
Annals of Fuzzy Mathematics and Informatics

Volume 13, No. 5, (May 2017), pp. 553–562

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Multi vector space

Moumita Chiney, S. K. Samanta

Received 20 September 2016; Revised 13 December 2016; Accepted 23 December 2016

Abstract. In the present paper a notion of vector space in multiset
settings is introduced. A representation theorem is established. Definitions
of balanced, convex and absorbing multisets have been given and their
properties are studied. Also the notion of multi basis has been developed.

2010 AMS Classification: 03E70, 15A03

Keywords: Multiset, Multi vector space, Multi bases of a multi vector space,
Balanced, Convex and absorbing multisets.

Corresponding Author: S. K. Samanta (syamal 123@yahoo.co.in)

1. Introduction

Many fields of modern mathematics have been emerged by violating a basic
principle of a given theory only because useful structures could be defined this way.
For example, modern non-Euclidean geometries have been emerged by assuming that
the Parallel Axiom does not hold. Similarly, in contrast to classical (Cantorian) set
theory in which an element cannot appear more than once, a concept of multiset is
evolved, which is an unordered collection of objects into a whole in which certain
elements are allowed to repeat. The term ‘multiset,’ as Knuth [16] notes, was first
suggested by N. G. deBruijn [4]. From a practical point of view, multisets are very
useful structures as they arise in many areas of mathematics and computer science.
Some examples of multisets as stated in [22] are as follows: The prime factorization of
integers n > 0 is a multiset whose elements are primes. Every monic polynomial f(x)
over the complex numbers corresponds in a natural way to the multiset of its roots.
Other examples of multisets include the zeros and poles of meromorphic functions,
invariants of matrices in a canonical form, the invariants of finite abelian groups
etc. The terminal string of a non-circular context-free grammar forms a multiset.
Processes in an operating system can be thought of as multisets. The mathematical
treatment of concurrency involves the use of multisets. In social sciences, multisets
can be used to model social structures, etc.
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Many authors like Yager [23], Blizard [2, 3], Girish and John [10, 8, 9], Monro
[17] etc. have studied on multisets and its applications. More works on multisets
and soft multisets can be found in [1, 5, 7, 11, 12, 13, 14, 18, 19, 20, 21, 24]. Vector
space structure is one of the most important structures in modern mathematics.
Several authors have introduced the notion of vector space in fuzzy sets [15], soft
sets [6] etc. Therefore the study of vector spaces in multisets is very natural. We
have attempted in this paper for the first time to introduce a notion of vector space
in multiset setting and to study some of its properties.

2. Preliminaries

Definition 2.1 ([8]). A multiset (mset) M drawn from a set X is represented by a
count function CM : X → N where N represents the set of non negative integers.

Here CM (x) is the number of occurrence of the element x in the mset M. The
presentation of the mset M drawn from X = {x1, x2, ...., xn} will be as M =
{x1/m1, x2/m2, ...., xn/mn} where mi is the number of occurrence of the element
xi, i = 1, 2, ..., n in the mset M.

Also here for any positive integer ω, [X]ω is the set of all msets whose elements
are in X such that no element in the mset occurs more than ω times and it will be
referred to as mset spaces. For M ∈ [X]ω, Mn = {x ∈ X : CM (x) ≥ n}, n ∈ N.

The algebraic operations of msets are considered as in [8].

Definition 2.2 ([18]). Let X and Y be two nonempty sets and f : X → Y be a
mapping. Then

(i) the image of a mset M ∈ [X]ω under the mapping f is denoted by f(M) or
f [M ], where

Cf(M)(y) =

 ∨
f(x)=y

CM (x) if f−1(y) 6= φ

0 otherwise,

(ii) the inverse image of a mset N ∈ [Y ]ω under the mapping f is denoted by
f−1(N) or f−1[N ], where Cf−1(N)(x) = CN [f(x)].

The properties of functions, which are used in this paper, are as in [18].

3. Sums and scalar products of multisets

Throughout the rest of the paper X,Y will denote vector spaces over K (where
K is the field of real or complex numbers), f is a linear map from X to Y and msets
are taken from [X]

ω
, [Y ]

ω
.

Definition 3.1. For A1, A2, ..., An, B ∈ [X]
ω
, define A1 +A2 + ...+An and λB(λ ∈

K) as:
CA1+A2+...+An

(x)
= ∨{CA1(x1)∧CA2(x2)∧...∧CAn(xn) : x1, x2, ..., xn ∈ Xand x1+x2+...+xn = x}

and
CλB(y) = ∨{CB(x) : λx = y}.

Lemma 3.2. Let λ ∈ K and B ∈ [X]
ω
. Then

(1) for λ 6= 0, CλB(y) = CB(λ−1y),∀y ∈ X,
554
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for λ = 0, CλB(y) =

0, y 6= 0,

sup
x∈X

CB(x), y = 0 ,

(2) for all scalars λ ∈ K and for all x ∈ X, we have CλB(λx) ≥ CB(x).

Proposition 3.3. For A,B in [X]ω and for λ ∈ K,
(1) f(A+B) = f(A) + f(B),
(2) f(λA) = λf(A).

Proof. (1) Let M = f(X), w ∈ Y, m = Cf(A+B)(w), n = Cf(A)+f(B)(w).
In case w /∈M,m = 0. Also, x, y ∈ Y, x+ y = w implies that not both x, y belong

to M and then n = 0. Let w ∈ M. Given ε > 0, there exists z ∈ X, with f(z) = w,
such that

CA+B(z) > m− ε.
Thus there exist x, y ∈ X, with x + y = z, such that min{CA(x), CB(y)} > m − ε.
Since f(x) + f(y) = f(z) = w, we have

n ≥ min{Cf(A)(f(x)), Cf(B)(f(y))} ≥ min{CA(x), CB(y)} > m− ε.
Since ε > 0, is arbitrary, we get n ≥ m.

Again for n > ε > 0, there exist z1, z2 ∈ Y with z1 + z2 = w, such that

n− ε < min{Cf(A)(z1), Cf(B)(z2)}.

So, there are x1, x2 ∈ X, with f(x1) = z1 and f(x2) = z2, such that

n− ε < min{CA(x1), CB(x2)}.

Since f(x1 + x2) = f(x1) + f(x2) = z1 + z2 = w, we get m > n − ε. Since ε > 0 is
arbitrary, m ≥ n . This proves (1).

(2) Let w ∈ Y, c = Cλf(A)(w) and d = Cf(λA)(w).
If w /∈M, then c = d = 0.
Suppose that w ∈M.
If λ 6= 0, then c = Cf(A)(λ

−1w) = sup
f(x)=λ−1w

CA(x)

= sup
f(λx)=w

CλA(λx) = sup
f(y)=w

CλA(y) = d.

Next assume that λ = 0. If w 6= θY , then c = 0. Also d = sup
f(x)=w

C0A(x) = 0,

when f(x) = w 6= θY , x 6= θX .
For w = θY , we have

c = sup
x∈Y

Cf(A)(x) = sup
y∈X

CA(y)

and
d = sup

f(x)=θY

C0A(x) = C0A(θX) = sup
y∈X

CA(y).

This completes the proof. �

Corollary 3.4. λ(A+B) = λA+ λB for all A,B in [X]ω and λ ∈ K.

Proposition 3.5. Let A,A1, ....., An ∈ [X]ω and λ1, ....., λn ∈ K. Then the follow-
ing assertions are equivalent:

(1) λ1A1 + λ2A2 + .....+ λnAn ⊆ A,
555
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(2) For all x1, x2, ...., xn in X, we have

CA(λ1x1 + λ2x2 + ....+ λnxn) ≥ min{CA1
(x1), ......, CAn

(xn)}.

Proof. (1)⇒(2) is immediate.
(2)⇒(1): By rearranging the order if necessary, we may assume that λi 6= 0 for i =

1, 2, ..., k, and λi = 0 for k ≤ i ≤ n. Let x1, x2, ...., xk ∈ X. For all y1, y2, ..., yn−k ∈
X, we have

CA(λ1x1 + λ2x2 + ....+ λkxk)
≥ min{CA1(x1), ......, CAk

(xk), CAk+1
(y1), ..., CAn(yn−k)}.

Since C0Aj
(θ) = sup

y∈X
CAj

(y), we get

CA(λ1x1 + λ2x2 + ....+ λkxk)
≥ min{CA1(x1), ......, CAk

(xk), C0Ak+1
(θ), ..., C0An(θ)}.

On the other hand,
Cλ1A1+λ2A2+.....+λnAn

(z)
= sup
x1+x2+....+xn=z

[min{Cλ1A1
(x1), ......, CλnAn

(xn)}]

= sup
x1+x2+....+xn=z

[min{Cλ1A1
(x1), ......, CλnAn

(xn), C0Ak+1
(xk+1), ..., C0An

(xn)}]

= sup
x1+x2+....+xk=z

[min{CA1(λ−11 x1), ......, CAk
(λ−1k xk), C0Ak+1

(θ), ..., C0An(θ)}]

[Since C0Ai
(xi) = 0, if xi 6= θ, i = k + 1, ..., n]

≤ sup
x1+x2+....+xk=z

CA(λ1λ
−1
1 x1 + .......+ λkλ

−1
k xk) = CA(z). �

Lemma 3.6. Let A,B ∈ [X]ω. Then
(1) A+ 0B ⊆ A,
(2) A+ 0B = A iff sup

x∈X
CA(x) ≤ sup

x∈X
CB(x).

Proof. (1) CA(x+0y) = CA(x) ≥ min{CA(x), CB(y)}. Then (1) follows from Propo-
sition 3.5.

(2) Suppose that sup CA(x) ≤ sup CB(x) = C0B(θ). Then

CA+0B(z) = sup
x+y=z

[min{CA(x), C0B(y)}] = min{CA(z), C0B(θ)} = CA(z).

On the other hand, if CA(z) > sup CB(x) = C0B(θ) for some z, then

CA+0B(z) = min{CA(z), CB(θ)} < CA(z)

Thus A+ 0B 6= A. �

4. Multi vector space

Definition 4.1. A multiset V in [X]ω is said to be a multi vector space or multi
linear space (in short, mvector space) over the linear space X, if

(i) V + V ⊆ V,
(ii) λV ⊆ V, for every scalar λ.

We denote the set of all mvector spaces over a vector space X by MV (X).

Lemma 4.2. Let V be a multiset in [X]ω. Then, the followings are equivalent:
(1) V is a multi vector space over X.,
(2) for all k,m ∈ K, we have kV +mV ⊆ V,
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(3) for all k,m ∈ K and for all x, y ∈ X, we have CV (kx+my) ≥ min{CV (x), CV (y)}.

Proposition 4.3. V ∈MV (X) and W ∈MV (Y ) implies that f(V ) ∈MV (Y ) and
f−1(W ) ∈MV (X).

Proof. Let V ∈MV (X). Then for k,m ∈ K, kV +mV ⊂ V. Thus,
kf(V ) +mf(V ) = f(kV +mV ) [By Proposition 3.3] ⊆ f(V ),

which shows that f(V ) ∈MV (Y ).
Also if W ∈MV (Y ), then for any scalar k,m,

Cf−1(W )(kx+my) = CW (f(kx+my)) = CW (kf(x) +mf(y))
≥ min{CW (f(x)), CW (f(y))} [By Lemma 4.2]
= min{Cf−1(W )(x), Cf−1(W )(y)}.

Thus f−1(W ) ∈MV (X), by Lemma 4.2. �

Proposition 4.4. If V,W ∈MV (X) and k ∈ K, then V +W, kV ∈MV (X).

Proof. Let x, y ∈ X and k,m ∈ K. Then

CV+W (kx+my) = ∨
z1+z2=kx+my

{CV (z1) + CW (z2)}.

Now if x1 + x2 = x and y1 + y2 = y, for x1, x2, y1, y2 ∈ X, then

(kx1 +my1) + (kx2 +my2) = kx+my.

Thus,
CV+W (kx+my)
≥ ∨
x1+x2=x,y1+y2=y

{CV (kx1 +my1) ∧ CW (kx2 +my2)}
≥ ∨
x1+x2=x,y1+y2=y

{CV (x1) ∧ CV (y1) ∧ CW (x2) ∧ CW (y2)} [As V,W ∈MV (X) ]

= ∨
x1+x2=x,y1+y2=y

{CV (x1) ∧ CW (x2) ∧ CV (y1) ∧ CW (y2)}

=

[
∨

x1+x2=x
{CV (x1) ∧ CW (x2)}

]
∧
[
∨

y1+y2=y
{CV (y1) ∧ CW (y2)}

]
= CV+W (x) ∧ CV+W (y).

So V +W ∈MV (X).
Again, kV ∈MV (X) follows from Proposition 3.3. �

Proposition 4.5. If Vi ∈MV (X), i ∈ I, then ∩
i∈I
Vi ∈MV (X).

Proposition 4.6. Let V ∈MV (X). Then CV (θ) ≥ CV (x),∀x ∈ X.

Proposition 4.7. Let V ∈MV (X). Then
(1) for n ∈ N, Vn is either empty or a subspace of X,
(2) V ∗ = {x ∈ X;CV (x) = CV (0)} and V∗ = {x ∈ X;CV (x) > 0} are subspaces

of X.

Proposition 4.8. For any two V1, V2 ∈MV (X) and any n ∈ {0, 1, 2, ..., ω},
(1) (V1 ∩ V2)n = (V1)n ∩ (V2)n ,
(2) (V1 + V2)n = (V1)n + (V2)n .

Proposition 4.9. Let V ∈MV (X) with dimX = m. Then the range of CV contains
at most m+ 1 points of {0, 1, 2, ..., ω}.
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Proof. If possible suppose x0, x1, ..., xm ∈ X \ {θ} such that

CV (x0) < CV (x1) < ... < CV (xm).

Then x0 /∈ vct{x1, x2, ..., xm} (vct{x1, x2, ..., xm} is the vector space spanned by
{x1, x2, ..., xm}). Otherwise there exist a1, a2, ..., am ∈ K such that x0 =

∑m
i=1 aixi

and by Lemma 4.2, CV (x0) ≥ CV (x1), which is impossible. Analogously x1 /∈
vct{x2, ..., xm}, ...., xm−1 /∈ vct{xm}. Since all xi 6= θ, we have
dim(vct{x0, x1, ..., xm}) = 1+dim(vct{x1, x2, ..., xm}) = m+dim(vct{xm}) = m+1.
This is impossible, since dim X = m. Consequently the range of CV is a subset of
{0, 1, 2, ..., ω} with at most m+ 1 points of which m values are attained at points of
X \ {θ} and the maximum one is attained at θ. �

Proposition 4.10. (Representation Theorem) Let V ∈ MV (X) with dim X = m
and range of CV = {n0, n1, ...., nk}, k ≤ m, n0 = CV (θ) and ω ≥ n0 > n1 > ... >
nk ≥ 0. Then there exists a nested collection of subspaces of X as
{θ} ⊆ Vn0

⊂ Vn1
⊂ .... ⊂ Vnk

= X such that V = n0Vn0
∪n1Vn1

∪ .....∪nkVnk
. Also,

(1) if n,m ∈ (ni+1, ni], then Vn = Vm = Vni
,

(2) if n ∈ (ni+1, ni] and m ∈ (ni, ni−1], then Vn ⊃ Vm.

Proof. From Proposition 4.7, Vni = {x ∈ X : CV (x) ≥ ni} are subspaces of X, for
i = 0, 1, 2, ..., k. As ni > ni+1, for i = 0, 1, ..., k − 1, we have a nested collection of
subspaces of X as

{θ} ⊆ Vn0
⊂ Vn1

⊂ .... ⊂ Vnk
= X.

Now we show that V = n0Vn0
∪n1Vn1

∪ .....∪nkVnk
. Let x ∈ X and CV (x) = nj .

Then x ∈ Vnj and x /∈ Vnl
, for l < j. Thus

Cn0Vn0
∪n1Vn1

∪.....∪nkVnk
(x)

= Cn0Vn0
(x) ∨ Cn1Vn1

(x) ∨ .... ∨ CnkVnk
(x)

= nj ∨ .... ∨ nk = nj .
(1) Let n ∈ (ni+1, ni]. Then obviously Vni

⊆ Vn. Next let x ∈ Vn. Then CV (x) ≥
n > ni+1. This implies that CV (x) ≥ ni. Thus x ∈ Vni . So Vn ⊆ Vni . Hence Vn = Vni .
Similarly, Vm = Vni . Therefore (1) holds.

(2) is straightforward. �

Example 4.11. Let X = R2, ω = 4 and V be defined as

CV (x) = 2, if x 6= θ

= 4, if x = θ.

Then V = 4V4 ∪ 2V2 is a decomposition V .

5. Multi bases of a multi vector space

Definition 5.1. Let X be a finite dimensional vector space with dim X = m and
V ∈ MV (X). Consider Proposition 4.10. Let Bni be a basis of Vni , i = 0, 1, ..., k
such that

(5.1) Bn0
⊂ Bn1

⊂ Bn2
⊂ ... ⊂ Bnk
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Define a multi subset β of X by

Cβ(x) = ∨{ni : x ∈ Bni}
= 0, otherwise.

Then β is called a multi basis of V corresponding to (5.1).

Example 5.2. Let X = R2 and ω = 6. Define a multi vector space V by CV : X →
N by

CV (x) = 6, if x ∈ {(a, 0) : a ∈ R}
= 1, otherwise.

Then we have {θ} ⊂ V6 ⊂ V1 = R2. Let e1 = (1, 0), e2 = (0, 1), B6 = {e1} and
B1 = {e1, e2}. Then β is a multi basis of V where Cβ(x) is defined by:

Cβ(x) =


6, if x = (1, 0)

1, if x = (0, 1)

0, otherwise.

Proposition 5.3. Let β be a multi basis of V obtained by (5.1). Then
(1) if n,m ∈ (ni+1, ni], then βn = βm = Bni

,
(2) if n ∈ (ni+1, ni] and m ∈ (ni, ni−1], then βn ⊃ βm,
(3) βn is a basis of Vn, for all n ∈ {1, 2, ...., ω}.

6. Convex, balanced and absorbing multisets

Definition 6.1. A multiset M in [X]ω is said to be:
(i) convex, if λM + (1− λ)M ⊆M , for all λ ∈ [0, 1],
(ii) balanced, if λM ⊆M , for all scalars λ with | λ |≤ 1,
(iii) absorbing, if for each x ∈ X, C ∪

k>0
kM (x) = ω,

(iv) absolutely convex, if it is both convex and balanced.

Proposition 6.2. Let M ∈ [X]ω. Then the followings assertions are equivalent:
(1) M is convex (balanced),
(2) CM (λx+ (1− λ)y) ≥ min{CM (x), CM (y)}, for all x, y ∈ X and all λ ∈ [0, 1]

(CM (λx) ≥ CM (x), for all | λ |≤ 1),
(3) For each n ∈ {1, 2, ...., ω}, Mn is convex (balanced) in X.

Proof. (1)⇔ (2) is immediate.
(2)⇔(3): We only prove the convex case. The proof for the balanced case is

similar. Let CM (λx + (1 − λ)y) ≥ min{CM (x), CM (y)}, for all x, y ∈ X and all
λ ∈ [0, 1]. If Mn 6= φ, take x, y ∈Mn. Then CM (x), CM (y) ≥ n. Thus

CM (λx+ (1− λ)y) ≥ min{CM (x), CM (y)} ≥ n.

So λx+ (1− λ)y ∈Mn, for all λ ∈ [0, 1]. Hence Mn is convex in X.
Conversely, assume that the sets Mn, n ∈ {1, 2, ..., ω} are convex in X. Let x, y ∈

X and min{CM (x), CM (y)} = n0. If n0 = 0, then obviously,

CM (λx+ (1− λ)y) ≥ min{CM (x), CM (y)}.
559
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If n0 6= 0, then CM (x), CM (y) ≥ n0. Thus x, y ∈Mn0 . By convexity of Mn0 , λx+
(1−λ)y ∈Mn0 , for all λ ∈ [0, 1]. So CM (λx+(1−λ)y) ≥ n0 = min{CM (x), CM (y)}.
Hence (2) holds. �

Proposition 6.3. Let M ∈ [X]ω. Then the followings are equivalent:
(1) M is absolutely convex,
(2) λM + µM ⊆M , for all scalars λ, µ with | λ | + | µ |≤ 1,
(3) CM (λx + µy) ≥ min{CM (x), CM (y)}, for all x, y ∈ X and all scalars λ, µ

with | λ | + | µ |≤ 1.
(4) For each n ∈ {0, 1, 2, ..., ω}, the ordinary set Mn = {x ∈ X : CM (x) ≥ n} is
absolutely convex.

Proof. (1)⇔(2): Let M be absolutely convex and choose scalars λ, µ with | λ | + |
µ |≤ 1.

If λ = 0 or µ = 0, then evidently, λM + µM ⊆M (as M is balanced).
If λ 6= 0 and µ 6= 0, then λ

|λ|M ⊆ M and µ
|µ|M ⊆ M (as M is balanced) and

|λ|
|λ|+|µ| + |µ|

|λ|+|µ| = 1. Thus

λM + µM = (| µ | + | λ |)
{

| λ |
| λ | + | µ |

(
λ

| λ |
M

)
+

| µ |
| λ | + | µ |

(
µ

| µ |
M

)}
⊆M.

Conversely, let the condition hold for a multiset M in [X]ω. Then choosing µ = 0,
we find that M is balanced and choosing λ > 0, µ > 0 and λ + µ = 1, we find that
M is convex. Thus M is absolutely convex.

Proofs of (2)⇔ (3) and (1)⇔ (4) are immediate. �

Proposition 6.4. M ∈ [X]ω is absorbing iff Mn is absorbing, for each n ∈ {1, 2, ...., ω}.
Proof. SupposeM is absorbing. Then for x ∈ X, C ∪

k>0
kM (x) = ω. Hence Sup

k>0
CkM (x) =

Sup
k>0

CM (k−1x) = ω. Then CM (k−1x) = ω, for some k > 0. Thus, for each n ∈

{1, 2, ...., ω}, k−1x ∈Mn, i.e., Mn is absorbing.
Conversely, suppose that for each n ∈ {1, 2, ...., ω}, Mn is absorbing. Then for

x ∈ X,n ∈ {1, 2, ...., ω}, there exists kn > 0, such that k−1n x ∈Mn. Thus
Sup
k>0

CM (k−1x) = ω, i.e., Sup
k>0

CkM (x) = C ∪
k>0

kM (x) = ω.

So M is absorbing. �

Proposition 6.5. Let M,M ′ ∈ [X]ω and N ∈ [Y ]ω.
(1) If M is a convex (balanced), f(M) is a convex (balanced) multiset in [Y ]ω.
(2) If N is a convex (balanced or absorbing), f−1(N) is a convex (balanced or

absorbing) in [X]ω.
(3) If M,M ′ are convex (balanced), then M +M ′ ∈ [X]ω is convex (balanced).

Proposition 6.6. If {Mi ∈ [X]ω, i ∈ I} is convex (balanced), then ∩
i∈I
Mi is also so.

Definition 6.7. Let M be a multiset in [X]ω. The convex (balanced) hull of M is
the intersection of all convex (balanced) sets in [X]ω which contains M.

Proposition 6.8. Let M ∈ [X]ω. Then the balanced hull of M is the multiset
∪
|λ|≤1

λM.
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Proof. The multiset N = ∪
|λ|≤1

λM is contained in any balanced multiset which

contains M . Since N ⊇ M, it suffices to show that N is balanced. Let a ∈ K,
| a |≤ 1 and x ∈ X. Then

CN (x) = sup
|λ|≤1

CλM (x) ≤ sup
|λ|≤1

CaλM (ax)

≤ sup
|aλ|≤1

CaλM (ax)

≤ sup
|λ|≤1

CλM (ax) = CN (ax).

Thus aN ⊆ N, by Proposition 3.5. So N is balanced. �

7. conclusion

In our future study, we have a plan to develop further properties of multi vector
space. Introduction of the concept of multi topological vector space is also another
future plan.

Acknowledgements. The authors express their sincere thanks to the anony-
mous referees for their valuable and constructive suggestions which have improved
the presentation. The authors are also thankful to the Editors-in-Chief and the
Managing Editors for their valuable advice.

The research of the 1st author is supported by UGC (University Grants Commis-
sion), India under JRF(Junior Research Fellowship). The research of the 2nd author
is partially supported by the Special Assistance Programme (SAP) of UGC, New
Delhi, India [Grant No. F 510/3/DRS-III/2015 (SAP -I)]

References

[1] K. V. Babitha and S. J. John, On soft multi sets, Ann. Fuzzy Math. Inform. 5 (1) (2013)

35–44.
[2] W. D. Blizard, Multiset Theory, Notre Dame Journal Formal Logic 30 (1) (1989) 36–66.

[3] W. D. Blizard, The development of multiset theory, Modern Logic 1 (4) (1991) 319–352.

[4] N. G. De Bruijin, Denumerations of rooted trees and multisets, Discrete Appl. Math. 6 (1)
(1983) 25–33.

[5] K. Chakraborty, R. Biswas and S. Nanda, On Yager’s theory of bags and fuzzy bags, Comput.

Artificial Intelligence 18 (1) (1999) 1–17.
[6] S. Das, P. Majumdar and S. K. Samanta, On soft linear spaces and soft normed linear spaces,

Ann. Fuzzy Math. Inform. 9 (1) (2015) 91–109.
[7] M. Delgado, M. D. Ruiz and D. Sanchez, Pattern extraction from bag data bases, Internat. J.

Uncertain. Fuzziness Knowledge-Based Systems 16 (2008) 475–494.

[8] K. P. Girish and S. J. John, General relations between partially ordered multisets their chains
and antichains, Mathematical Communications 142 (2009) 193–205.

[9] K. P. Girish and S. J. John, Multisets topology induced by multiset relations, Information
Sciences 188 (2012) 298–313.

[10] K. P. Girish and S. J. John, On multiset topologies, Theory and Applications of mathematics

& Computer Science 2 (1) (2012) 37–52.

[11] J. L. Hickman, A note on the concept of multiset, A Bulletin of the Australian Mathematical
Society 22 (2) (1980) 211–217.

[12] A. M. Ibrahim and J. A. Awolola, A. J. Alkali, An extension of the concept of n-level sets to
multisets, Ann. Fuzzy Math. Inform. 11 (6) (2016) 855–862.

[13] S. P. Jena, S. K. Ghosh and B. K. Tripathy, On the theory of bag and list, Inform. Sci. 132

(2001) 241–254.

561



Moumita Chiney et al./Ann. Fuzzy Math. Inform. 13 (2017), No. 5, 553–562

[14] A. Kandil, O. A. Tantaway, S. A. El-Sheikh and Amr Zakaria, Multiset proximity spaces,
Journal of Egyptian Mathematical Society 24 (4) (2016) 562–567.

[15] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J.
Math. Anal. Appl. 58 (1977) 135–146.

[16] D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi numerical Algorithms, Adison-

Wesley 1981.
[17] G. P. Monro, The concept of multiset, Zeitrlehr. f. math. Logik und Grundlagen d. Math.,

Sydney, Australia 33 (1987) 171–178.

[18] Sk. Nazmul, P. Majumdar and S. K. Samanta, On multisets and multigroups, Ann. Fuzzy
Math. Inform. 6 (3) (2013) 643–656.

[19] Sk. Nazmul, S. K. Samanta, On soft multigroups, Ann. Fuzzy Math. Inform. 10 (2) (2015)

271–285.
[20] D. Singh and J. N. Singh, Some combinatorics of multisets. International Journal of Mathe-

matical Education in Science and Technology 34 (4) (2003) 489–499.

[21] D. Singh, A . M. Ibrahim, T. Yohanna and J . N. Singh, An overview of the application of
multisets, Novisadjournal of Mathematics 33 (2) (2007) 73–92.

[22] A. Syropoulos, Mathematics of multisets, Proceedings of the workshop on Multiset processing,
Lecture Notes in Computer Science 2235 (2001) 347–358.

[23] R . R. Yager, On the theory of bags, Int. J. of Gen. Systems 13 (1) (1986) 23–27.

[24] A. Zakaria, Note on multiset topologies, Ann. Fuzzy Math. Inform. 10 (5) (2015) 825–827.

Moumita Chiney (moumi.chiney@gmail.com)
Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, In-
dia

S. K. Samanta (syamal 123@yahoo.co.in)
Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, In-
dia

562


	 Multi vector space. By 

