \(x, y \in X \). Now, for every \(x, y, z \in X \), if \(a \ast (b \ast x) \neq 1 \) or \(a \ast (b \ast y) \neq 1 \), then \(f^b_a(x) = \beta \) or \(f^b_a(y) = \beta \). Thus

\[
f^b_a((x \ast (y \ast z)) \ast z) \leq \beta = \max\{f^b_a(x), f^b_a(y)\}.
\]

Suppose that \(a \ast (b \ast x) = 1 \) and \(a \ast (b \ast y) = 1 \). Then

\[
a \ast (b \ast ((x \ast (y \ast z)) \ast z)) = a \ast ((b \ast ((x \ast (y \ast z))) \ast (b \ast z)) = a \ast ((b \ast ((x \ast (y \ast z)))) \ast (a \ast (b \ast z)) = ((a \ast (b \ast x)) \ast (a \ast (b \ast (y \ast z)))) \ast (a \ast (b \ast z)) = (1 \ast (a \ast (b \ast (y \ast z)))) \ast (a \ast (b \ast z)) = (a \ast (b \ast (y \ast z))) \ast (a \ast (b \ast z)) = ((a \ast (b \ast y)) \ast (a \ast (b \ast z))) \ast (a \ast (b \ast z)) = (1 \ast (a \ast (b \ast z))) \ast (a \ast (b \ast z)) = (a \ast (b \ast z)) \ast (a \ast (b \ast z)) = 1
\]

which implies that \(f^b_a((x \ast (y \ast z)) \ast z) = \alpha < \beta = \max\{f^b_a(x), f^b_a(y)\} \).
A nonempty subset I of X is an ideal of X if and only if it satisfies:

$$f(x, y) = f(y, x) \leq \max\{f(x, z), f(y, z)\}$$

for all $x, y, z \in X$. Consequently, f_{α} is an anti fuzzy ideal of X for all $\alpha \in X$.

For any $a, b \in X$, the set $A(a, b) := \{x \in X \mid a * (b * x) = 1\}$ is called the upper set of a and b [4]. Clearly, $1, a, b \in A(a, b)$ for all $a, b \in X$ [5].

Theorem 3.1. A nonempty subset I of X is an ideal of X if and only if it satisfies

$$1 \in I \quad (\forall x, z \in X)(\forall y \in X)(x * (y * z) \in I \implies x * z \in I).$$

Proof. Suppose that f is an anti fuzzy ideal of X and let $a, b \in L(f; \alpha)$. Then $f(a) \leq \alpha$ and $f(b) \leq \alpha$. Let $x \in A(a, b)$. Then, $a * (b * x) = 1$. Hence,

$$f(x) = f(1 * x) = f((a * (b * x)) * x) \leq \max\{f(a), f(b)\} \leq \alpha,$$

and so $x \in L(f; \alpha)$. Thus $A(a, b) \subseteq L(f; \alpha)$.

Conversely, since $1 \in A(a, b) \subseteq L(f; \alpha)$ thus for all $a, b \in X$. Let $x, y, z \in X$ be such that $x * (y * z) \in L(f; \alpha)$ and $y \in L(f; \alpha)$. Since

$$(x * (y * z)) * (y * (x * z)) = (x * (y * z))(y * (x * z)) = 1$$

by [2.4] and [2.1], we have $x * z \in A(x * (y * z), y) \subseteq L(f; \alpha)$. It follows from Lemma 3.2 that $L(f; \alpha)$ is an anti fuzzy ideal of X. Hence f is an anti fuzzy ideal of X by Theorem 3.1.

Corollary 3.14. If f is an anti fuzzy ideal of X, then

$$(\forall \alpha \in [0, 1]) \quad (L(f; \alpha) \neq \emptyset \implies L(f; \alpha) = \bigcup_{a, b \in L(f; \alpha)} A(a, b)).$$

Proof. Let $\alpha \in [0, 1]$ be such that $L(f; \alpha) \neq \emptyset$. Since, we have

$$L(f; \alpha) \subseteq \bigcup_{a \in L(f; \alpha)} A(a, 1) \subseteq \bigcup_{a, b \in L(f; \alpha)} A(a, b).$$

Now let $x \in \bigcup_{a, b \in L(f; \alpha)} A(a, b)$. Then, there exist $u, v \in L(f; \alpha)$ such that $x \in A(u, v) \subseteq L(f; \alpha)$ by Theorem 4. Thus $\bigcup_{a, b \in L(f; \alpha)} A(a, b) \subseteq L(f; \alpha)$. This completes the proof.

4. Conclusions

Imai and Iseki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [6, 7]. It is known that the class of BCK-algebra is a proper subclass of the class of BCI-algebra. Kim and Kim defined a new class of algebra called BE-algebra in [10]. In this article we studied ideal theory of BE-algebra in context of fuzzy set to introduced anti fuzzy ideals in BE-algebras. We discussed some characterizations of BE-algebras in terms of anti-fuzzy ideals. We also discussed
some basic properties of BE-algebras in terms of these notions which are necessary for further study of BE-algebras. We will be focus on further study in BE-algebras in terms of fuzzy sets as follows: We will defined further generalization of anti fuzzy ideals in BE-algebra. We will study BE-algebra in terms of rough set theory. We will define rough fuzzy ideals in BE-algebras.

References

S. Abdullah (saleemabdullah81@yahoo.com, saleem@math.qau.edu.pk)
Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan

T. Anwar (tariqanwar79@yahoo.co.in)
Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan

N. Amin (naminhu@gmail.com)
Department of Information Technology, Hazara University, Mansehra, KPK, Pakistan

M. Taimur (k.taimur@yahoo.com)
Department of Mathematics, Government Post Graduate College, Mansehra, KPK, Pakistan

494