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Abstract. In this paper, we have obtained a few results on fuzzy
boundedness of linear operators on Felbin’s fuzzy normed linear spaces.
The main result of this paper is an extension theorem for a strongly
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1. Introduction

Based on the work of Kaleva and Seikkala in [6] on fuzzy metric space, Felbin
[3] introduced fuzzy normed linear spaces. With this notion of fuzzy norm, fuzzy
analogous of several classical concepts of normed linear spaces have been established
[2, 4, 9, 10, 11, 14]. In [4], Felbin introduced the notion of fuzzy bounded linear
operators over fuzzy normed linear spaces and defined the “fuzzy norm” for such an
operator. Later these definitions were proved to be erroneous by Bag and Samanta
[1]. They subsequently introduced a new definition of a fuzzy bounded linear oper-
ator and “fuzzy norm” for such an operator. Further, Xiao and Zhu [12, 13] and Ji,
Qi and Wei [5] considered Felbin’s type fuzzy norm in its general form for the study
of linear operators.

In this paper, we present the notion of an extension and the inverse of a linear
operator in Felbin’s fuzzy normed linear space. Some results on fuzzy boundedness
of linear operators have also been established. We have obtained generalized results
using the more general right norm R; instead of the standard right and left norms.
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2. Preliminaries

Throughout the paper, we denote the set of all real numbers by R and set of all
positive real numbers by R+.

In this paper we have considered fuzzy real numbers (fuzzy intervals) in the sense
of Xiao and Zhu [14] (slightly different from [3]), as follows:

Definition 2.1 ([14], Xiao and Zhu). A mapping η : R → [0, 1] is called a fuzzy
real number (fuzzy interval), whose α-level set is denoted by [η]α = {t : η(t) ≥ α},
if it satisfies the following:

(N1) There exists t◦ ∈ R such that η(t◦) = 1,
(N2) for each α ∈ (0, 1]; [η]α = [η−α , η

+
α ], where −∞ < η−α ≤ η+α < +∞.

The set of all fuzzy real numbers (fuzzy intervals) is denoted by F . Since to each
r ∈ R, one can consider r̄ ∈ F defined by r̄(t) = 1, if t = r and r̄(t) = 0 if t 6= r, R
can be embedded in F .

Further, η is called convex, if η(t) ≥ min(η(s), η(r)), where s ≤ t ≤ r.
If there exists a t◦ ∈ R such that η(t◦) = 1, then η is called normal.

Definition 2.2 ([14], Xiao and Zhu). Let η ∈ F . Then η is called a positive fuzzy
real number (fuzzy interval), if η(t) = 0 ∀t < 0. The set of all positive fuzzy real
numbers (fuzzy intervals) is denoted by F+.

Remark 2.3. As η ∈ F+ is upper semicontinuous, it follows that η(t) = 0, ∀t ≤ 0.

A partial ordering “ � ” in F is defined by η � δ if and only if a1α ≤ a2α and
b1α ≤ b2α, for all α ∈ (0, 1], where [η]α = [a1α, b

1
α] and [δ]α = [a2α, b

2
α] [3]. The strict

inequality in F is defined by η ≺ δ if and only if a1α < a2α and b1α < b2α for each
α ∈ (0, 1].

For η ∈ F and δ(> 0̄) ∈ F+,

(η � δ)(t) = sup
s∈R

min{η(st), δ(s)}, t ∈ R.

From [3], we have the following result:

Proposition 2.4. Let η, δ ∈ F and [η]α = [a1α, b
1
α], [δ]α = [a2α, b

2
α], α ∈ (0, 1]. Then

(1) [η ⊕ δ]α = [a1α + a2α, b
1
α + b2α],

(2) [η 	 δ]α = [a1α − b2α, b1α − a2α],
(3) [η � δ]α = [a1αa

2
α, b

1
αb

2
α],

(4) [1̄� δ]α = [ 1
b2α
, 1
a2α

], a2α > 0,∀α ∈ (0, 1].

The arithmetic operations ⊕, 	 and � in F are defined as in [8].
We shall require the following result on fuzzy real numbers (fuzzy intervals).

Proposition 2.5. [1] Let {[aα, bα];α ∈ (0, 1]} be a family of nested bounded closed
intervals. Let the function η : R → [0, 1] be defined by η(t) =

∨
{α ∈ (0, 1] : t ∈

[aα, bα]}. Then η is a fuzzy real number (fuzzy interval). α- level sets of η are
denoted by [η]α = [η−α , η

+
α ], α ∈ (0, 1].

Here η is the fuzzy real number generated by the family of nested bounded closed
intervals {[aα, bα];α ∈ (0, 1]}.

Following is the definition of fuzzy norm on a linear space as given by Xiao and
Zhu [14]:
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Definition 2.6. Let X be a vector space over R and the mappings L,R(respectively
left norm and right norm): [0, 1] × [0, 1] −→ [0, 1] be symmetric, non decreasing in
both arguments and satisfying L(0, 0) = 0 and R(1, 1) = 1. Let ‖ . ‖ a mapping
from X into F+. Write

[‖ x ‖]α = [‖ x ‖1α, ‖ x ‖2α], for x ∈ X, 0 < α ≤ 1.
Then the quadruple (X, ‖ . ‖, L,R) is called a fuzzy normed linear space (briefly,
FNS) and ‖ . ‖ is a fuzzy norm, if the following axioms are satisfied:

(F1) ‖ x ‖= 0̄ if and only if x = θ, θ is the zero element of X,
(F2) ‖ rx ‖=| r |‖ x ‖, x ∈ X, r ∈ R,
(F3) for all x, y ∈ X,

(F3L) ‖ x+ y ‖ (s+ t) ≥ L(‖ x ‖ (s), ‖ y ‖ (t))
whenever s ≤‖ x ‖11, t ≤‖ x ‖11 and s+ t ≤‖ x+ y ‖11,
(F3R) ‖ x+ y ‖ (s+ t) ≤ R(‖ x ‖ (s), ‖ y ‖ (t))
whenever s ≥‖ x ‖11, t ≥‖ x ‖11 and s+ t ≥‖ x+ y ‖11.

Remark 2.7. Felbin [3] proved that if L =
∧

(Min) and R =
∨

(Max), then the
triangular inequality (F3) in Definition 2.6 is equivalent to

‖ x+ y ‖�‖ x ‖ ⊕ ‖ y ‖ .

In this case, ‖‖iα; i = 1, 2 are crisp norms on X for each α ∈ (0, 1].
In our further discussion we will use the definitions of convergence of a sequence,

Cauchy sequence and also of a complete fuzzy normed linear space as given in [3]
and [14] maintaining their respective notations as far as possible.

Let (X, ‖‖) and (Y, ‖‖∼) be two fuzzy normed linear spaces and T : X → Y be a
linear operator. Then we have the following definitions and results from [1].

Definition 2.8. T : X → Y is said to be strongly fuzzy bounded, if there exists a
real number k > 0 such that

‖ Tx ‖∼ � ‖ x ‖� k̄,∀x( 6= θ) ∈ X.

Definition 2.9. T : X → Y is said to be weakly fuzzy bounded, if there exists a
fuzzy interval η ∈ F+, η > 0̄ such that

‖ Tx ‖∼ � ‖ x ‖� η,∀x( 6= θ) ∈ X.

Remark 2.10. Bag and Samanta [1] proved with a suitable example that a strongly
fuzzy bounded linear operator is weakly fuzzy bounded but not conversely (Example
4.2 of [1]).

In [1], Bag and Samanta defined the fuzzy norm ‖ T ‖∗ of a linear operator T
from a fuzzy normed linear space X to fuzzy normed linear space Y .

The fuzzy norm ‖ T ‖∗: R→ [0, 1] is a function defined as:

‖ T ‖∗ (t) =
∨
{α ∈ (0, 1] : t ∈ [‖ T ‖∗1α , ‖ T ‖∗2α ]},

where

‖ T ‖∗1α = sup
x∈X
x 6=θ

‖ Tx ‖∼1α
‖ x ‖2α

and ‖ T ‖∗2α = sup
x∈X
x 6=θ

‖ Tx ‖∼2α
‖ x ‖1α

.

Then the fuzzy norm ‖ T ‖∗ is generated by the family of nested bounded closed
intervals {[‖ T ‖∗1α , ‖ T ‖∗2α ] : α ∈ (0, 1]}.
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Xiao and Zhu [14] gave the following definitions considering a right norm R which
is more general.

Definition 2.11 ([14], Xiao and Zhu). Let (X, ‖‖, L,R) be an fuzzy normed linear
space, lim

a→0+
R(a, a) = 0, A ⊆ X,x◦ ∈ X. x◦ is called a point of closure of A if

{x◦+N(α, α)}∩A 6= φ for every α ∈ (0, 1]; Ā denotes the set of all points of closure
of A. A is called fuzzy closed, if Ā = A. A is called a fuzzy bounded set if for each
α ∈ (0, 1] there exists M = M(α) > 0 such that A ⊆ N(M,α).

Lemma 2.12 ([14], Xiao and Zhu). Let (X, ‖ . ‖, L,R) be an fuzzy normed linear
space, lim

a→0+
R(a, a) = 0. Then

(1) A ⊆ X, x ∈ Ā if and only if there exists {xn}∞n=1 ⊆ A such that lim
n→∞

xn = x,

(2) {xn} ⊆ X is a Cauchy sequence if and only if for each α ∈ (0, 1] there is
K ∈ Z+ such that xm − xn ∈ N(α, α), for all m,n ≥ K,

(3) A ⊆ X is fuzzy bounded if and only if lim
n→∞

xn/n = θ, for arbitrary {xn}∞n=1 ⊆
A.

Lemma 2.13 ([14], Xiao and Zhu). Let (X, ‖ . ‖, L,R) be a fuzzy normed linear
space, lim

a→0+
R(a, a) = 0. Then (F3R) ⇒ for each α ∈ (0, 1], there is α◦ ∈ (0, α] such

that ‖ x+ y ‖2α≤‖ x ‖2α◦
+ ‖ y ‖2α◦

, for each x, y ∈ X.

3. Main results

3.1. Extension of a linear operator. In this section we introduce an extension
of a linear operator in fuzzy normed linear spaces and prove a boundedness result
for the extension operator. The definitions of range space and null space of a linear
operator are considered as in Kreiszig [7].

Definition 3.1. Let T : (X, ‖‖, L,R) → (Y, ‖‖∼, L,R) be a linear operator. The
restriction of the operator T to a subset A of X is denoted by T |A and is defined
by

T |A: A→ Y , T |A (x) = Tx,∀x ∈ A.

Definition 3.2. An extension of T from M ⊂ X to X is an operator T̃ : X → Y

such that T̃ |M= T, i.e., T̃ (x) = T (x), ∀x ∈M.

Theorem 3.3. Let T : D → Y be a strongly fuzzy bounded linear operator, where
D denotes the domain of the linear operator T that lies in the fuzzy normed lin-
ear space (X, ‖‖, L,R) and (Y, ‖‖∼, L,R) a complete fuzzy normed linear space with

lim
a→0+

R(a, a) = 0. Then T has an extension T̃ : D → Y such that T̃ is strongly fuzzy

bounded linear operator of fuzzy norm ‖ T̃ ‖∗=‖ T ‖∗ .

Proof. Consider any x ∈ D. By Lemma 2.12(1), there exists a sequence (xn) in D
such that lim

n→∞
xn = x. Since T is a strongly fuzzy bounded linear operator,

∃k ∈ R+ such that ‖ Tx ‖∼ � ‖ x ‖� k̄, for all x ∈ X.
In particular, we have ‖ Txm − Txn ‖∼ � ‖ xm − xn ‖� k̄. This gives
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‖Txm−Txn‖∼1
α

‖xm−xn‖2α
≤ k and

‖Txm−Txn‖∼2
α

‖xm−xn‖1α
≤ k

Since (xn) converges, (xn) is Cauchy. and then,

lim
n,m→∞

‖ xm − xn ‖2α= lim
n,m→∞

‖ xm − xn ‖1α= 0.

Thus we get lim
n,m→∞

‖ Txm− Txn ‖∼2α = 0. So (Txn) is a Cauchy sequence in Y . As

Y is complete, (Txn) converges.

Let Txn → y with y ∈ Y . Define T̃ : D → Y as T̃ x = y for x ∈ D. Also since
(xn) is a sequence in D ⊆ X, for all n,

‖ Txn ‖∼1α ≤ k ‖ xn ‖2α .

Now,

‖ T̃ x ‖∼1α = ‖ y ‖∼1α =‖ lim
n→∞

Txn ‖∼1α = lim
n→∞

‖ Txn ‖∼1α

≤ k lim
n→∞

‖ xn ‖2α= k ‖ lim
n→∞

xn ‖2α

= k ‖ x ‖2α,

i.e.,
‖T̃ x‖∼1

α

‖x‖2α
≤ k. In the same way, it can be proved that

‖T̃ x‖∼2
α

‖x‖1α
≤ k.

Then ‖ T̃ x ‖∼ � ‖ x ‖� k̄. Thus T̃ is strongly fuzzy bounded.

Next we shall show ‖ T ‖∗=‖ T̃ ‖∗.
For x ∈ D, Tx = T̃ x gives ‖ T ‖∗=‖ T̃ ‖∗.
For x ∈ D −D, there exists a sequence (xn) in D such that limn→∞ xn = x. For

all such x ∈ D −D,

‖ T̃ ‖∗1α = sup
x

‖ T̃ x ‖∼1α
‖ x ‖2α

= sup
x

‖ lim
n→∞

Txn ‖∼1α
‖ x ‖2α

= sup
x

‖ T ( lim
n→∞

xn) ‖∼1α
‖ x ‖2α

= sup
x

‖ Tx ‖∼1α
‖ x ‖2α

.

Which finally gives ‖ T̃ ‖∗1α =‖ T ‖∗1α . In the similar way, it can be shown that

‖ T̃ ‖∗2α =‖ T ‖∗2α .

Then the two families
{[‖ T ‖∗1α , ‖ T ‖∗2α ] : 0 < α ≤ 1} and {[‖ T̃ ‖∗1α , ‖ T̃ ‖∗2α ] : 0 < α ≤ 1}

are the same. Thus the fuzzy numbers generated by these two families are also the
same (using Proposition 2.5).

So ‖ T ‖∗=‖ T̃ ‖∗ . �

Example 3.4. Consider X = Y = R, the linear space of all real numbers and
L = min and R = max. Define the fuzzy norms ‖ . ‖ and ‖ . ‖∼ on R as follows:

‖ x ‖ (t) =


|x|
t if | x |< t,

1 if | x |= t = 0,
0 otherwise,
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‖ x ‖∼ (t) =

{
1 if | x |= t,
0 otherwise.

Then the α-level sets of ‖ x ‖ and ‖ x ‖∼ are given by

[‖ x ‖]α = [| x |, | x |
α

]

and

[‖ x ‖]∼α = [| x |, | x |].
Define a mapping T : D → X, D = (−1, 1) as Tx = x, ∀x ∈ D. Clearly T is linear

and strongly fuzzy bounded. For

(3.4.1)
‖ Tx ‖∼1α
‖ x ‖2α

=
| x |
|x|
α

= α ≤ 1,∀x 6= θ ∈ D

and

(3.4.2)
‖ Tx ‖∼2α
‖ x ‖1α

=
| x |
| x |

= 1,∀x( 6= θ) ∈ D.

From (3.4.1) and (3.4.2), ‖ Tx ‖∼ � ‖ x ‖� 1̄, ∀x(6= θ) ∈ D. Then T is strongly
fuzzy bounded.
As R = max satisfies lim

a→0+
R(a, a) = 0, using Lemma 2.12, we get D = [−1, 1].

Now define a function T̃ : D → Y as follows:

T̃ x =


−1 if x = −1,
1 if x = 1,
Tx if x(6= −1, 1) ∈ D.

Then T̃ |D= T and such T̃ is an extension of T .
Also,

‖ T ‖∗1α = sup
x(6=θ)∈D

‖ Tx ‖∼1α
‖ x ‖2α

= sup
x( 6=θ)∈D

| x |
|x|
α

= α ≤ 1,

‖ T ‖∗2α = sup
x(6=θ)∈D

‖ Tx ‖∼2α
‖ x ‖1α

= sup
x(6=θ)∈D

| x |
| x |

= 1,

‖ T̃ ‖∗1α = sup
x(6=θ)∈D

‖ T̃ x ‖∼1α
‖ x ‖2α

= max{‖ T̃ (−1) ‖∼1α
‖ (−1) ‖2α

,
‖ T̃ (1) ‖∼1α
‖ (1) ‖2α

, sup
x∈D−{−1,1}

‖ T̃ x ‖∼1α
‖ x ‖2α

}

= max{ | (−1) |
(−1)
α

,
| 1 |
|1|
α

, ‖ T ‖∗1α } = max{α, α, α} = α ≤ 1

and

‖ T̃ ‖∗2α = sup
x(6=θ)∈X

‖ T̃ x ‖∼2α
‖ x ‖1α

= max{‖ T̃ (−1) ‖∼2α
‖ (−1) ‖1α

,
‖ T̃ (1) ‖∼2α
‖ (1) ‖1α

, sup
x∈D−{−1,1}

‖ T̃ x ‖∼2α
‖ x ‖1α

}

= max{ | (−1) |
| (−1) |

,
| 1 |
| 1 |

, ‖ T ‖∗2α } = max{1, 1, 1} = 1.

Thus we have ‖ T ‖∗1α =‖ T̃ ‖∗1α and ‖ T ‖∗2α =‖ T̃ ‖∗2α . So, the fuzzy real numbers

‖ T ‖∗ and ‖ T̃ ‖∗ generated by the families of closed intervals
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{[‖ T ‖∗1α , ‖ T ‖∗2α ], α ∈ (0, 1]} and {[‖ T̃ ‖∗1α , ‖ T̃ ‖∗2α ], α ∈ (0, 1]},
respectively are the same, i.e., ‖ T ‖∗=‖ T̃ ‖∗ .

3.2. Inverse of a linear operator. In this section we define the inverse of a linear
operator on fuzzy normed linear space. An existence theorem is established.

Definition 3.5. Let (X, ‖‖, L,R) and (Y, ‖‖∼, L,R) be fuzzy normed linear space
and T be a linear operator from X to Y . Let R(T ) and N (T ) be the range space
and null space of T , respectively. If T is bijective, then T−1 exists and for A ⊆ Y ,

T−1[A ∩R(T )] = {x ∈ X : Tx ∈ A}.

First we prove the following lemma.

Lemma 3.6. Let T be a strongly fuzzy bounded linear operator from a fuzzy normed
linear space (X, ‖‖, L,R) to a fuzzy normed linear space (Y, ‖‖∼, L,R).

(1) If lim
n→∞

xn = x, then lim
n→∞

Txn = Tx.

In this case T is called continuous [14].
(2) If lim

a→0+
R(a, a) = 0, Then the null space N (T ) of T is fuzzy closed.

Proof. (1) Suppose lim
n→∞

xn = x. Then lim
n→∞

‖ xn − x ‖1α= lim
n→∞

‖ xn − x ‖2α= 0.

Here ‖ T ‖∗2α = sup
xn−x 6=0

‖ Txn − Tx ‖∼2α
‖ xn − x ‖1α

. Thus ‖ Txn−Tx ‖∼2α ≤‖ T ‖∗2α ‖ xn−x ‖1α .

So we have lim
n→∞

‖ Txn − Tx ‖∼2α = 0. Hence lim
n→∞

Txn = Tx.

(2) Let x ∈ N (T ). Then by Lemma 2.12 (1), there exists a sequence (xn) in
N (T ) such that lim

n→∞
xn = x. Using (1), we get lim

n→∞
Txn = Tx. Also for each n,

Txn = 0. ThusTx = 0. So x ∈ N (T ). Hence N (T ) is fuzzy closed. �

Theorem 3.7. Let T be a strongly fuzzy bounded linear operator from a complete
fuzzy normed linear space (X, ‖‖, L,R) to a fuzzy normed linear space (Y, ‖‖∼, L,R)
with lim

a→0+
R(a, a) = 0. Suppose that for some c > 0, ‖ Tx ‖∼ � ‖ x ‖� c̄, ∀x ∈ X.

Then the range R(T ) of T is fuzzy closed. Further if R(T ) = Y , then T is invertible
and ‖ T−1 ‖∗2α ≤ 1

c .

Proof. Let (yn) be a sequence in R(T ) and lim
n→∞

yn = y. Then corresponding to

each yn, there is a xn in X such that Txn = yn. Thus lim
n→∞

Txn = y. Using the

given hypothesis, we get

‖ Txn ‖∼ � ‖ xn ‖� c̄,
i.e.,

‖ Txn ‖∼2α ≥ c ‖ xn ‖1α and ‖ Txn ‖∼1α ≥ c ‖ xn ‖2α.
As (Txn) converges, it is a Cauchy sequence. Using the above inequality, we get

c ‖ xm − xn ‖2α≤‖ Txm − Txn ‖∼1α ≤‖ Txm − Txn ‖∼2α ,

which implies lim
m,n→∞

‖ xm − xn ‖2α= 0. So (xn) is Cauchy. As X is complete, (xn)

converges in X.
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Let lim
n→∞

xn = x, x ∈ X. As T is strongly fuzzy bounded, using Lemma 3.6 (1),

we have lim
n→∞

Txn = Tx. Then we finally obtain Tx = y. Thus y ∈ R(T ). So R(T )

is fuzzy closed.
Let us show the second part.
If R(T ) = Y , then obviously T is onto.
Let us assume that x1 6= x2, x1, x2 ∈ X. Then it follows from given hypothesis

that
‖ Tx1 ‖∼1α 6=‖ Tx2 ‖∼1α and ‖ Tx1 ‖∼2α 6=‖ Tx2 ‖∼2α .

Thus Tx1 6= Tx2. So T is one-one. Hence T is invertible.
Let T−1 be the inverse of T . Then We have

‖ T−1 ‖2∗α = sup
x∈Y,x6=θ

‖ T−1x ‖2α
‖ x ‖∼1α

.

For x ∈ Y, x 6= θ, let T−1x = y ∈ X, i.e., Ty = x. Applying ‖ Ty ‖∼ � ‖ y ‖� c̄, it
can be obtained that

‖ Ty ‖∼1α
‖ y ‖2α

≥ c⇒‖ y ‖2α≤ c−1 ‖ Ty ‖∼1α ⇒‖ T−1x ‖2α≤ c−1 ‖ x ‖∼1α .

Since x is arbitrary, sup
x∈Y,x6=θ

‖ T−1x ‖2α
‖ x ‖∼1α

≤ c−1. Thus ‖ T−1 ‖2∗α ≤ c−1. �

Corollary 3.8. Let T : D → Y be a weakly fuzzy bounded linear operator from
the domain D that lies in a fuzzy normed linear space (X, ‖‖, L,R) to the complete
fuzzy normed linear space (Y, ‖‖∼, L,R) where lim

a→0+
R(a, a) = 0. Then T has an

extension T̃ : D → Y such that T̃ is weakly fuzzy bounded linear operator of fuzzy

norm ‖ T̃ ‖∗=‖ T ‖∗ .

Corollary 3.9. Let T be a weakly fuzzy bounded linear operator from a fuzzy normed
linear space (X, ‖‖, L,R) to a fuzzy normed linear space (Y, ‖‖∼, L,R).

(1) If lim
n→∞

xn = x, then lim
n→∞

Txn = Tx.

(2) If lim
a→0+

R(a, a) = 0, Then the null space N (T ) of T is fuzzy closed.

Corollary 3.10. Let T be a weakly fuzzy bounded linear operator from a complete
fuzzy normed linear space (X, ‖‖, L,R) to a fuzzy normed linear space (Y, ‖‖∼, L,R)
with lim

a→0+
R(a, a) = 0. Suppose that for some C � 0̄ in F , ‖ Tx ‖∼ � ‖ x ‖� C.

Then the range R(T ) of T is fuzzy closed. Furthermore, if R(T ) = Y , then T is
invertible and ‖ T−1 ‖∗2α ≤ 1

C2α
.

The proofs of the above corollaries are same as in Theorem 3.3, Lemma 3.6 and
Theorem 3.7 using Remark 2.10.

Remark 3.11. In connection to our Lemma 3.6 and Corollary 3.9, we show that
the converse is not true in general, i.e., a continuous linear operator need not always
be weakly fuzzy bounded and hence not strongly fuzzy bounded.

Example 3.12. Let X be a vector space over R and B = {ei}∞i=1 a basis for
X(dimX = ∞). With L = min and R = max, let us define the fuzzy norms on X
as follows:
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‖ x ‖◦ (t) =

 1, if t =

n∑
i=1

| ai |

0, otherwise

and

‖ x ‖ (t) =



n∑
i=1

| ai |
ti

, if

n∑
i=1

| ai |≤ t,

1, if t =

n∑
i=1

| ai |=0,

0, otherwise,

where x =

n∑
i=1

aiei. Then the α-level sets of ‖ . ‖◦ and ‖ . ‖ are

[‖ x ‖◦]α = [

n∑
i=1

| ai |,
n∑
i=1

| ai |] and [‖ x ‖]α = [

n∑
i=1

| ai |,
n∑
i=1

| ai |
αi

].

Let T : (X, ‖ . ‖) → (X, ‖ . ‖◦) be a linear operator defined by Ten = nen for
each en ∈ B.

(i) T is fuzzy norm continuous: Let {xn} be a sequence in (X, ‖ . ‖) such that

xn → 0 and let xn =

kn∑
i=1

aniei. Then Txn =

kn∑
i=1

ianiei. Thus ‖ Txn ‖2◦α=

kn∑
i=1

|

anii |, for all α ∈ (0, 1].
Let β < 1. Then we have

‖ Txn ‖2◦α=

kn∑
i=1

| anii |=
kn∑
i=1

i | ani |≤
kn∑
i=1

1

βi
| ani |=‖ xn ‖2β .

As xn → 0, ‖ xn ‖2β→ 0, for all β ∈ (0, 1]. Thus it gives ‖ Txn ‖2◦α→ 0, for all

α ∈ (0, 1]. So T is fuzzy norm continuous.
(ii) T is not weakly fuzzy bounded: Let T be weakly fuzzy bounded. Then there

exists a fuzzy real number η � 0̄ such that ‖ Tx ‖◦ � ‖ x ‖� η, for all x ∈ X. Thus
‖ Tx ‖2◦1=‖ nen ‖2◦1=| n |= n ≤ η21 ‖ en ‖21= η21 . So n ≤ η21 , for all n ∈ N. It gives
η21 =∞ which is a contradiction. Hence T is not weakly fuzzy bounded.
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