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1. Introduction

Consider any lattice L. An L−fuzzy set is a mapping from X to L, where X
is a nonempty ordinary set. The family of all L−fuzzy subsets on X is denoted by
LX , which consists of all mappings from X to L. In[5] it is proved that when X is
infinite or X consists of atmost two elements, the lattice LT (X,L) of all topologies
on X is isomorphic to the symmetric group on X. From this it can be seen that if X
is an infinite set and P is any topological property, then the set of all topologies in
LT (X,L) possessing the property P may be identified exclusively from the lattice
structure of LT (X,L) and hence the topological properties of elements of LT (X,L)
must be determined by the position of the topologies in LT (X,L) [8]. Madhavan
Namboothiri determined the automorphism group of lattice of fuzzy topologies when
L is a finite chain and when L is a diamond type lattice[6]. We have already deter-
mined the automorphism group of lattice LGT (X)[7]. Here we consider the same
problem in the lattice of fuzzy generalized topologies, LFGT (X,L), on a set X and
when L is a finite chain.
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2. Preliminaries

Definition 2.1 ([2]). A completely distributive lattice is called an F−lattice, if L
has an order reversing involution.

Definition 2.2 ([4]). Let X be a nonempty ordinary set, L an F−lattice. A family
τ of L−fuzzy subsets on X is said to be L−fuzzy generalized topology on X, if 0 ∈ τ
and τ is closed under arbitrary union of L−fuzzy sets.

Consider the collection of all L−fuzzy generalized topologies LFGT (X,L) on a
set X. Note that it is a complete lattice under the order of set inclusion.

Definition 2.3 ([3]). The lattices (L0,≤) and (L1,≤
′
) are said to be isomorphic

and the map φ : L0 → L1 is called an isomorphism, if
(i) φ is one-to-one and onto,

(ii) a ≤ b in L0 if and only if φ(a) ≤′ φ(b) in L1.

Definition 2.4 ([3]). The lattices (L0,∧,∨) and (L1,∧,∨) are said to be isomorphic
and the map φ : L0 → L1 is called an isomorphism, if

(i) φ is one-to-one and onto,
(ii) φ(a ∨ b) = φ(a) ∨ φ(b), φ(a ∧ b) = φ(a) ∧ φ(b).

An isomorphism of a lattice with itself is called an automorphism.
It can be shown that the two isomorphism concepts in the preceding two defini-

tions coincide[3].
Before proceeding to the main results, let us introduce some notations which will

be using in the next section.

Notations. Throughout this paper X is any nonempty set and L is a finite chain
unless otherwise stated. Also let us denote the set {0, l1, l2, . . . , ln, 1} by L and let
the order in L be 0 < l1 < l2 < . . . < ln < 1. We define an involution ′ in L as
0
′

= 1, 1
′

= 0 and l
′

i = ln−i+1 for every i ∈ {1, 2, . . . , n}. Then L is an F−Lattice.
Let us designate an atom of LFGT (X,L) by JC = {0, C}, where C ∈ LX and
C 6= 0.

For l ∈ L, l 6= 0 and x ∈ X,

xl(t) =

{
l when t = x
0 otherwise

and for l ∈ L, l 6= 1 and x ∈ X,

xl(t) =

{
l when t = x
1 otherwise.

For i = 1, 2, . . . , n,

Ki = {Jxli
: x ∈ X},

Mi = {Jxli : x ∈ X},
Kn+1 = {{0, x1} : x ∈ X} and Mn+1 = {{0, x0} : x ∈ X}.

Remark 2.1. Note that an automorphism of LFGT (X,L) map a L−fuzzy general-
ized topology containing n elements onto a L−fuzzy generalized topology containing
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same number of elements if n is finite. If {µi}i∈I ⊂ LFGT (X,L) and A is an au-
tomorphism of LFGT (X,L), then A(

∨
i∈I
µi) =

∨
i∈I
A(µi), since LX is a complete

lattice.

3. Major section

Let us first prove some preliminary results which will be using in our main theo-
rem.

Lemma 3.1. Let X be a set with more than one point. If A is an automorphism of
LFGT (X,L), then A({0, 1}) = {0, 1}.

Proof. Let JC be an atom of LFGT (X,L) and C 6= 1.
Claim: There exists an L−fuzzy set D ∈ LX such that JC∨JD contain 4 elements.
Case (i): SupposeC(y) = 0 for some y ∈ X. Since C 6= 0, there exists an x ∈ X

such that C(x) 6= 0. Let D = y1. Then JC∨JD = {0, C}∨{0, y1} = {0, C, y1, C∨y1}.
Since (C∨y1)(y) = 1, C∨y1 6= C. Since (C∨y1)(x) 6= 0, C∨y1 6= y1. Thus JC ∨JD
contain exactly 4 elements.

Case (ii): Suppose C(y) 6= 0 for every y ∈ X. Since C 6= 1, there exists an x ∈ X
such that C(x) 6= 1.

Now considering D = x1 we can prove as above that JC ∨ JD contain 4 elements.
Since 1 is comparable with every element of LFGT (X,L), the join of {0, 1} with any
atom of LFGT (X,L) contain exactly 3 elements. Thus if A({0, 1}) = {0, C} and
C 6= 1, then by claim, there exists an L−fuzzy set D ∈ LX such that {0, C}∨{0, D}
contain 4 elements. Let A−1(JD) = JH . We have |{0, 1} ∨ {0, H}| = 3. By Remark
2.1, |A({0, 1}∨A({0, H})| = |{0, C}∨{0, D}| = 3 which is a contradiction.Thus the
proof is complete. �

Lemma 3.2. Let X be a set with more than one point. Then every automorphism of
LFGT (X,L) maps strong fuzzy generalized topologies onto strong fuzzy generalized
topologies of LFGT (X,L).

Proof. Let A be an automorphism of LFGT (X,L) and µ be a strong fuzzy general-
ized topology onX. Then µ =

∨
C∈µ
{0, C} andA(µ) = A(

∨
C∈µ
{0, C}) =

∨
C∈µ

A({0, C}),

by Remark 2.1. Since 1 ∈ µ and A({0, 1}) = {0, 1} by Lemma 3.1,
∨
C∈µ

A({0, C}) is

a strong fuzzy generalized topology on X.
Similarly, the inverse image of a strong fuzzy generalized topology is a strong

fuzzy generalized topology. �

Lemma 3.3. Let X be a set with more than one point and let A be an automorphism
of LFGT (X,L). Then A maps Mn onto Mn.

Proof. Consider the strong fuzzy generalized topologies of the form {0, xln , 1} and
let us denote this by Ixln . Note that join of Ixln with any fuzzy generalized topology
IC = {0, C, 1} contain exactly 4 elements. Now we claim that if C ∈ LX such that
IC /∈ {Ixln }x∈X , then there exists an L−fuzzy set D ∈ LX such that IC∨ID contains
5 elements. Consider IC /∈ {Ixln }x∈X .

511



P. M. Dhanya /Ann. Fuzzy Math. Inform. 13 (2017), No. 4, 509–517

Case (i): Suppose for some x ∈ X, C(x) = 0. Since C 6= 0, there exists y ∈ X
such that C(y) 6= 0. Let us define D ∈ LX such that D(x) = l1 and D(y) = 0. Since
(C ∨ D)(x) = l1, C ∨ D 6= C. Since (C ∨ D)(y) 6= 0, we have C ∨ D 6= D. Then
IC ∨ ID = {0, C,D,C ∨D, 1} contains 5 elements.

Case (ii): Suppose C(x) 6= 0 for every x ∈ X. Note that IC /∈ {Ixln }x∈X . Then
there exist elements x, y ∈ X such that C(x) = li where i < n and C(y) 6= 0. Define
D ∈ LX such that D(x) = li+1 and D(y) = 0. Then C ∨D 6= C and C ∨D 6= D.
Thus IC ∨ ID contains exactly 5 elements.
So the claim holds.

Now if A(Ixln ) = IC for some IC /∈ {Ixln }x∈X , then by above claim, there exists
an L−fuzzy set D ∈ LX such that IC ∨ ID contains 5 elements. Since A is bijective,
there exists an L−fuzzy set E such that A(IE) = ID. Thus Ixln ∨ IE contains
4 elements. But A(Ixln ∨ IE) = A(Ixln ) ∨ A(IE) = IC ∨ ID contains 5 elements,
which is not possible. Thus A map {Ixln}x∈X onto itself. Now Ixln = {0, xln , 1} =
{0, xln} ∨ {0, 1}. Let A(Ixln ) = Iyln for some y ∈ X. Then

A(Ixln ) = A({0, xln} ∨ {0, 1}) = A({0, xln}) ∨A({0, 1})
= Iyln = {0, yln} ∨ {0, 1}.

Thus A({0, xln}) = {0, yln}, since A({0, 1}) = {0, 1} by Lemma 3.1. Since x ∈ X is
arbitrary, A map Mn onto itself. �

Lemma 3.4. Let X be a set with more than one point. Then every automorphism

of LFGT (X,L) maps

n+1⋃
i=1

Ki onto itself.

Proof. Let A be an automorphism of LFGT (X,L) and C ∈ LX . Then we can write
C as C =

∨
{xl : x ∈ X and l ∈ L such that C(x) = l}, which implies
JC ≤

∨
{Jxl

: x ∈ X and l ∈ L such that C(x) = l}.
Since A preserves order and arbitrary join,

A(JC) ≤ A(
∨
{Jxl

: x ∈ X and l ∈ L such that C(x) = l})
=
∨
{A(Jxl

) : x ∈ X and l ∈ L such that C(x) = l}.
Thus A(JC) ≤

∨
{A(Jxl

) : x ∈ X and l ∈ L such that C(x) = l}. An L−fuzzy
generalized topology of the form Jxl

is less than or equal to the join of a collection
of L−fuzzy generalized topologies if and only if Jxl

is already a member of that
collection of L−fuzzy generalized topologies. This characterizes atoms of the form

Jxl
for all x ∈ X and l ∈ L. So A maps

n+1⋃
i=1

Ki = {Jxl
: x ∈ X, l ∈ L} onto itself. �

Lemma 3.5. Let X be a set with more than one point and let A be an automorphism
of the lattice LFGT (X,L). If C ∈ LX and A(JC) = JD for some D ∈ LX , then for
x ∈ X, C(x) = 1 if and only if there exists an element y ∈ X such that D(y) = 1.

Proof. Let C(x) = 1 for some x ∈ X. Then JC ∨ Jxln is a strong generalized
topology. By Lemma 3.2, A(JC ∨ Jxln ) = A(JC) ∨ A(Jxln ) is a strong generalized
topology. Since A map Mn onto itself, by Lemma 3.3, A(Jxln ) = Jyln for some

y ∈ X. Let A(JC) = JD for some D ∈ LX . Then JD ∨ Jyln is a strong generalized
topology implying D(y) = 1.

Similarly, If A(JC)(y) = 1 for some y ∈ X, then C(x) = 1 for some x ∈ X. �
512
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Lemma 3.6. Let X be a set with more than one point. Then every automorphism
of LFGT (X,L) maps K1 onto itself.

Proof. Let A be an automorphism of LFGT (X,L). By Lemma 3.4, A maps

n+1⋃
i=1

Ki

onto itself. Suppose for some x ∈ X, A(Jxl1
) = Jzli , i ≥ 2. Let C = {C ∈ LX :

C(x) 6= 0 for every x ∈ X} and D = {D ∈ LX : A(JC) = JD, C ∈ C}. Note that
JC∨Jxl1

contains 3 elements for every C ∈ C. Then A(JC∨Jxl1
) = A(JC)∨A(Jxl1

) =

JD ∨ Jzli contains 3 elements for every D ∈ D. Thus {0, D} ∨ {0, zli} = {0, D, zli}
and D ∨ zli = D or zli .

If D ∨ zli = zli , then D = Jzlj for some j < i. Thus there exists an element

C ∈ C such that A(JC) = Jzlj which is not possible, by Lemma 3.4. So D ∨ zli = D

which implies that D(z) ≥ li for every D ∈ D and i ≥ 2. Hence zl1 /∈ D. Therefore
A−1(Jzl1 ) /∈ {JC}c∈C. Let A−1(Jzl1 ) = JH for some H ∈ LX . Then there exists
t ∈ X such that H(t) = 0, since H /∈ C.

Define f ∈ LX such that

f(t) =

{
lk whenever H(t) = 0
H(t) otherwise.

Choose k ∈ {1, 2, . . . , n} such that A(Jf ) = JD and D 6= zlj , where j ≥ i and i ≥ 2.
This is possible since A is a bijection and k has n choices and zlj , j ≥ i and i ≥ 2,
has n−1 choices. Then f ∈ C and A(Jf ) = JD for some D ∈ D. Now |JH ∨Jf | = 3,
since H ≤ f , which implies |A(JH) ∨ A(Jf )| = |Jzl1 ∨ JD| = 3. But Jzl1 ∨ JD =

{0, zl1}∨{0, D} = {0, zl1 , D, zD(z)}. Since D(z) ≥ li and i ≥ 2, zD(z) 6= zl1 . Also we
have chosen f such that zD(z) 6= D, thus |Jzl1 ∨ JD| = 4, which is a contradiction.
So A(Jxl1

) cannot be Jzli for any i ≥ 2 and by Lemma 3.4 A map K1 onto itself. �

Definition 3.1 ([1]). Let X be a nonempty set and L be an F−Lattice. If p : X →
X is a bijection, then Hp : LX → LX defined by Hp(C)(x) = C(p−1(x)) for all
C ∈ LX and x ∈ X is an automorphism of LX .

Theorem 3.1. Let X be a nonempty set and L be an F−Lattice. If µ is an L−fuzzy
generalized topology on X, then the collection H∗p (µ) = {Hp(C) : C ∈ µ} is also an
L−fuzzy generalized topology and H∗p is an automorphism of LFGT (X,L) where Hp

is as in the Definition 3.1.

Proof. Let µ be an L−fuzzy generalized topology on X. Then 0 ∈ H∗p (µ), because

Hp(0)(x) = 0(p−1(x)) = 0 for every x ∈ X. Let {Ci}i∈I be a collection of L−fuzzy
sets in H∗p (µ). Then for i ∈ I,

Ci = Hp(Ki) for some Ki ∈ µ
(
∨
i∈I
Ci)(x) = (

∨
Hp(Ki))(x)

= (
∨
Ki)(p

−1)(x)
= Hp(

∨
Ki)(x)

Thus H∗p (µ) is an L−fuzzy generalized topology on X and H∗p map fuzzy generalized
topologies onto fuzzy generalized topologies. Also note that H∗p is bijective. For
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µ, τ ∈ LFGT (X); we have µ ≤ τ if and only if H∗p (µ) ≤ H∗p (τ) by definition itself.
So H∗p is an automorphism of LFGT (X). �

Finally we are in a position to prove our main results. First we consider here the
case when X is a singleton set.

Theorem 3.2. Let X be a singleton set. Then the group of all automorphisms of
the lattice LFGT (X,L) is isomorphic to S(L \ {0}), the group of all permutations
on L \ {0}.

Proof. Let X = {x} and L be as defined in the notation. Then the atoms of
LFGT (X,L) are {Ki}i=1,2,...,n,n+1 where Ki = {0, xli} for i = 1, 2, . . . , n, n + 1
where ln+1 = 1. In fact these are the only elements of LFGT (X,L) other than 0
since X = {x}. Let p be a permutation on {1, 2, . . . , n+ 1}.

Define a function Ap on LX , Ap : LX → LX , for i = 1, 2, . . . , n, n+ 1

Ap(xli) = xlj if and only if , p(i) = j

and Ap(0) = 0. For an L-fuzzy generalized topology µ ∈ LFGT (X,L), we define
A∗p(µ) = {Ap(xli) : xli ∈ µ} ∪ {0}. Then A∗p is a bijection on LFGT (X,L). Now for
µ, τ ∈ LFGT (X,L),

µ ≤ τ ⇔ µ ⊆ τ ⇔ A∗p(µ) ⊆ A∗p(τ).

Hence A∗p is an automorphism on LFGT (X,L).
Conversely if M is an automorphism on LFGT (X,L), M must map atoms onto

atoms of LFGT (X,L). Then it will induce a bijection on {xli : i = 1, 2, . . . , n+ 1}
and hence on {1, 2, . . . , n + 1}. Thus it defines a bijection between the group of all
automorphisms of LFGT (X,L) and the group of all permutations on {1, 2, . . . , n+
1}. Also if p and k are two permutations on {1, 2, . . . , n+ 1}, then A∗p◦k = A∗p ◦A∗k.

This defines an isomorphism between the group of all automorphisms of LFGT (X,L)
and the group of all permutations on L \ {0}. �

Theorem 3.3. Let X be a set with more than one point. Then the group of all auto-
morphisms of LFGT (X,L) is precisely the collection {H∗p : p is a bijection on X}
where H∗p is as in the Theorem 3.1.

Proof. We have already proved in Theorem 3.1 that H∗p is an automorphism on
LFGT (X,L). Now let A be an automorphism on LFGT (X,L). We need to prove
that A = H∗p for some bijection p on X. By Lemma 3.6, A maps K1 onto itself.
Let x ∈ X, consider Jxl1

and let A(Jxl1
) = Jyl1 for some y ∈ X. This y is unique.

Define p : X → X as p(x) = y if and only if A(Jxl1
) = Jyl1 . For t ∈ X,

Hp(xl1)(t) = xl1(p−1(t))

=

{
l1 if p−1(t) = x
0 otherwise

=

{
l1 if t = y
0 otherwise

= yl1(t).

Then Hp(0) = 0. Thus H∗p (Jxl1
) = {Hp(0), Hp(xl1)} = {0, yl1} = Jyl1 . Since x ∈ X

is arbitrary, A = H∗p on K1.
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Claim: If A(Jxl1
) = Jyl1 , then A(Jx1) = Jy1 .

Suppose A(Jx1) = JC = {0, C}, for some L−fuzzy set C ∈ LX . Then
|{0, C} ∨ {0, zl1}| = 3, for every z ∈ X such that C(z) 6= 0.

Thus |JC ∨ Jzl1 | = 3, for every z ∈ X such that C(z) 6= 0.

So |A−1(JC) ∨A−1(Jzl1 )| = 3, for every z ∈ X such that C(z) 6= 0.

Hence |Jx1 ∨A−1(Jzl1 )| = 3, for every z ∈ X such that C(z) 6= 0.

But A−1(Jzl1 ) ∈ K1. Then A−1(Jzl1 ) = Jxl1
and thus z = y. So C(z) 6= 0

implying z = y. By Lemma 3.5, there exists an element t ∈ X such that C(t) = 1.
Hence C = y1.

Claim: If A(Jxl1
) = Jyl1 and A(Jx1

) = Jy1 , then

(1) A(Jxli
) = Jyli , where i ∈ {2, 3, . . . , n},

(2) A(Jx0) = Jy0 .

Proof of claim (1): By Lemma 3.4, A maps

n+1⋃
i=1

Ki onto itself. Suppose A(Jxli
) =

Jzlj for some z ∈ X and j ∈ {2, 3, . . . , n}. We know that |Jxli
∨ Jxl1

| = 3. Then

|A(Jxli
∨Jxl1

)| = |A(Jxli
)∨A(Jxl1

)| = |Jzlj ∨Jyl1 | = 3. This happens only if z = y.

Thus A(Jxli
) = Jylj for some j = 2, 3, . . . n.

Now let A(Jxli ) = {0, C} for some C ∈ LX . Then we have Jxli ∨ Jx1
=

{0, xli , x1, 1} is a strong fuzzy generalized topology. Thus A(Jxli ∨ Jx1) = A(Jxli )∨
A(Jx1) = JC ∨ Jy1 is a strong fuzzy generalized topology. So C ∨ y1 = 1. Hence
C(t) = 1 for every t 6= y.

Let C = ylk for some k ∈ {1, 2, . . . , n}. Then we have A(Jxli
) = Jylj and

A(Jxli ) = Jylk . Consider Jxli
∨ Jxli = {0, xli , xli}. Then

A(Jxli
∨ Jxli ) = A(Jxli

) ∨A(Jxli ) = Jylj ∨ Jylk = {0, ylj , ylk},

since |Jxli
∨ Jxli | = |A(Jxli

∨ Jxli )|. But {0, ylj , ylk} is an L−fuzzy generalized
topology. Thus j ≤ k, otherwise Jylj ∨ Jylk contain 4 elements. Also we have

Jxli
∨ Jxli+1 contain 3 elements. So

A(Jxli
∨ Jxli+1 ) = A(Jxli

) ∨A(Jxli+1 ) = Jylj ∨ Jylk1

also contain 3 elements, where A(Jxli+1 ) = J
y
lk1

for some k1 ∈ {1, 2, . . . , n}. Hence

k1 must be greater than or equal to j. This is true for Jxli+2 , Jxli+3 , . . . , Jxln .
Therefore for example,

we have A(Jxl1
) = Jyl1 , let A(Jxl2

) = Jylj , where j ≥ 2.

A(Jxl2 ) = J
y
lk2
, k2 ≥ j

A(Jxl3 ) = J
y
lk3
, k3 ≥ j

A(Jxl4 ) = J
y
lk4
, k4 ≥ j

...

A(Jxln ) = J
y
lkn
, kn ≥ j.

Since A is a bijection j must be equal to 2. Then A(Jxl2
) = Jyl2 .

Similarly, A(Jxli
) = Jyli for every i ∈ {1, 2, . . . , n}.
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Proof of claim (2): Suppose A(Jx0) = {0, C} for some L−fuzzy set C ∈ LX .
We know that Jx0 ∨ Jx1 = {0, x0, x1, 1} is a strong generalized topology. Then by
Lemma 3.2, A(Jx0) ∨ A(Jx1

) is a strong fuzzy generalized topology on X. Thus
{0, C} ∨ A(Jy1) is a strong fuzzy generalized topology implying C(t) = 1 for every
t 6= y. Now if C(y) 6= 0, then JC ∨ Jyl1 contain 3 elements and thus Jx0 ∨ Jxl1

contain 3 elements, which is a contradiction. So C(y) = 0, proving A(Jx0) = Jy0 .
Claim: If A(Jxli

) = Jyli for every i ∈ {1, 2, . . . , n}, then A(Jxli ) = Jyli for every

i ∈ {1, 2, . . . , n}.
Suppose A(Jxli ) = {0, C} for some L−fuzzy subset C ∈ LX . Then Jxli ∨ Jx1 is

a strong generalized topology and thus JC ∨ Jy1 is a strong generalized topology,
which implies that C(t) = 1 for every t 6= y. Let C(y) = lj for some j = 1, 2, . . . , n.
Then C = ylj . Also |Jxli

∨ Jxli | = 3. Thus |Jyli ∨ JC | = |Jyli ∨ Jylj | = 3 imply-

ing j ≥ i. So if A(Jxli ) = Jylj , then j ≥ i. But A map Mn onto itself. Thus

A(Jxln−1 ) = Jyln−1 , A(Jxln−2 ) = Jyln−2 and so on. Hence A(Jxli ) = Jyli for every

i ∈ {1, 2, . . . , n}.
Now

H∗p (Jxli
) = {Hp(0), Hp(xli)}

= {0, yli}
= Jyli
= A(Jxli

).

Then A = H∗p on Ki, where i ∈ {1, 2, . . . , n},

H∗p (Jx1
) = {Hp(0), Hp(x1)}

= {0, y1}
= Jy1
= A(Jx1

).

Thus A = H∗p on Kn+1,

H∗p (Jx0) = {Hp(0), Hp(x
0)}

= {0, y0}
= Jy0
= A(Jx0).

So A = H∗p on Mn+1,

H∗p (Jxli ) = {Hp(0), Hp(x
li)}

= {0, yli}
= Jyli
= A(Jxli ).

Hence A = H∗p on Mi, where i ∈ {1, 2, . . . , n}. Therefore A = H∗p on {Ki ∪
Mi}i=1,2,...,n+1.

Now let C /∈ {Ki∪Mi}i=1,2,...,n+1 be an L−fuzzy set. Suppose A({0, C}) = {0, D}
for some L−fuzzy set D /∈ {Ki ∪Mi}i=1,2,...,n+1 and H∗p ({0, C}) = {0, Hp(C)}. To
prove that Hp(C) = D, it is enough to prove the following results:

(a) C(p−1(y)) = 0 if and only if D(y) = 0.
(b) C(p−1(y)) = li if and only if D(y) = li where i = 1, 2, . . . , n.
(c) C(p−1(y)) = 1 if and only if D(y) = 1.
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Proof of (a): We have Hp(C) = {C(p−1)(t) : t ∈ X}. Then C(p−1(y)) = 0 ⇔
C(x) = 0 ⇔ C ≤ x0 ⇔ |{0, C} ∨ {0, x0}| = 3 ⇔ |A({0, C}) ∨ A({0, x0})| = 3 ⇔
|{0, D} ∨ {0, y0}| = 3⇔ D ≤ y0, for otherwise, if D > y0, then D = 1, which is not
possible, since by Lemma 3.1 A(0, 1) = {0, 1}. Thus D(y) = 0.

Proof of (b): Assume C(p−1(y)) = li. But p−1(y) = x, implying C(x) = li.
Then |{0, C} ∨ {0, xli}| = 3. By Remark 2.1, |{0, D} ∨ {0, yli}| = 3 which implies
D(y) ≤ li, since D /∈Mi for every i.

Also if C(x) = li, then |{0, C}∨{0, xli}| = 3. By Remark 2.1, |{0, D}∨{0, yli}| = 3
implying D(y) ≥ li, since D /∈ Ki for every i ∈ {1, 2, . . . , n}.
Thus we get D(y) = li. So if C(p−1(y)) = li, then D(y) = li.

Similarly, it is also easy to show that, if D(y) = li, then C(p−1(y)) = li for every
i = 1, 2, . . . , n.

Proof of (c): Consider C(p−1(y)) = 1 ⇔ C(x) = 1 ⇔ |{0, C} ∨ {0, x1}| = 3 ⇔
|{0, D} ∨ {0, y1}| = 3 ⇔ D ≥ y1(since D /∈ Kn+1)⇔ D(y) = 1. Since x and y are
arbitrary A = H∗p on all atoms in LFGT (X,L). Also LFGT (X,L) is atomistic.
then A = H∗p on LFGT (X,L). Thus the proof is complete.. �

4. Conclusions

We determined the automorphism group of lattice of all fuzzy generalized topolo-
gies LFGT (X,L), when X is an arbitrary nonempty set and L is a finite chain.
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