Some operations on bipolar fuzzy graphs

Ali Asghar Talebi, Hossein Rashmanlou, Young Bae Jun

Received 20 August 2013; Revised 13 November 2013; Accepted 3 January 2014

Abstract. In this paper, we investigate some properties of complete bipolar fuzzy graphs, describe various methods of their construction. We also define strong product and categorical product on bipolar fuzzy graphs and give some of their properties. Moreover, we show that the strong product, join and intersection of two complete bipolar fuzzy graphs C_1 and C_2 is also complete bipolar fuzzy graph. Finally we define isometry on bipolar fuzzy graphs and show that isometry on bipolar fuzzy graphs is an equivalence relation.

2010 AMS Classification: 05C99

Keywords: Bipolar fuzzy graph, Complete Bipolar fuzzy graphs, Isometry, Strong product, Categorical product.

Corresponding Author: Ali Asghar Talebi (a.talebi@umz.ac.ir)

1. Introduction

Presently, science and technology is featured with complex processes and phenomena for which complete information is not always available. For such cases, mathematical models are developed to handle various types of systems containing elements of uncertainty. A large number of these models is based on an extension of the ordinary set theory, namely, fuzzy sets. Graph theory has numerous applications to problems in computer science, electrical engineering, system analysis, operations research, economics, networking routing, and transportation. In 1965, Zadeh [29] introduced the notion of a fuzzy subset of a set as a method for representing uncertainty. Since then, the theory of fuzzy sets has become a vigorous area of research in different disciplines including medical and life sciences, management sciences, social sciences, engineering, statistics, graph theory, computer networks and automata theory.

In 1994, Zhang [31,32] initiated the concept of bipolar fuzzy sets as a generalization of fuzzy sets. Bipolar fuzzy sets are an extension of fuzzy sets whose membership degree range is $[-1, 1]$. In a bipolar fuzzy set, the membership degree of an element
means that the element is irrelevant to the corresponding property, the membership degree \((0, 1]\) of an element indicates that the element somewhat satisfies the property, and the membership degree \([-1, 0)\) of an element indicates that the element somewhat satisfies the implicit counter-property. Although bipolar fuzzy sets and intuitionistic fuzzy sets look similar to each other, they are essentially different sets. In many domains, it is important to be able to deal with bipolar information. It is noted that positive information represents what is granted to be possible, while negative information represents what is considered to be impossible. This domain has recently motivated new research in several directions. In particular, fuzzy and possibilistic formalisms for bipolar information have been proposed [9], because when we deal with spatial information in image processing or in spatial reasoning applications, this bipolarity also occurs. For instance, when we assess the position of an object in a space, we may have positive information expressed as a set of possible places and negative information expressed as a set of impossible places. As another example, let us consider the spatial relations. Human beings consider "left" and "right" as opposite directions. But this does not mean one of them is the negation of the other. The semantic of "opposite" captures a notion of symmetry rather than a strict complementation. In particular, there may be positions which are considered neither to the right nor to the left of some reference object, thus leaving some room for indetermination.

In 1975, Rosenfeld [20] introduced the concept of fuzzy graphs. The fuzzy relations between fuzzy sets were also considered by Rosenfeld and he developed the structure of fuzzy graphs. Bhattacharya [7] gave some remarks on fuzzy graphs, and some operations on fuzzy graphs were introduced by Mordeson and Peng [13]. Blutani and Rosenfeld introduced the concept of M-strong fuzzy graphs in [8] and studied some of their properties. Talebi and Rashmanlou [23] studied properties of isomorphism and complement on interval-valued fuzzy graphs. The first definition of bipolar fuzzy graphs was proposed by Akram [1]. Akram and Davvaz discussed the properties of strong intuitionistic fuzzy graphs and they introduced the concept of intuitionistic fuzzy line graphs in [2]. Shannon and Atanassov [21] introduced the concept of intuitionistic fuzzy graphs and investigated some of their properties in [22]. We have used standard definitions and terminologies in this paper. For the notations not mentioned in the paper, the readers are referred to [1-6, 10, 14, 15-19, 22-28].

2. Preliminaries

In this section, we first review some definitions of undirected graphs that are necessary of this paper.

Definition 2.1 (10). Recall that a graph is an ordered pair \(G^* = (V, E)\), where \(V\) is the set of vertices of \(G^*\) and \(E\) is the set of edges of \(G^*\) such that every edge is corresponded to a two-element subset of \(V\). We use the notation \(xy\) instead \(\{x, y\}\).

Definition 2.2 (10). The complement graph \(\overline{G^*}\) of a simple graph \(G^*\) has the same vertices as \(G^*\) and two vertices are adjacent in \(\overline{G^*}\) if and only if they are not adjacency in \(G^*\).

Definition 2.3 (10). The cartesian product of graphs \(G^*_1 = (V_1, E_1)\) and \(G^*_2 = (V_2, E_2)\) is denoted by
$G^* = G_1 \times G_2 = (V, E)$ that $V = V_1 \times V_2$ and $E = \{(x, x_2), (x, y_2) \mid x \in V_1, y_2 \in E_2 \} \cup \{(x_1, z)(y_1, z) \mid z \in V_2, y_1 \in E_1 \}$.

Definition 2.4 ([10]). The composition of two simple graphs $G_1^* = (V_1, E_1)$ and $G_2^* = (V_2, E_2)$ is denoted by $G_1^*[G_2^*] = (V_1 \times V_2, E^0)$. Where $E^0 = E \cup \{(x_1, x_2), (y_1, y_2) \mid x_1 y_1 \in E_1, x_2 \neq y_2 \}$ and E is defined in $G_1 \times G_2^*$. Note that $G_1^*[G_2^*] \neq G_2^*[G_1^*]$.

Definition 2.5 ([10]). The union of two simple graphs $G_1^* = (V_1, E_1)$ and $G_2^* = (V_2, E_2)$ is the simple graph with the vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. The union of G_1^* and G_2^* is denoted by $G^* = G_1^* \cup G_2^* = (V_1 \cup V_2, E_1 \cup E_2)$.

Definition 2.6 ([10]). The join of two simple graphs $G_1^* = (V_1, E_1)$ and $G_2^* = (V_2, E_2)$ is the simple graph with the vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2 \cup E'$, where E' is the set of all edges joining the nodes of V_1 and V_2 and assume that $V_1 \cap V_2 = \emptyset$. The join of G_1^* and G_2^* is denoted by $G^* = G_1^* + G_2^* = (V_1 \cup V_2, E_1 \cup E')$.

Definition 2.7 ([28] [29]). A fuzzy subset μ on a set X is a map $\mu : X \to [0, 1]$. A map $\nu : X \times X \to [0, 1]$ is called a fuzzy relation on X if $\nu(x, y) \leq \min(\mu(x), \mu(y))$ for all $x, y \in X$.

A fuzzy relation ν is symmetric if $\nu(x, y) = \nu(y, x)$, for all $x, y \in X$.

Definition 2.8 ([11] [30]). Let X be a nonempty set. A bipolar fuzzy set B in X is an object having the form $B = \{(x, \mu^B(x), \mu^N(x)) \mid x \in X \}$, where $\mu^B : X \to [0, 1]$ and $\mu^N : X \to [-1, 0]$ are mappings. We use the positive membership degree $\mu^B(x)$ to denote the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set B and the negative membership degree $\mu^N(x) \neq 0$ to denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar fuzzy set. B If $\mu^B(x) \neq 0$ and $\mu^N(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for B. If $\mu^B(x) = 0$ and $\mu^N(x) \neq 0$, it is the situation that x does not satisfy the property of B but somewhat satisfies the counter property of B. It is possible for an element x to be such that $\mu^B(x) \neq 0$ and $\mu^N(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of x. We shall use the symbol $B = (\mu^B, \mu^N)$ for the bipolar fuzzy set $B = \{(x, \mu^B(x), \mu^N(x)) \mid x \in X \}$.

Definition 2.9 ([12]). For every two bipolar fuzzy sets $A = (\mu_A^P, \mu_A^N)$ and $B = (\mu_B^P, \mu_B^N)$ in X, we define $(A \cap B)(x) = (\min(\mu_A^P(x), \mu_B^P(x)), \max(\mu_A^N(x), \mu_B^N(x)))$, for all $x \in X$, $(A \cup B)(x) = (\max(\mu_A^P(x), \mu_B^P(x)), \min(\mu_A^N(x), \mu_B^N(x)))$, for all $x \in X$.

Definition 2.10 ([30]). Let X be a nonempty set. Then we call a mapping $A = (\mu_A^P, \mu_A^N) : X \times X \to [-1, 1] \times [-1, 1]$ a bipolar fuzzy relation on X such that $\mu_A^P(x, y) \in [0, 1]$ and $\mu_A^N(x, y) \in [-1, 0]$.

Definition 2.11 ([30]). Let $B = (\mu_B^P, \mu_B^N)$ be a bipolar fuzzy set on a set X. If $A = (\mu_A^P, \mu_A^N)$ is a bipolar fuzzy relation on X, then $B = (\mu_B^P, \mu_B^N)$ is called a bipolar fuzzy relation on $B = (\mu_B^P, \mu_B^N)$ if $\mu_B^P(x, y) \leq \min(\mu_B^P(x), \mu_B^P(y))$, $\mu_B^N(x, y) \geq \max(\mu_B^N(x), \mu_B^N(y))$, for all $x, y \in X$. A bipolar fuzzy relation A on X is called symmetric if $\mu_A^P(x, y) = \mu_A^P(y, x), \mu_A^N(x, y) = \mu_A^N(y, x)$ for all $x, y \in X$. 271
Definition 2.12. A bipolar fuzzy graph with an underlying set V is defined to be a pair $G = (A, B)$ where $A = (\mu_P^A, \mu_N^A)$ is a bipolar fuzzy set in V and $B = (\mu_P^B, \mu_N^B)$ is a bipolar fuzzy set such that $\mu_P^B(\{x, y\}) \leq \min(\mu_P^A(x), \mu_P^A(y))$, $\mu_N^B(\{x, y\}) \geq \max(\mu_N^A(x), \mu_N^A(y))$ for all $x, y \in V$.

We call A the bipolar fuzzy vertex set of V, B the bipolar fuzzy edge set of E, respectively. Note that B is a symmetric bipolar fuzzy relation on A.

Throughout this paper, G^* will be a crisp graph, and G a bipolar fuzzy graph.

3. Complete bipolar fuzzy graphs

Throughout this paper, we suppose that $G_1 = (A_1, B_1)$ and $G_2 = (A_2, B_2)$ are two bipolar fuzzy graphs with underlying fuzzy graphs $G_1^* = (V_1, E_1)$ and $G_2^* = (V_2, E_2)$ respectively.

Definition 3.1. A bipolar fuzzy graph $G = (A, B)$ is called complete if $\mu_P^B(xy) = \min(\mu_P^A(x), \mu_P^A(y))$, $\mu_N^B(xy) = \max(\mu_N^A(x), \mu_N^A(y))$, for all $x, y \in V$.

Example 3.2. Consider the set $V = \{x, y, z\}$. Let A be a bipolar fuzzy subset of V and let B be a bipolar fuzzy subset of $E \times E$ defined by

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_A^P</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>μ_A^N</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>xy</th>
<th>yz</th>
<th>xz</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_B^P</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>μ_B^N</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

By routine computations, it is easy to see that G is a complete bipolar fuzzy graph.

Definition 3.3. Let $A_1 = (\mu_A^{P_1}, \mu_A^{N_1})$ and $A_2 = (\mu_A^{P_2}, \mu_A^{N_2})$ be bipolar fuzzy subsets of V_1 and V_2 and let $B_1 = (\mu_B^{P_1}, \mu_B^{N_1})$ and $B_2 = (\mu_B^{P_2}, \mu_B^{N_2})$ be bipolar fuzzy subsets of E_1 and E_2, respectively. Then, we denote the union of two bipolar fuzzy graphs G_1 and G_2 of the graphs G_1^* and G_2^* by $G_1 \cup G_2 = (A_1 \cup A_2, B_1 \cup B_2)$ and define as follows.
Remark 3.4. The union of two complete bipolar fuzzy graphs is not necessary a complete bipolar fuzzy graph.

Example 3.5. Consider the complete bipolar fuzzy graphs.

![Diagram of two complete bipolar fuzzy graphs](image)
G₁ ∪ G₂ is not complete bipolar fuzzy graph

Definition 3.6. Let G₁ = (A₁, B₁) and G₂ = (A₂, B₂) be bipolar fuzzy graphs with underlying set V₁ and V₂, respectively. Then we denote the intersection. Then we denote the intersection G₁ and G₂ by G₁ ∩ G₂ = (A₁ ∩ A₂, B₁ ∩ B₂) and define as following

\[(\mu^P_{A_1} \cap \mu^P_{A_2})(x) = \min(\mu^P_{A_1}(x), \mu^P_{A_2}(x)),\]

\[(\mu^N_{A_1} \cap \mu^N_{A_2})(x) = \max(\mu^N_{A_1}(x), \mu^N_{A_2}(x)), \text{ for all } x \in V_1 \cap V_2.\]

\[(\mu^P_{B_1} \cap \mu^P_{B_2})(xy) = \min(\mu^P_{B_1}(xy), \mu^P_{B_2}(xy)),\]

\[(\mu^N_{B_1} \cap \mu^N_{B_2})(xy) = \max(\mu^N_{B_1}(xy), \mu^N_{B_2}(xy)), \text{ for all } xy \in V_1 \cap V_2.\]

Proposition 3.7. Let G₁ = (A₁, B₁) and G₂ = (A₂, B₂) be complete bipolar fuzzy graphs. Then G₁ ∩ G₂ is a complete bipolar fuzzy graph.

Proof. Let x, y ∈ V₁ ∩ V₂. we have

\[(\mu^P_{B_1} \cap \mu^P_{B_2})(xy) = \min(\mu^P_{B_1}(xy), \mu^P_{B_2}(xy))\]

= \min(\min\{\mu^P_{A_1}(x), \mu^P_{A_1}(y)\}, \min\{\mu^P_{A_2}(x), \mu^P_{A_2}(y)\})

\[= \min\{\min(\mu^P_{A_1}(x), \mu^P_{A_2}(x)), \min(\mu^P_{A_1}(y), \mu^P_{A_2}(y))\},\]

\[(\mu^N_{B_1} \cap \mu^N_{B_2})(xy) = \max(\mu^N_{B_1}(xy), \mu^N_{B_2}(xy))\]

= \max(\max\{\mu^N_{A_1}(x), \mu^N_{A_2}(x)\}, \max\{\mu^N_{A_1}(y), \mu^N_{A_2}(y)\})

\[= \max\{\max(\mu^N_{A_1}(x), \mu^N_{A_2}(x)), \max(\mu^N_{A_1}(y), \mu^N_{A_2}(y))\},(\mu^N_{A_1} \cap \mu^N_{A_2})(y)).\]

Hence G₁ ∩ G₂ is a complete bipolar fuzzy graph. □
Definition 3.8. Let $A_1 = (\mu_{A_1}^P, \mu_{A_1}^N)$ and $A_2 = (\mu_{A_2}^P, \mu_{A_2}^N)$ be bipolar fuzzy subsets of V_1 and V_2 in which $V_1 \cap V_2 = \phi$, and let $B_1 = (\mu_{B_1}^P, \mu_{B_1}^N)$ and $B_2 = (\mu_{B_2}^P, \mu_{B_2}^N)$ be bipolar fuzzy subsets of $V_1 \times V_2$ and $V_2 \times V_1$, respectively. Then, we denote the join of two bipolar fuzzy graphs G_1 and G_2 by $G_1 \sqcup G_2 = (A_1 + A_2, B_1 + B_2)$ and define as follows
\[
\begin{align*}
(\mu_{A_1}^P + \mu_{A_2}^P)(x) &= (\mu_{A_1}^P \cup \mu_{A_2}^P)(x), \\
(\mu_{A_1}^N + \mu_{A_2}^N)(x) &= (\mu_{A_1}^N \cap \mu_{A_2}^N)(x), \text{ for all } x \in V_1 \cup V_2.
\end{align*}
\]
Proposition 3.9. Let $G_1 = (A_1, B_1)$ and $G_2 = (A_2, B_2)$ be complete bipolar fuzzy graphs, with underlying set V_1 and V_2, respectively, in which $V_1 \cap V_2 = \phi$, then $G_1 \sqcup G_2$ is a complete bipolar fuzzy graph.

Proof. Let $xy \in E'$. Then
\[
\begin{align*}
(\mu_{B_1}^P + \mu_{B_2}^P)(xy) &= \max(\mu_{A_1}^P(x), \mu_{A_2}^P(y)) = \max((\mu_{A_1}^P \cup \mu_{A_2}^P)(x), (\mu_{A_1}^N \cup \mu_{A_2}^N)(y)) \\
&= \max((\mu_{A_1}^P + \mu_{A_2}^P)(x), (\mu_{A_1}^N + \mu_{A_2}^N)(y)), \\
(\mu_{B_1}^N + \mu_{B_2}^N)(xy) &= \min(\mu_{A_1}^N(x), \mu_{A_2}^N(y)) = \min((\mu_{A_1}^N \cup \mu_{A_2}^N)(x), (\mu_{A_1}^N \cup \mu_{A_2}^N)(y)) \\
&= \min((\mu_{A_1}^N + \mu_{A_2}^N)(x), (\mu_{A_1}^N + \mu_{A_2}^N)(y)).
\end{align*}
\]

For case $xy \in E_1 \cup E_2$, it is obvious.

4. Some operations on bipolar fuzzy graphs

In this section, we introduce strong product and categorical product on bipolar fuzzy graphs and show that strong product and categorical product of two bipolar fuzzy graphs is a bipolar fuzzy graph.

Definition 4.1. The strong product $G_1 \circtimes G_2$ of two bipolar fuzzy graphs G_1 and G_2 is denoted by $(A_1 \circtimes A_2, B_1 \circtimes B_2)$ and is defined by
\[
\begin{align*}
(\mu_{A_1}^P \circtimes \mu_{A_2}^P)(x_1, x_2) &= \min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(x_2)), \\
(\mu_{A_1}^N \circtimes \mu_{A_2}^N)(x_1, x_2) &= \max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(x_2)), \text{ for all } (x_1, x_2) \in V_1 \times V_2, \\
(\mu_{B_1}^P \circtimes \mu_{B_2}^P)(x_1, x_2, y_1, y_2) &= \min(\mu_{B_1}^P(x_1, y_1), \mu_{B_2}^P(x_2, y_2)), \\
(\mu_{B_1}^N \circtimes \mu_{B_2}^N)(x_1, x_2, y_1, y_2) &= \max(\mu_{B_1}^N(x_1, y_1), \mu_{B_2}^N(x_2, y_2)), \text{ if } x_1 = y_1, x_2 y_2 \in E_2, \\
(\mu_{B_1}^P \circtimes \mu_{B_2}^P)(x_1, x_2, y_1, y_2) &= \min(\mu_{B_1}^P(x_1 y_1), \mu_{B_2}^P(x_2 y_2)), \\
(\mu_{B_1}^N \circtimes \mu_{B_2}^N)(x_1, x_2, y_1, y_2) &= \max(\mu_{B_1}^N(x_1 y_1), \mu_{B_2}^N(x_2 y_2)), \text{ if } x_2 = y_2, x_1 y_1 \in E_1, \\
(\mu_{B_1}^P \circtimes \mu_{B_2}^P)(x_1, x_2, y_1, y_2) &= \min(\mu_{B_1}^P(x_1 y_1), \mu_{B_2}^P(x_2 y_2)), \\
(\mu_{B_1}^N \circtimes \mu_{B_2}^N)(x_1, x_2, y_1, y_2) &= \max(\mu_{B_1}^N(x_1 y_1), \mu_{B_2}^N(x_2 y_2)), \text{ if } x_1 \neq y_1, \\
&\text{if } x_2 \neq y_2, x_1 y_1 \in E_1, x_2 y_2 \in E_2.
\end{align*}
\]
Example 4.2. Consider two bipolar fuzzy graphs G_1 and G_2 defined as follows.

G_1 is bipolar fuzzy graph

G_2 is bipolar fuzzy graph

\[
\begin{array}{c}
\text{a} \quad (0.3, -0.5) \\
\text{b} \quad (0.2, -0.3) \\
\text{c} \quad (0.2, -0.4) \\
\text{d} \quad (0.3, -0.7)
\end{array}
\]

By routine computation, it is easy to see that $G_1 \boxtimes G_2$ is a bipolar fuzzy graph.

Proposition 4.3. The strong product $G_1 \boxtimes G_2 = (A_1 \boxtimes A_2, B_1 \boxtimes B_2)$ of two bipolar fuzzy graphs G_1 and G_2 is a bipolar fuzzy graph.
Proof. We verify only conditions for $B_1 \boxtimes B_2$, because conditions for $A_1 \boxtimes A_2$ are obvious. If $x_1, y_1 \in V_1, x_2 y_2 \in E_2$, then

$$(\mu_{B_1}^P \boxtimes \mu_{B_2}^P)((x_1, x_2)(y_1, y_2)) = \min(\mu_{A_1}^P(x_1), \mu_{B_2}^P(x_2))$$

\[\leq \min(\mu_{A_1}^P(x_1), \min(\mu_{A_1}^P(x_2), \mu_{A_1}^P(y_2))) \]

\[= \min(\min(\mu_{A_1}^P(x_1), \mu_{A_1}^P(x_2)), \min(\mu_{A_1}^P(y_1), \mu_{A_1}^P(y_2))) \]

\[= \min((\mu_{A_1}^N \boxtimes \mu_{A_1}^N)((x_1, x_2)(y_1, y_2)), (\mu_{A_1}^N \boxtimes \mu_{A_1}^N)((y_1, y_2))). \]

If $x_2 = y_2 \in V_2, x_1 y_1 \in E_1$, then

$$((\mu_{A_1}^N \boxtimes \mu_{A_1}^N)((x_1, x_2)(y_1, y_2)) = \max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(x_2))$$

\[\geq \max(\max(\mu_{A_1}^N(x_1), \mu_{A_1}^N(x_2)), \max(\mu_{A_1}^N(y_1), \mu_{A_1}^N(y_2))) \]

\[= \max((\mu_{A_1}^A \boxtimes \mu_{A_1}^A)((x_1, x_2), (\mu_{A_1}^A \boxtimes \mu_{A_1}^A)((y_1, y_2))). \]

If $x_1 \neq y_1, x_2 \neq y_2, x_1 y_1 \in E_1, x_2 y_2 \in E_2$, then

$$((\mu_{B_1}^P \boxtimes \mu_{B_2}^P)((x_1, x_2)(y_1, y_2)) = \min(\mu_{B_1}^P(x_1 y_1), \mu_{B_2}^P(x_2 y_2))$$

\[\leq \min(\min(\mu_{A_1}^P(x_1), \mu_{A_1}^P(y_1)), \min(\mu_{A_1}^P(x_2), \mu_{A_1}^P(y_2))) \]

\[= \min((\mu_{A_1}^N \boxtimes \mu_{A_1}^N)((x_1, x_2)(y_1, y_2)), (\mu_{A_1}^N \boxtimes \mu_{A_1}^N)((y_1, y_2))). \]

This completes the proof. \[\square \]

Proposition 4.4. If G_1 and G_2 are complete bipolar fuzzy graphs, then $G_1 \boxtimes G_2$ is a complete bipolar fuzzy graph.
Proof. If \(x_1 \in V_1 \), then for every \(x_2, y_2 \in V_2 \), we have
\[
(\mu_{B_1}^N \boxdot \text{times} \mu_{B_2}^P)(x_1, x_2)(x, y_2) = \min(\mu_{A_1}^P(x), \mu_{A_2}^P(x_2y_2))
\]
\[
= \min(\mu_{A_1}^P(x), \min(\mu_{A_2}^P(x_2), \mu_{A_2}^P(y_2)))
\]
\[
= \min(\min(\mu_{A_1}^P(x), \mu_{A_2}^P(x_2)), \min(\mu_{A_1}^P(x), \mu_{A_2}^P(y_2)))
\]
\[
= \min((\mu_{A_1}^P \boxdot \text{times} \mu_{A_2}^P)(x, x_2), (\mu_{A_1}^P \boxdot \text{times} \mu_{A_2}^P)(x, y_2)),
\]
\[
(\mu_{B_1}^N \boxdot \text{times} \mu_{B_2}^P)(x_1, x_2)(x, y_2) = \max(\mu_{A_1}^N(x), \mu_{A_2}^N(x_2y_2))
\]
\[
= \max(\mu_{A_1}^N(x), \max(\mu_{A_2}^N(x_2), \mu_{A_2}^N(y_2)))
\]
\[
= \max((\mu_{A_1}^N \boxdot \text{times} \mu_{A_2}^N)(x, x_2), (\mu_{A_1}^N \boxdot \text{times} \mu_{A_2}^N)(x, y_2)).
\]
If \(z \in V_2 \), then for every \(x_1, y_1 \in V_1 \), we have
\[
(\mu_{B_1}^N \boxdot \text{times} \mu_{B_2}^P)(x_1, z)(y_1, z) = \min(\mu_{B_1}^P, (x_1y_1), \mu_{B_2}^P(z))
\]
\[
= \min(\min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(y_1)), \mu_{A_2}^P(z))
\]
\[
= \min(\min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(z)), \min(\mu_{A_1}^P(y_1), \mu_{A_2}^P(x_2)))
\]
\[
= \min((\mu_{A_1}^P \boxdot \text{times} \mu_{A_2}^P)(x_1, z), (\mu_{A_1}^P \boxdot \text{times} \mu_{A_2}^P)(y_1, z)),
\]
\[
(\mu_{B_1}^N \boxdot \text{times} \mu_{B_2}^P)(x_1, z)(y_1, z) = \max(\mu_{B_1}^N, (x_1y_1), \mu_{B_2}^P(z))
\]
\[
= \max(\max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(y_1)), \mu_{A_2}^P(z))
\]
\[
= \max((\mu_{A_1}^N \boxdot \text{times} \mu_{A_2}^N)(x_1, z), (\mu_{A_1}^N \boxdot \text{times} \mu_{A_2}^N)(y_1, z)).
\]
If \(x_i, y_i \in V_i \) (\(i = 12 \)) are distinct, then we have
\[
(\mu_{B_1}^N \boxdot \text{times} \mu_{B_2}^P)(x_1, x_2)(y_1, y_2) = \min(\mu_{B_1}^P, (x_1y_1), \mu_{B_2}^P(x_2y_2))
\]
\[
= \min(\min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(y_1)), \min(\mu_{A_2}^P(x_2), \mu_{A_2}^P(y_2)))
\]
\[
= \min(\min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(x_2)), \min(\mu_{A_1}^P(y_1), \mu_{A_2}^P(y_2)))
\]
\[
= \min((\mu_{A_1}^P \boxdot \text{times} \mu_{A_2}^P)(x_1, x_2), (\mu_{A_1}^P \boxdot \text{times} \mu_{A_2}^P)(y_1, y_2)).
\]
\[
(\mu_{B_1}^N \boxdot \text{times} \mu_{B_2}^P)(x_1, x_2)(y_1, y_2) = \max(\mu_{B_1}^N, (x_1y_1), \mu_{B_2}^P(x_2y_2))
\]
\[
= \max(\max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(y_1)), \min(\mu_{A_2}^N(x_2), \mu_{A_2}^N(y_2)))
\]
\[
= \max(\min(\mu_{A_1}^N(x_1), \mu_{A_2}^N(x_2)), \min(\mu_{A_1}^N(y_1), \mu_{A_2}^N(y_2)))
\]
\[
= \max((\mu_{A_1}^N \boxdot \text{times} \mu_{A_2}^N)(x_1, x_2), (\mu_{A_1}^N \boxdot \text{times} \mu_{A_2}^N)(y_1, y_2)).
\]
This complete the proof.

Example 4.5. Let \(V_1 = \{a, b\} \) and \(V_2 = \{c, d\} \). Consider two complete bipolar fuzzy graphs \(G_1 = (A_1, B_1) \) and \(G_2 = (A_2, B_2) \) defined by

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_{A_1}^P)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>-0.3</td>
</tr>
<tr>
<td>(\mu_{A_1}^N)</td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

278
Definition 4.6. Let $G_1 = (A_1, B_1)$ and $G_2 = (A_2, B_2)$ be two bipolar fuzzy graphs. The categorical product $G_1 \times G_2$ is defined by:

\[
\begin{align*}
\mu_{A_1 \times A_2}^P(x_1, x_2) &= \min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(x_2)), \\
\mu_{A_1 \times A_2}^N(x_1, x_2) &= \max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(x_2)),
\end{align*}
\]

for all $(x_1, x_2) \in V_1 \times V_2$. $G_1 \Box G_2$ is complete bipolar fuzzy graph.
Let

\[(\mu_{B_1}^P \times \mu_{B_2}^P)((x_1, x_2)(y_1, y_2)) = \begin{cases}
\min(\mu_{B_1}^P(x_1y_1), \mu_{B_2}^P(x_2y_2)) & \text{if } x_1 \neq y_1, x_2 \neq y_2 \\
0 & \text{otherwise}
\end{cases} \]

and

\[(\mu_{B_1}^N \times \mu_{B_2}^N)((x_1, x_2)(y_1, y_2)) = \begin{cases}
\max(\mu_{B_1}^N(x_1y_1), \mu_{B_2}^N(x_2y_2)) & \text{if } x_1 \neq y_1, x_2 \neq y_2 \\
0 & \text{otherwise}
\end{cases} \]

Example 4.7. Let \(G_1 = (V_1, E_1)\) and \(G_2 = (V_2, E_2)\) be graphs such that \(V_1 = \{a, b\}, V_2 = \{c, d\}, E_1 = \{ab\} \text{ and } E_2 = \{cd\}.\) Consider two bipolar fuzzy graphs \(G_1 = (A_1, B_1)\) and \(G_2 = (A_2, B_2)\), and \(G_1 \times G_2\) as follows.

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (-2,-2) {b};
 \node (c) at (0,-2) {c};
 \node (d) at (2,-2) {d};
 \node (a_c) at (0,-4) {(a, c)};
 \node (b_c) at (-2,-6) {(b, c)};
 \node (a_d) at (0,-4) {(a, d)};
 \node (b_d) at (2,-6) {(b, d)};

 \draw (a) -- (b) node [midway, above] {(0.2, -0.4)};
 \draw (a) -- (c) node [midway, above] {(0.1, -0.4)};
 \draw (a) -- (d) node [midway, above] {(0.1, -0.2)};
 \draw (b) -- (c) node [midway, above] {(0.3, -0.5)};
 \draw (b) -- (d) node [midway, above] {(0.2, -0.6)};
 \draw (c) -- (d) node [midway, above] {(0.2, -0.4)};

 \node (e) at (0,-6) {G_1 \text{ is bipolar}};
 \node (f) at (4,-6) {G_2 \text{ is bipolar}};
 \node (g) at (8,-6) {G_1 \times G_2 \text{ is bipolar}};

\end{tikzpicture}
\end{center}

By a routine computation, it is easy to see that \(G_1 \times G_2\) is a bipolar fuzzy graph.

Proposition 4.8. The categorical product \(G_1 \times G_2 = (A_1 \times A_2, B_1 \times B_2)\) of two bipolar fuzzy graphs \(G_1\) and \(G_2\) is a bipolar fuzzy graph.

Proof. Similarly as in the previous proof we verify only conditions for \(B_1 \times B_2\). Let \(x_1 \neq y_1, x_2 \neq y_2\), then we have

\[
(\mu_{B_1}^P \times \mu_{B_2}^P)((x_1, x_2)(y_1, y_2)) = \min(\mu_{B_1}^P(x_1y_1), \mu_{B_2}^P(x_2y_2))
\leq \min(\min(\mu_{A_1}^P(x_1), \mu_{A_2}^P(y_1)), \min(\mu_{A_1}^P(x_2), \mu_{A_2}^P(y_2)))
\leq \min(\min(\mu_{A_1}^P(x_1, \mu_{A_2}^P(y_1)), \min(\mu_{A_1}^P(x_2), \mu_{A_2}^P(y_2)))
\leq \min((\mu_{A_1}^P \times \mu_{A_2}^P)(x_1, x_2), (\mu_{A_1}^P \times \mu_{A_2}^P)(y_1, y_2)).
\]

\[
(\mu_{B_1}^N \times \mu_{B_2}^N)((x_1, x_2)(y_1, y_2)) = \max(\mu_{B_1}^N(x_1y_1), \mu_{B_2}^N(x_2y_2))
\geq \max(\max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(y_1)), \max(\mu_{A_1}^N(x_2), \mu_{A_2}^N(y_2)))
\geq \max(\max(\mu_{A_1}^N(x_1), \mu_{A_2}^N(y_1)), \max(\mu_{A_1}^N(x_2), \mu_{A_2}^N(y_2)))
\geq \max((\mu_{A_1}^N \times \mu_{A_2}^N)(x_1, x_2), (\mu_{A_1}^N \times \mu_{A_2}^N)(y_1, y_2)).
\]

Definition 4.9. Let \(G_1\) and \(G_2\) be bipolar fuzzy graphs. A homomorphism \(f : G_1 \to G_2\) is a mapping \(f : V_1 \to V_2\) which satisfies the following conditions:

\(a\) \(\mu_{A_1}^P(x) \leq \mu_{A_1}^P(f(x)), \mu_{A_1}^N(x) \geq \mu_{A_1}^N(f(x)), \text{ for all } x \in V_1.\)
\[(b) \quad \mu^\text{P}_{B_1}(xy) \leq \mu^\text{P}_{B_2}(f(x)f(y)), \quad \mu^\text{N}_{B_1}(xy) \geq \mu^\text{N}_{B_2}(f(x)f(y)), \text{ for all } xy \in E_1.\]

Definition 4.10. Let \(G_1\) and \(G_2\) be bipolar fuzzy graphs. An isomorphism \(f : G_1 \to G_2\) is a bijective mapping \(f : V_1 \to V_2\) which satisfies the following conditions:

\[(c) \quad \mu^\text{P}_{A_1}(x) = \mu^\text{P}_{A_2}(f(x)), \quad \mu^\text{N}_{A_1}(x) = \mu^\text{N}_{A_2}(f(x)), \text{ for all } xy \in E_1,\]

\[(d) \quad \mu^\text{P}_{B_1}(xy) = \mu^\text{P}_{B_2}(f(x)f(y)), \quad \mu^\text{N}_{B_1}(xy) = \mu^\text{N}_{B_2}(f(x)f(y)), \text{ for all } xy \in E_1.\]

Definition 4.11. Let \(G_1\) and \(G_2\) be bipolar fuzzy graphs. Then a weak isomorphism \(f : G_1 \to G_2\) is a bijective mapping \(f : V_1 \to V_2\) which satisfies the following conditions:

\[(e) \quad f \text{ is a homomorphism},\]

\[(f) \quad \mu^\text{P}_{A_1}(x) = \mu^\text{P}_{A_2}(f(x)), \quad \mu^\text{N}_{A_1}(x) = \mu^\text{N}_{A_2}(f(x)), \text{ for all } x \in V_1.\]

Definition 4.12. Let \(G_1\) and \(G_2\) be bipolar fuzzy graphs. Then a co-weak isomorphism \(f : G_1 \to G_2\) is a bijective mapping \(f : V_1 \to V_2\) which satisfies the following conditions:

\[(g) \quad f \text{ is a homomorphism},\]

\[(h) \quad \mu^\text{P}_{B_1}(xy) = \mu^\text{P}_{B_2}(f(x)f(y)), \quad \mu^\text{N}_{B_1}(xy) = \mu^\text{N}_{B_2}(f(x)f(y)), \text{ for all } x, y \in V_1.\]

Thus a co-weak isomorphism preserves the weights of the arcs but not necessarily the weights of the nodes.

Definition 4.13. The complement of a bipolar fuzzy graph \(G = (A, B)\) of \(G^* = (V, E)\) is a bipolar fuzzy graph \(\overline{G} = (\overline{A}, \overline{B})\) of \((V, V \times V)\), where \(\overline{A} = (\mu^\text{P}_{\overline{A}}, \mu^\text{N}_{\overline{A}})\) and \(\overline{B} = (\mu^\text{P}_{\overline{B}}, \mu^\text{N}_{\overline{B}})\) are defined by

\[(i) \quad \overline{V} = V,\]

\[(ii) \quad \mu^\text{P}_{\overline{A}}(x) = \mu^\text{P}_{\overline{B}}(x), \quad \mu^\text{N}_{\overline{A}}(x) = \mu^\text{N}_{\overline{B}}(x), \text{ for all } x \in V.\]

\[(iii) \quad \mu^\text{P}_{\overline{B}}(xy) = \min(\mu^\text{P}_{\overline{A}}(x), \mu^\text{P}_{\overline{A}}(y)) - \mu^\text{P}_{B}(xy), \quad \mu^\text{N}_{\overline{B}}(xy) = \max(\mu^\text{N}_{\overline{A}}(x), \mu^\text{N}_{\overline{A}}(y)) - \mu^\text{N}_{B}(xy).\]

Definition 4.14. A bipolar fuzzy graph \(G\) is called self-complementary if \(G \cong \overline{G}\).

Example 4.15. Consider a graph \(G^* = (V, E)\) such that \(V = \{a, b, c\}, E = \{ab, bc\}\), and a bipolar fuzzy graph \(G\).
\[a \rightarrow G \]
\[b \rightarrow G \]
\[c \rightarrow G \]
If \(G \) is a bipolar fuzzy graph, assume that \(f \) is a fuzzy relation on \(G \) from Definition 4.18.

Proof.
Assume that \(f \) is a fuzzy relation on \(G \) from Definition 4.18.

\[
(1) \quad \mu_{A_{B}}(x) = \mu_{A_{B}}^P(f(x)), \mu_{A_{B}}^N(x) = \mu_{A_{B}}^P(f(x)) \quad \text{for all} \quad x \in V_1,
\]

\[
(2) \quad \mu_{B_{A}}(xy) = \mu_{B_{A}}^P(f(x)f(y)), \mu_{B_{A}}^N(xy) = \mu_{B_{A}}^N(f(x)f(y)) \quad \text{for all} \quad xy \in E_1.
\]

By definition of complement, if \(\mu_{A_{B}}^P(xy) > 0 \), then \(\mu_{B_{A}}^P(f(x)f(y)) > 0 \) and we have

\[
\mu_{B_{A}}^P(xy) = \mu_{B_{A}}^P(f(x)f(y)) = 0.
\]

If \(\mu_{B_{A}}^P(xy) = 0 \), then \(\mu_{B_{A}}^P(f(x)f(y)) = 0 \), and we have

\[
\mu_{B_{A}}^P(xy) = \min(\mu_{A_{B}}^P(x), \mu_{A_{B}}^P(y)) = \min(\mu_{A_{B}}^P(f(x)), \mu_{A_{B}}^P(f(y))) = \mu_{B_{A}}^P(f(x)f(y)).
\]

Similarly, we can show that \(\mu_{A_{B}}^P(xy) = \mu_{A_{B}}^P(f(x)f(y)) \).

Hence \(\overline{G_1} \cong \overline{G_2} \). \(\square \)

Definition 4.17. A bipolar fuzzy graph \(G = (A, B) \) is called strong if

\[
\mu_{B_{A}}^P(xy) = \min(\mu_{A_{B}}^P(x), \mu_{A_{B}}^P(y)), \mu_{B_{A}}^N(xy) = \max(\mu_{A_{B}}^N(x), \mu_{A_{B}}^N(y)) \quad \text{for all} \quad xy \in E.
\]

Remark 4.18. If \(G = (A, B) \) is a strong bipolar fuzzy graph of \(G^* = (V, E) \), then from Definition 4.13 it follows that \(\overline{G} \) is given by the bipolar fuzzy graph \(\overline{G} = (\overline{A}, \overline{B}) \) on \(G^* = (V, E) \) where \(\overline{A} = A \) and

\[
\overline{B}_{A}(xy) = \min(\mu_{A_{B}}^P(x), \mu_{A_{B}}^P(y)), \overline{B}_{B}(xy) = \min(\mu_{A_{B}}^N(x), \mu_{A_{B}}^N(y)) \quad \text{for all} \quad xy \in E.
\]

Thus \(\overline{B}_{A} = \mu_{B_{A}}^P \) and \(\overline{B}_{B} = \mu_{B_{A}}^N \) on \(V \) where \(B = (\mu_{B_{A}}^P, \mu_{B_{A}}^N) \) is the strongest bipolar fuzzy relation on \(A \). For any bipolar fuzzy graph \(G \), \(\overline{G} \) is a strong bipolar fuzzy graph and \(G \subseteq \overline{G} \).

Theorem 4.19. \(G \equiv \overline{G} \) if and only if \(G \) is strong bipolar fuzzy graph.
Proof. If \(G \) is strong bipolar fuzzy graph then, by above Remark it is obvious that \(G = \overline{G} \). Conversely, suppose that \(G = \overline{G} \). Since for every bipolar fuzzy graph \(G, \overline{G} \) is a strong bipolar fuzzy graph, \(G = \overline{G} \) implies \(G \) is strong bipolar fuzzy graph. \(\Box \)

Corollary 4.20. By the Theorem 4.19, if \(G \) is strong bipolar fuzzy graph, then \(G \) is self-complementary, while the Example 4.15 shows that the converse of this statement is not true.

5. ISOMETRIC BIPOLAR FUZZY GRAPHS

Definition 5.1. Let \(G_1 = (A_1, B_1) \) and \(G_2 = (A_2, B_2) \) be bipolar fuzzy graphs. Then \(G_2 \) is said to be isometric from \(G_1 \) if for each \(v \in V_1 \) there is a bijective \(g_v : V_1 \to V_2 \) such that \(\delta^P_i(u, v) = \delta^P_i(g_v(u), g_v(v)) \), \(\delta^N_i(u, v) = \delta^N_i(g_v(u), g_v(v)) \) for every \(u \in V_1 \), in which \(\delta^P_i(i = 1, 2) \) and \(\delta^N_i(i = 1, 2) \) are \(\mu^P_{A_1} \) distance and \(\mu^N_{A_1} \) distance, respectively. In addition we define \(\delta^P(u, v) = \bigwedge \sum^n_{i=1} \frac{1}{\mu^P_{B_1}(u_{i-1}u_i)} \) and \(\delta^N(u, v) = \bigvee \sum^n_{i=1} \frac{1}{\mu^N_{B_1}(u_{i-1}u_i)} \), where \(u = u_0, u_1, \ldots, u_i, \ldots, u_n = v \) is a path from \(u \) to \(v \).

Proposition 5.2. Let \(G_1 = (A_1, B_1) \) and \(G_2 = (A_2, B_2) \) be two bipolar fuzzy graphs. Then \(G_1 \) is isometric to \(G_2 \) implies \(G_1 \) is isometric to \(G_2 \).

Proof. As \(G_1 \) is isomorphic to \(G_2 \), there is a bijection \(g : V_1 \to V_2 \) such that \(\mu^P_{A_1}(x) = \mu^P_{A_2}(g(x)) \), \(\mu^N_{A_1}(x) = \mu^N_{A_2}(g(x)) \) for all \(x \in V_1 \).
\[\mu^P_{B_1}(xy) = \mu^P_{B_2}(g(x)g(y)) \]
\[\mu^N_{B_1}(xy) = \mu^N_{B_2}(g(x)g(y)) \]
For each \(u \in V_1 \), we have
\[\delta^P_i(u, v) = \bigwedge \left\{ \sum^n_{i=1} \frac{1}{\mu^P_{B_1}(u_{i-1}u_i)} \right\} = \bigwedge \left\{ \sum^n_{i=1} \frac{1}{\mu^P_{B_2}(g(u_{i-1})g(u_i))} \right\} = \delta^P_2(g(u), g(v)), \]
\[\delta^N_i(u, v) = \bigvee \left\{ \sum^n_{i=1} \frac{1}{\mu^N_{B_1}(u_{i-1}u_i)} \right\} = \bigvee \left\{ \sum^n_{i=1} \frac{1}{\mu^N_{B_2}(g(u_{i-1})g(u_i))} \right\} = \delta^N_2(g(u), g(v)). \]
So, \(G_2 \) is isometric from \(G_1 \). \(\Box \)

Note 5.3. (i) The above result is true even \(G_1 \) is co-weak isomorphic to \(G_2 \) also. (ii) we know that, \(G_1 \) is isomorphic to \(G_1 \) implies \(\overline{G_1} \) is isomorphic to \(\overline{G_2} \). But this is not so in the case of isometry. In the following example, we show that \(G_2 \) is isometric from \(G_1 \) but \(\overline{G_2} \) is not isometric from \(\overline{G_1} \).

Example 5.4. Consider two bipolar fuzzy graphs \(G_1 \) and \(G_2 \) of \(G_1^* \) and \(G_2^* \), respectively.
It is not difficult to verify that the following holds.

\[
\delta^{P}_1(a, b) = 8, \ \delta^{P}_1(a, c) = 12, \ \delta^{P}_1(a, d) = 9, \ \delta^{P}_1(b, c) = 4, \ \delta^{P}_1(b, d) = 9
\]

\[
\delta^{N}_1(a, b) = -3, \ \delta^{N}_1(a, c) = -6, \ \delta^{N}_1(a, d) = -2, \ \delta^{N}_1(b, c) = -3, \ \delta^{N}_1(b, d) = -2
\]

\[
\delta^{P}_1(c, d) = 13, \ \delta^{N}_1(c, d) = -5.
\]

Likewise in bipolar fuzzy graph \(G_2\) we have

\[
\delta^{P}_2(u, v) = 8, \ \delta^{P}_2(u, w) = 12, \ \delta^{P}_2(u, x) = 9, \ \delta^{P}_2(v, w) = 4, \ \delta^{P}_2(v, x) = 9
\]

\[
\delta^{N}_2(u, v) = -3, \ \delta^{N}_2(u, w) = -6, \ \delta^{N}_2(u, x) = -2, \ \delta^{N}_2(v, w) = -3, \ \delta^{N}_2(v, x) = -2
\]

\[
\delta^{P}_2(w, x) = 13, \ \delta^{N}_2(w, x) = -5.
\]

Defining \(Q : V_1 \rightarrow V_2\) such that \(Q(a) = u, Q(b) = v, Q(c) = w, Q(d) = x\).

Clearly \(Q\) is a bijective that preserve the distance between every pair of vertices in \(G_1\) and \(G_2\). Hence \(G_2\) is isometric from \(G_1\).

Now we consider \(G_1\) and \(G_2\) of two bipolar fuzzy graph \(G_1\) and \(G_2\).
In G_2, $\delta^P_1(a, b) = 2.6, \delta^P_1(a, c) = 2, \delta^P_1(a, d) = 7, \delta^P_1(b, c) = 4,$
$\delta^N_1(a, b) = -1.5, \delta^N_1(a, c) = -1, \delta^N_1(a, d) = -2, \delta^N_1(b, c) = -1.5,$
$\delta^P_1(b, d) = 9, \delta^N_1(b, d) = -2.5, \delta^P_1(c, d) = 5, \delta^N_1(c, d) = -1.$

Similarly, in G_2 we have
$\delta^P_2(u, v) = 1.14, \delta^P_2(u, w) = 1, \delta^P_2(u, x) = 1.12, \delta^P_2(v, w) = 1.33,$
$\delta^N_2(u, v) = -1.5, \delta^N_2(u, w) = -1, \delta^N_2(u, x) = -2, \delta^N_2(u, w) = -1.5,$
$\delta^P_2(v, x) = 1.12, \delta^P_2(v, x) = -2, \delta^P_2(w, x) = 1.08, \delta^P_2(w, x) = -1.25.$

So there is not a bijective between G_1 and G_2 which preserving distance. Hence G_2
is not isometric from G_1.

Proposition 5.5. Isometry on bipolar fuzzy graphs is an equivalence relation.

Proof. Let $G_i = (A_i, B_i), i = 1, 2, 3$ be the bipolar fuzzy graphs with underlying
sets V_i. Considering the identity map $i : V_1 \rightarrow V_1$, G_1 is isometric to G_1. Therefore
isometry is reflexive.

To prove the symmetric, assume that G_1 is isometric to G_2. Hence G_2 is isometric
from G_1 and G_2 is isometric from G_2. By rearranging, G_2 is isometric to G_1. To
prove the transitivity, let G_1 be isometric to G_2 and G_2 be isometric to G_3, i.e. G_2
is isometric from G_1 and G_3 is isometric from G_2. Then, for each $v \in V_1$, there
exists a bijective map $g_v : V_1 \rightarrow V_2$ such that $\delta^P_1(v, u) = \delta^P_2(g_v(v), g_v(u))$,
$\delta^N_1(v, u) = \delta^N_2(g_v(v), g_v(u))$ for all $u \in V_1$.

Suppose that $g_v(v) = v'$. Similarly, for each $v' \in V_2$, there exists a bijective map
$h_{v'} : V_2 \rightarrow V_3$ such that $\delta^P_2(v', u') = \delta^P_3(h_{v'}(v'), h_{v'}(u'))$,
$\delta^N_2(v', u') = \delta^N_3(h_{v'}(v'), h_{v'}(u'))$ for all $u' \in V_2$. Now if $v \in V_1$,
\[\delta_P^1(v, u) = \delta_P^2(g_v(v), g_u(u)) = \delta_P^3(h_v(v'), h_u(u')) = \delta_P^4(h_v(v'), h_u(u')) = \delta_P^5(h_v(v'), h_u(u')) \]

for all \(u \in V_1 \).

\[\delta_N^1(v, u) = \delta_N^2(g_v(v), g_u(u)) = \delta_N^3(h_v(v), h_u(u)) \]

for all \(u \in V_1 \).

Hence \(G_3 \) is isometric from \(G_1 \), using the composite map \(h_v \circ g_v : V_1 \rightarrow V_3 \).

6. Conclusions

Graph theory is an extremely useful tool in solving the combinatorial problems in different areas including geometry, algebra, number theory, topology, operations research, optimization and computer science. The bipolar fuzzy sets constitute a generalization of Zadeh's fuzzy set theory. The bipolar fuzzy models give more precision, flexibility and compatibility to the systems as compared to the classical and fuzzy models. In this paper, we investigated some properties of complete bipolar fuzzy graphs, describe various methods of their construction. We also defined strong product and categorical product on bipolar fuzzy graphs and gave some of their properties. Finally we defined isometry on bipolar fuzzy graphs and show that isometry on bipolar fuzzy graphs is an equivalence relation.

Acknowledgements. The authors are thankful to the referees for their valuable comments and suggestions.

References

[22] A. Shannon and K. T. Atanassov, Intuitionistic fuzzy graphs from α-, β- and (α, β)-levels, Notes IFS 1(1) (1995) 32–35.

Ali Asghar Talebi (a.talebi@umz.ac.ir)
Department of Mathematics, University of Mazandaran, Babolsar, Iran

Hossein Rashmanlou (rashmanlou@gmail.com)
Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Young Bae Jun (skywine@gmail.com)
Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea