Annals of Fuzzy Mathematics and Informatics Volume 14, No. 2, (August 2017), pp. 215–223 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

# ©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

# Completely $\beta$ generalized continuous mappings in intuitionistic fuzzy topological spaces



Saranya M, Jayanthi D

Reprinted from the Annals of Fuzzy Mathematics and Informatics Vol. 14, No. 2, August 2017

Annals of Fuzzy Mathematics and Informatics Volume 14, No. 2, (August 2017), pp. 215–223 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

# Completely $\beta$ generalized continuous mappings in intuitionistic fuzzy topological spaces

Saranya M, Jayanthi D

Received 13 October 2016; Revised 18 December 2016; Accepted 12 January 2017

ABSTRACT. In this paper we introduce intuitionistic fuzzy completely  $\beta$  generalized continuous mappings. We investigate some of its properties. Also we provide some characterization of intuitionistic fuzzy completely  $\beta$  generalized continuous mappings.

2010 AMS Classification: 54A99, 03E99

Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy topology, Intuitionistic fuzzy  $\beta$  generalized T<sub>1/2</sub> space, Intuitionistic fuzzy completely  $\beta$  generalized continuous mappings.

Corresponding Author: Saranya (saranya20maths@gmail.com)

# 1. INTRODUCTION

A tanassov [1] introduced the idea of intuitionistic fuzzy sets using the notion of fuzzy sets. Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. M. Saranya and D. Jayanthi [9] introduced intuitionistic fuzzy  $\beta$  generalized continuous mappings. In this paper we introduce the notion of intuitionistic fuzzy completely  $\beta$  generalized continuous mappings and studied some of their properties. We provide some characterizations of intuitionistic fuzzy completely  $\beta$  generalized continuous mappings.

## 2. Preliminaries

**Definition 2.1** ([1]). An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \},\$$

where the functions  $\mu_A : X \to [0,1]$  and  $\nu_A : X \to [0,1]$  denote the degree of membership (namely  $\mu_A(x)$ ) and the degree of non-membership (namely  $\nu_A(x)$ ) of each element  $x \in X$  to the set A, respectively, and  $0 \le \mu_A(x) + \nu_A(x) \le 1$  for each  $x \in X$ . Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by  $A = \langle x, \mu_A, \nu_A \rangle$  instead of denoting  $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$ 

**Definition 2.2** ([1]). Let A and B be two IFSs of the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

and

$$B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle : x \in X \}.$$

Then

(i)  $A \subseteq B$  if and only if  $\mu_A(x) \leq \mu_B(x)$  and  $\nu_A(x) \geq \nu_B(x)$ , for all  $x \in X$ , (ii) A = B if and only if  $A \subseteq B$  and  $A \supseteq B$ , (iii)  $A^c = \{\langle x, \nu_A(x), \mu_A(x) \rangle : x \in X\},$ (iv)  $A \cup B = \{\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X\},$ (v)  $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X\}.$ 

The intuitionistic fuzzy sets  $0_{\sim} = \langle x, 0, 1 \rangle$  and  $1_{\sim} = \langle x, 1, 0 \rangle$  are respectively the empty set and the whole set of X.

**Definition 2.3** ([3]). An intuitionistic fuzzy topology (IFT in short) on X is a family  $\tau$  of IFSs in X satisfying the following axioms:

(i)  $0_{\sim}, 1_{\sim} \in \tau$ ,

(ii)  $G_1 \cap G_2 \in \tau$ , for any  $G_1, G_2 \in \tau$ ,

(iii)  $\bigcup G_i \in \tau$ , for any family  $\{G_i | i \in J\} \subseteq \tau$ .

In this case the pair  $(X, \tau)$  is called intuitionistic fuzzy topological space (IFTS in short) and any IFS in  $\tau$  is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement  $A^c$  of an IFOS A in an IFTS  $(X, \tau)$  is called an intuitionistic fuzzy closed set (IFCS in short) in X.

**Definition 2.4** ([7]). An IFS A in an IFTS  $(X, \tau)$  is said to be an intuitionistic fuzzy  $\beta$  generalized closed set (IF $\beta$ GCS, for short), if  $\beta$ cl(A)  $\subseteq U$ , whenever  $A \subseteq U$  and U is an IF $\beta$ OS in  $(X, \tau)$ .

**Definition 2.5** ([8]). If every IF $\beta$ GCS in  $(X, \tau)$  is an IF $\beta$ CS in  $(X, \tau)$ , then the space can be called as an intuitionistic fuzzy  $\beta$  generalized  $T_{1/2}$  space (IF $\beta_g T_{1/2}$ , in short).

**Definition 2.6** ([9]). A mapping  $f : (X, \tau) \to (Y, \sigma)$  is called an intuitionistic fuzzy  $\beta$  generalized continuous (IF $\beta$ G continuous, for short) mapping, if  $f^{-1}(V)$  is an IF $\beta$ GCS in  $(X, \tau)$ , for every IFCS V of  $(Y, \sigma)$ .

**Definition 2.7** ([5]). Let X and Y be two IFTSs. Let  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$  and  $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle : y \in Y\}$  be IFSs of X and Y, respectively. Then  $A \times B$  is an IFS of  $X \times Y$  defined by:

 $(A \times B)(x, y) = \langle (x, y), \min(\mu_A(x), \mu_B(y)), \max(\nu_A(x), \nu_B(y)) \rangle.$ 

**Definition 2.8** ([5]). Let  $f_1 : X_1 \to Y_1$  and  $f_2 : X_2 \to Y_2$ . The product  $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$  is defined by:

 $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ , for every  $(x_1, x_2) \in X_1 \times X_2$ .

**Definition 2.9** ([3]). Let X and Y be two non empty sets and  $f : X \to Y$  be a function. If  $B = \{\langle y, \mu_B(y), \nu_B(y) \rangle / y \in Y\}$  is an IFS in Y, then the preimage of B under f is denoted and defined by:

$$f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) \rangle : x \in X \},\$$

where  $f^{-1}(\mu_B)(x) = \mu_B(f(x))$ , for every  $x \in X$ .

### 3. Major Section

In this section we introduce intuitionistic fuzzy completely  $\beta$  generalized continuous mappings and study some of their properties.

**Definition 3.1.** A mapping  $f : (X, \tau) \to (Y, \sigma)$  is said to be an intuitionistic fuzzy completely  $\beta$  generalized continuous (IF completely  $\beta$ G continuous mapping, for short) mapping, if  $f^{-1}(V)$  is an IFRCS in X, for every IF $\beta$ GCS V in Y.

We use the notation  $A = \langle x, (\mu_a, \mu_b), (\nu_a, \nu_b) \rangle$  instead of  $A = \langle x, (a/\mu_a, b/\mu_b), (a/\nu_a, b/\nu_b) \rangle$  in the following examples.

The relation between various types of intuitionistic fuzzy continuity is given in the following diagram. In this diagram 'cts.' means continuous and IFcom. $\beta$ Gcts. means IF completely  $\beta$ G continuous.



The reverse implications are not true in general in the above diagram. This can be seen from the following examples.

**Example 3.2.** Let  $X = \{a, b\}, Y = \{u, v\}$  and  $G_1 = \langle x, (0.6_a, 0.8_b), (0.4_a, 0.2_b) \rangle$ ,  $G_2 = \langle y, (0.6_u, 0.8_v), (0.4_u, 0.2_v) \rangle$ . Then  $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$  are 217

IFTs on X and Y, respectively. Define a mapping  $f: (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then,

IF $\beta$ C(X) = {0, 1,  $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]$  : either  $\mu_a < 0.6$ or  $\mu_b < 0.8, 0 \le \mu_a + \nu_a \le 1$  and  $0 \le \mu_b + \nu_b \le 1$ },

IF $\beta$ O(X) = {0, 1,  $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]$  : either  $\mu_a > 0.4$ or  $\mu_b > 0.2, 0 \le \mu_a + \nu_a \le 1$  and  $0 \le \mu_b + \nu_b \le 1$ },

IF
$$\beta$$
C(Y) = {0, 1,  $\mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1] : either  $\mu_u < 0.6$   
or  $\mu_v < 0.8, 0 \le \mu_u + \nu_u \le 1$  and  $0 \le \mu_v + \nu_v \le 1$ },$ 

IF
$$\beta$$
O(Y) = {0, 1,  $\mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1]:$  either  $\mu_u > 0.4$   
or  $\mu_v > 0.2, 0 < \mu_u + \nu_u < 1$  and  $0 < \mu_v + \nu_v < 1$ }.

Then f is an IF continuous mapping, IFS continuous mapping, IFP continuous mapping, IFSP continuous mapping, IF $\beta$  continuous mapping and IF $\alpha$  continuous mapping but not an IF completely  $\beta$ G continuous mapping, since  $G_2^c$  is an IF $\beta$ GCS in Y, but  $f^{-1}(G_2^c) = \langle x, (0.4_a, 0.2_b), (0.6_a, 0.8_b) \rangle$  is not an IFRCS in X. Since  $cl(int(f^{-1}(G_2^c))) = cl(0_{\sim}) = 0_{\sim} \neq f^{-1}(G_2^c)$ . Thus f is not an IF completely  $\beta$ G continuous mapping.

**Example 3.3.** Let  $X = \{a, b\}, Y = \{u, v\}$  and  $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ ,  $G_2 = \langle y, (0.6_u, 0.7_v), (0.4_u, 0.3_v) \rangle$ . Then  $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$  are IFTs on X and Y, respectively. Define a mapping  $f : (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then

IF $\beta$ C(X) = {0, 1,  $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] : 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1$ },

 $IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] : 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},\$ 

 $IF\beta C(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1]: \text{ either } \mu_u < 0.6 \text{ or } \mu_v < 0.7, 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\},\$ 

IF $\beta$ O(Y) = {0, 1,  $\mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1]$ : either  $\mu_u > 0.4$ or  $\mu_v > 0.3, 0 \le \mu_u + \nu_u \le 1$  and  $0 \le \mu_v + \nu_v \le 1$ }.

Now  $G_2^c = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$  is an IFCS in Y. Then

$$f^{-1}(G_2^c) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle.$$

Thus we have  $\beta cl(f^{-1}(G_2^c)) = f^{-1}(G_2^c)$ . So  $f^{-1}(G_2^c) \subseteq G_1$ . Hence  $\beta cl(f^{-1}(G_2^c)) \subseteq G_1$ , where  $G_1$  is an IF $\beta$ OS in X. This implies that  $f^{-1}(G_2^c)$  is an IF $\beta$ GCS in X. Therefore f is an IF $\beta$ G continuous mapping.

Since  $G_2^c$  is an IFCS in Y, it is an IF $\beta$ GCS in Y but  $f^{-1}(G_2^c) = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$  is not an IFRCS in X, since  $cl(int(f^{-1}(G_2^c))) = cl(0_{\sim}) = 0_{\sim} \neq f^{-1}(G_2^c)$ . Then f is not an IF completely  $\beta$ G continuous mapping.

**Example 3.4.** Let  $X = \{a, b\}, Y = \{u, v\}$  and  $G_1 = \langle x, (0.8_a, 0.9_b), (0.2_a, 0.1_b) \rangle$ ,  $G_2 = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$  and  $G_3 = \langle y, (0.5_u, 0.3_v), (0.5_u, 0.7_v) \rangle$ . Then  $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, G_3, 1_{\sim}\}$  are IFTs on X and Y, respectively. Define a mapping  $f : (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then

 $IF\beta C(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] : \text{either } \mu_a < 0.6 \\ \text{or } \mu_b < 0.7, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}, \\ IF\beta O(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] : \text{either } \mu_a > 0.4 \end{cases}$ 

 $\text{if } \mathcal{PO}(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0, 1], \mu_b \in [0, 1], \nu_a \in [0, 1], \nu_b \in [0, 1] : \text{ either } \mu_a > 0.4 \\ \text{or } \mu_b > 0.3, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\},$ 

IF  $\beta$ C(Y) = {0, 1,  $\mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1]$  : either  $\mu_u < 0.5$ or  $\mu_v < 0.3, 0 \le \mu_u + \nu_u \le 1$  and  $0 \le \mu_v + \nu_v \le 1$ }, IF  $\beta$ O(Y) = {0, 1,  $\mu_u \in [0,1], \mu_v \in [0,1], \nu_u \in [0,1], \nu_v \in [0,1]$  : either  $\mu_u > 0.5$ or  $\mu_v > 0.7, 0 \le \mu_u + \nu_u \le 1$  and  $0 \le \mu_v + \nu_v \le 1$ }.

Now  $G_3^c = \langle y, (0.5_u, 0.7_v), (0.5_u, 0.3_v) \rangle$  is an IFRCS in Y, since  $cl(int(G_3^c)) = cl(G_3) = G_3^c$ . Then we have

$$f^{-1}(G_3^c) = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle \subseteq G_1$$

and

$$f^{-1}(G_3^c) = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle \subseteq G_2.$$

Thus  $\beta cl(f^{-1}(G_3^c)) = f^{-1}(G_3^c)$ . So  $\beta cl(f^{-1}(G_3^c)) \subseteq G_1$  and  $\beta cl(f^{-1}(G_3^c)) \subseteq G_2$ . Hence  $f^{-1}(G_3^c)$  is an IF $\beta$ GCS in X and thus f is an IF $\beta\beta$ G continuous mapping. Since  $C^c$  is an IFCS in V it is an IF $\beta$ CCS in V. But

Since  $G_3^c$  is an IFCS in Y, it is an IF $\beta$ GCS in Y. But

$$f^{-1}(G_3^c) = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$$

is not an IFRCS in X, since  $cl(int(f^{-1}(G_3^c))) = cl(0_{\sim}) = 0_{\sim} \neq f^{-1}(G_3^c)$ . Therefore f is not an IF completely  $\beta G$  continuous mapping.

**Theorem 3.5.** If  $f : (X, \tau) \to (Y, \sigma)$  is an IF completely  $\beta G$  continuous mapping, where X is an  $IF\beta_g T_{1/2}$  space, then  $\beta cl(f^{-1}(A)) \subseteq f^{-1}(cl(A))$ , for every  $IF\beta OS$  $A \subseteq Y$ .

*Proof.* Let A be an IF $\beta$ OS in Y. Then cl(A) is an IFRCS in Y. Thus cl(A) is an IF $\beta$ GCS in Y. By hypothesis,  $f^{-1}(cl(A))$  is an IFRCS in X. So it is an IF $\beta$ CS in X. Hence  $\beta cl(f^{-1}(A)) \subseteq \beta cl(f^{-1}(cl(A))) = f^{-1}(cl(A))$ .

**Theorem 3.6.** Let  $f : (X, \tau) \to (Y, \sigma)$  be a mapping. Then the following are equivalent:

- (1) f is an IF completely  $\beta G$  continuous mapping,
- (2)  $f^{-1}(V)$  is an IFROS in X, for every IF $\beta$ GOS V in Y,

(3) for every IFP  $p_{(\alpha,\beta)} \in X$  and for every IF $\beta$ GOS B in Y such that  $f(p_{(\alpha,\beta)}) \in B$ , there exists an IFROS in X such that  $p_{(\alpha,\beta)} \in A$  and  $f(A) \subseteq B$ .

*Proof.* (1)  $\Leftrightarrow$  (2) is obvious.

 $(2) \Rightarrow (3)$ : Let  $p_{(\alpha,\beta)} \in X$  and  $B \subseteq Y$  such that  $f(p_{(\alpha,\beta)}) \in B$ . Then  $p_{(\alpha,\beta)} \in f^{-1}(B)$ . Since B is an IF $\beta$ GOS in Y, by hypothesis,  $f^{-1}(B)$  is an IFROS in X. Let  $A = f^{-1}(B)$ . Then  $p_{(\alpha,\beta)} \subseteq f^{-1}(f(p_{(\alpha,\beta)})) \in f^{-1}(B) = A$ . Thus  $p_{(\alpha,\beta)} \in A$  and  $f(A) = f(f^{-1}(B)) \subseteq B$ . So  $f(A) \subseteq B$ .

(3)  $\Rightarrow$  (1): Let  $B \subseteq Y$  be an IF $\beta$ GOS. Let  $p_{(\alpha,\beta)} \in X$  and  $f(p_{(\alpha,\beta)}) \in B$ . Then by hypothesis, there exists an IFROS C in X such that  $p_{(\alpha,\beta)} \in C$  and  $f(C) \subseteq B$ . Thus  $C \subseteq f^{-1}(f(C)) \subseteq f^{-1}(B)$ . So  $p_{(\alpha,\beta)} \in C \subseteq f^{-1}(B)$ . Hence

$$f^{-1}(B) = \bigcup_{p_{(\alpha,\beta)} \in f^{-1}(B)p_{(\alpha,\beta)}} \subseteq \bigcup_{p_{(\alpha,\beta)} \in f^{-1}(B)} C \subseteq f^{-1}(B).$$

This implies  $f^{-1}(B) = \bigcup_{p_{(\alpha,\beta)} \in f^{-1}(B)} C$ . Since the union IFROSs is IFRO,  $f^{-1}(B)$  is an IFROS in X. Therefore f is an IF completely  $\beta G$  continuous mapping.  $\Box$ 

**Theorem 3.7.** If a mapping  $f: (X, \tau) \to (Y, \sigma)$  is an IF completely  $\beta G$  continuous mapping then for every IFP  $p_{(\alpha,\beta)} \in X$  and for every IFN [11] A of  $f(p_{(\alpha,\beta)})$ , there exists an IFROS  $B \subseteq X$  such that  $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$ .

Proof. Let  $p_{(\alpha,\beta)} \in X$  and let A be an IFN of  $f(p_{(\alpha,\beta)})$ . Then there exists an IFOS C in Y such that  $f(p_{(\alpha,\beta)}) \in C \subseteq A$ . Since every IFOS is an IF $\beta$ GOS, C is an IF $\beta$ GOS in Y. Thus by hypothesis,  $f^{-1}(C)$  is an IFROS in X and  $p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \subseteq f^{-1}(C) \subseteq f^{-1}(A)$ . So  $p_{(\alpha,\beta)} \in f^{-1}(C)$ . Now let  $f^{-1}(C) = B$ . Then  $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$ .

**Theorem 3.8.** A mapping  $f: (X, \tau) \to (Y, \sigma)$  is an IF completely  $\beta G$  continuous mapping then for every IFP  $p_{(\alpha,\beta)} \in X$  and for every IFN A of  $f(p_{(\alpha,\beta)})$ , there exists an IFROS  $B \subseteq X$  such that  $p_{(\alpha,\beta)} \in B$  and  $f(B) \subseteq A$ .

Proof. Let  $p_{(\alpha,\beta)} \in X$  and let A be an IFN of  $f(p_{(\alpha,\beta)})$ . Then there exists an IFOS C in Y such that  $f(p_{(\alpha,\beta)}) \in C \subseteq A$ . Since every IFOS is an IF $\beta$ GOS, C is an IF $\beta$ GOS in Y. Thus by hypothesis,  $f^{-1}(C)$  is an IFROS in X and  $p_{(\alpha,\beta)} \in f^{-1}(C)$ . Now let  $f^{-1}(C) = B$ . Then  $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$ . Thus  $f(B) \subseteq f(f^{-1}(A)) \subseteq A$ .

**Theorem 3.9.** A mapping  $f: (X, \tau) \to (Y, \sigma)$  is an IF completely  $\beta G$  continuous mapping then  $int(cl(f^{-1}(int(B)))) \subseteq f^{-1}(B))$ , for every IFS B in Y.

*Proof.* Let  $B \subseteq Y$ . Then int(B) is an IFOS in Y. Thus it is an IF $\beta$ GOS in Y. By hypothesis,  $f^{-1}(int(B))$  is an IFROS in X. So  $int(cl(f^{-1}(int(B)))) = f^{-1}(int(B)) \subseteq f^{-1}(B)$ .

**Theorem 3.10.** For any two IF completely  $\beta G$  continuous functions  $f_1$ ,  $f_2$ :  $(X, \tau) \rightarrow (Y, \sigma)$ , the function  $(f_1, f_2)$ :  $(X, \tau) \rightarrow (Y \times Y, \sigma \times \sigma)$  is also an IF completely  $\beta G$  continuous function, where  $(f_1, f_2)$   $(x) = (f_1(x), f_2(x))$ , for every  $x \in X$ .

*Proof.* Let  $A \times B$  be an IF $\beta$ GOS in  $Y \times Y$ . Then

 $\begin{aligned} &(f_1, f_2)^{-1}(A \times B)(x) \\ &= (A \times B)(f_1(x), f_2(x)) \\ &= \langle x, \min(\mu_A(f_1(x)), \mu_B(f_2(x))), \max(\nu_A(f_1(x)), \nu_B(f_2(x))) \rangle \\ &= \langle x, \min(f_1^{-1}(\mu_A)(x), f_2^{-1}(\mu_B(x)), \max(f_1^{-1}(\nu_A)(x), f_2^{-1}(\nu_B)(x)) \rangle \\ &= (\prod_{i=1}^{n-1} (A) \cap f_1^{-1} A))(x). \end{aligned}$ 

Since  $f_1$  and  $f_2$  are IF completely  $\beta G$  continuous functions,  $f_1^{-1}(A)$  and  $f_2^{-1}(B)$  are IFROSs in X. Since intersection of IFROSs is an IFROS,  $f_1^{-1}(A) \cap f_2^{-1}(B)$  is an IFROS in X. Thus  $(f_1, f_2)$  is an IF completely  $\beta G$  continuous mappings.

**Theorem 3.11.** Let a mapping  $f: (X, \tau) \to (Y, \sigma)$  be an IF completely  $\beta G$  continuous mapping. Then the following are equivalent:

(1) For any IF $\beta$  GOS A in Y and for any IFP  $p_{(\alpha,\beta)} \in X$ , if  $f(p_{(\alpha,\beta)})_q$  A, then  $p_{(\alpha,\beta)-q}$  int $(f^{-1}(A))$ ,

(2) For any IF $\beta$  GOS A in Y and for any IFP  $p_{(\alpha,\beta)} \in X$ , if  $f(p_{(\alpha,\beta)})_q$  A, then there exists an IFOS B such that  $p_{(\alpha,\beta)}_q$  B and  $f(B) \subseteq A$ .

*Proof.* (1) ⇒ (2): Let  $A \subseteq Y$  be an IFβGOS and let  $p_{(\alpha,\beta)} \in X$ . Let  $f(p_{(\alpha,\beta)})_q A$ . Then  $p_{(\alpha,\beta)} q f^{-1}(A)$ . (1) implies that  $p_{(\alpha,\beta)} q int(f^{-1}(A))$ , where  $int(f^{-1}(A))$  is an IFOS in X. Let  $B = int(f^{-1}(A))$ . Since  $int(f^{-1}(A)) \subseteq f^{-1}(A)$ ,  $B \subseteq f^{-1}(A)$ . Thus  $f(B) \subseteq f(f^{-1}(A)) \subseteq A$ . (2)  $\Rightarrow$  (1): Let  $A \subseteq Y$  be an IF $\beta$ GOS and let  $p_{(\alpha,\beta)} \in X$ . Suppose  $f(p_{(\alpha,\beta)})_q A$ . Then by (2), there exists an IFOS B in X such that  $p_{(\alpha,\beta)} \ _q B$  and  $f(B) \subseteq A$ . Now  $B \subseteq f^{-1}(f(B)) \subseteq f^{-1}(A)$ . That is  $B = int(B) \subseteq int(f^{-1}(A))$ . Thus  $p_{(\alpha,\beta)} \ _q B$  implies  $p_{(\alpha,\beta)} \ _q int(f^{-1}(A))$ .

**Theorem 3.12.** A mapping  $f: (X, \tau) \to (Y, \sigma)$  be a function and  $g: X \to X \times Y$  the graph of the function f. Then f is an IF completely  $\beta G$  continuous, if g is so.

Proof. Let B be an IF $\beta$ GOS in Y. Then  $f^{-1}(B) = f^{-1}(1_{\sim} \times B) = 1_{\sim} \cap f^{-1}(B) = g^{-1}(1_{\sim} \times B)$ . Since B is an IF $\beta$ GOS in Y,  $1_{\sim} \times B$  is an IF $\beta$ GOS in  $X \times Y$ . Also, since g is an IF completely  $\beta$ G continuous mapping,  $g^{-1}(1_{\sim} \times B)$  is an IFROS in X. Thus  $f^{-1}(B)$  is an IFROS in X. So f is an IF completely  $\beta$ G continuous mapping.  $\Box$ 

**Definition 3.13.** A mapping  $f : (X, \tau) \to (Y, \sigma)$  is called an intuitionistic fuzzy  $\beta$  generalized irresolute (IF $\beta$ G irresolute) mapping, if  $f^{-1}(V)$  is an IF $\beta$ GCS in  $(X, \tau)$ , for every IF $\beta$ GCS V of  $(Y, \sigma)$ .

**Theorem 3.14.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an IF $\beta G$  irresolute mapping. Then f is an IF $\beta G$  continuous mapping but not conversely.

*Proof.* Let f be an IF $\beta$ G irresolute mapping. Let V be any IFCS in Y. Then V is an IF $\beta$ GCS and by hypothesis  $f^{-1}(V)$  is an IF $\beta$ GCS in X. Thus f is an IF $\beta$ G continuous mapping.

**Example 3.15.** Let  $X = \{a, b\}, Y = \{u, v\}$  and  $G_1 = \langle x, (0.6_a, 0.8_b), (0.2_a, 0.1_b) \rangle$ ,  $G_2 = \langle x, (0.3_a, 0.3_b), (0.2_a, 0.2_b) \rangle$  and  $G_3 = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ . Then  $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$  and  $\sigma = \{0_{\sim}, G_3, 1_{\sim}\}$  are IFTs on X and Y, respectively. Define a mapping  $f : (X, \tau) \to (Y, \sigma)$  by f(a) = u and f(b) = v. Then

$$\begin{split} \mathrm{IF}\beta\mathrm{C}(\mathrm{X}) &= \{0_{\sim}, 1_{\sim}, \mu_{a} \in [0,1], \mu_{b} \in [0,1], \nu_{a} \in [0,1], \nu_{b} \in [0,1]: \text{ either } \mu_{a} < 0.3 \\ & \text{ or } \mu_{b} < 0.3, \ 0 \leq \mu_{a} + \nu_{a} \leq 1 \text{ and } 0 \leq \mu_{b} + \nu_{b} \leq 1 \}, \\ \mathrm{IF}\beta\mathrm{O}(\mathrm{X}) &= \{0_{\sim}, 1_{\sim}, \mu_{a} \in [0,1], \mu_{b} \in [0,1], \nu_{a} \in [0,1], \nu_{b} \in [0,1]: \text{ either } \mu_{a} > 0.2 \\ & \text{ or } \mu_{b} > 0.2, \ 0 \leq \mu_{a} + \nu_{a} \leq 1 \text{ and } 0 \leq \mu_{b} + \nu_{b} \leq 1 \}, \\ \mathrm{IF}\beta\mathrm{C}(\mathrm{Y}) &= \{0_{\sim}, 1_{\sim}, \mu_{u} \in [0,1], \mu_{v} \in [0,1], \nu_{u} \in [0,1], \nu_{v} \in [0,1]: \text{ either } \mu_{u} < 0.5 \\ & \text{ or } \mu_{v} < 0.6, \ 0 \leq \mu_{u} + \nu_{u} \leq 1 \text{ and } 0 \leq \mu_{v} + \nu_{v} \leq 1 \}, \\ \mathrm{IF}\beta\mathrm{O}(\mathrm{Y}) &= \{0_{\sim}, 1_{\sim}, \mu_{u} \in [0,1], \mu_{v} \in [0,1], \nu_{u} \in [0,1], \nu_{v} \in [0,1]: \text{ either } \mu_{u} > 0.5 \\ & \text{ or } \mu_{v} > 0.4, \ 0 \leq \mu_{u} + \nu_{u} \leq 1 \text{ and } 0 \leq \mu_{v} + \nu_{v} \leq 1 \}. \end{split}$$

Let  $A = \langle y, (0.5_u, 0.3_v), (0.2_u, 0.1_v) \rangle$  in Y. Now  $A \subseteq 1_{\sim}$ . Then we have  $\beta cl(A) = A \subseteq 1_{\sim}$ . Thus A is an IF $\beta$ GCS in Y. But  $f^{-1}(A) = \langle x, (0.5_a, 0.3_b), (0.2_a, 0.1_b) \rangle \subseteq G_1$  and  $\beta cl(f^{-1}(A)) = 1_{\sim} \notin G_1$ . So  $f^{-1}(A)$  is not an IF $\beta$ GCS in X. Hence f is not an IF $\beta$ G irresolute mapping.

**Theorem 3.16.** Let  $f: (X, \tau) \to (Y, \sigma)$  be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent, if X and Y are  $IF\beta_g T_{1/2}$  spaces: (1) f is an  $IF\beta G$  irresolute mapping,

- (2)  $f^{-1}(B)$  is an IF $\beta$ GOS in X for each IF $\beta$ GOS in Y,
- (3)  $f^{-1}(\beta int(B)) \subseteq \beta int(f^{-1}(B))$  for each IFS B of Y,
- (4)  $\beta cl(f^{-1}(B)) \subseteq f^{-1}(\beta cl(B))$  for each IFS B of Y.

*Proof.*  $(1) \Rightarrow (2)$  is obvious.

(2)  $\Rightarrow$  (3): Let *B* be any IFS in *Y* and  $\beta int(B) \subseteq B$ . Also  $f^{-1}(\beta int(B)) \subseteq f^{-1}(B)$ . Since  $\beta int(B)$  is an IF $\beta$ OS in *Y*, it is an IF $\beta$ GOS in *Y*. Then  $f^{-1}(\beta int(B))$  is an IF $\beta$ GOS in *X*, by hypothesis. Since *X* is an IF $\beta_g T_{1/2}$  space,  $f^{-1}(\beta int(B))$  is an IF $\beta$ OS in *X*. Thus  $f^{-1}(\beta int(B)) = \beta int(f^{-1}(\beta int(B))) \subseteq \beta int(f^{-1}(B))$ .

 $(3) \Rightarrow (4)$  is obvious by taking complement in (3).

(4)  $\Rightarrow$  (1): Let *B* be an IF $\beta$ GCS in *Y*. Since *Y* is an IF $\beta_g T_{1/2}$  space, *B* is an IF $\beta$ CS in *Y* and  $\beta cl(B) = B$ . Then  $f^{-1}(B) = f^{-1}(\beta cl(B)) \supseteq \beta cl(f^{-1}(B)) \supseteq f^{-1}(B)$ . Thus  $\beta cl(f^{-1}(B)) = f^{-1}(B)$ . So  $f^{-1}(B)$  is an IF $\beta$ CS. Hence it is an IF $\beta$ GCS in *X*. Therefore *f* is an IF $\beta$ G irresolute mapping.

**Theorem 3.17.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an  $IF\beta G$  irresolute mapping. Then  $f^{-1}(B) \subseteq \beta int(f^{-1}(cl(int(cl(B)))))$ , for every  $IF\beta GOS \ B$  in Y, if X and Y are  $IF\beta_g T_{1/2}$  spaces.

*Proof.* Let *B* be an IFβGOS in *Y*. Then by hypothesis,  $f^{-1}(B)$  is an IFβGOS in *X*. Since *X* is an IFβ<sub>g</sub>*T*<sub>1/2</sub> space,  $f^{-1}(B)$  is an IFβOS in *X*. Thus  $\beta int(f^{-1}(B)) = f^{-1}(B)$ . Since *Y* is an IFβ<sub>g</sub>*T*<sub>1/2</sub> space, *B* is an IFβOS in *Y* and  $B \subseteq cl(int(cl(B)))$ . So  $f^{-1}(B) = \beta int(f^{-1}(B))$  implies  $f^{-1}(B) \subseteq \beta int(f^{-1}(cl(int(cl(B)))))$ . □

**Theorem 3.18.** Let  $f: (X, \tau) \to (Y, \sigma)$  be an  $IF\beta G$  irresolute mapping from an IFTS X into an IFTS Y. Then  $f^{-1}(B) \subseteq \beta int(cl(int(cl(f^{-1}(B))))))$ , if X is an  $IF\beta_g T_{1/2}$  space.

*Proof.* Let B be an IF $\beta$ GOS in Y. Then by hypothesis,  $f^{-1}(B)$  is an IF $\beta$ GOS in X. Since X is an IF $\beta_g T_{1/2}$  space,  $f^{-1}(B)$  is an IF $\beta$ OS in X. Thus  $\beta int(f^{-1}(B)) = f^{-1}(B)$  and  $f^{-1}(B) \subseteq cl(int(cl(f^{-1}(B))))$ . So  $f^{-1}(B) \subseteq \beta int(cl(int(cl(f^{-1}(B)))))$ .

**Theorem 3.19.** The composition of any two IF completely  $\beta G$  continuous mapping is an IF completely  $\beta G$  continuous mapping.

Proof. Let  $f: X \to Y$  and  $g: Y \to Z$  be any two intuitionistic fuzzy completely  $\beta$  generalized continuous mappings. Let B be an IF $\beta$ GOS in Z. Since g is an IF completely  $\beta$ G continuous mapping,  $g^{-1}(B)$  is an IFROS in Y. Since every IFROS is an IF $\beta$ GOS,  $g^{-1}(B)$  is an IF $\beta$ GOS in Y. Since f is an IF completely  $\beta$ G continuous mapping,  $f^{-1}(g^{-1}(B)) = (g \circ f)^{-1}(B)$  is an IFROS in X. Then  $g \circ f$  is an IF completely  $\beta$ G continuous mapping.  $\Box$ 

**Theorem 3.20.** Let  $f: X \to Y$  and  $g: Y \to Z$  be any two functions. Then the following properties are hold:

(1) If f is an IF completely  $\beta G$  continuous mapping and g is an IF $\beta G$  irresolute mapping, then  $g \circ f$  is an IF completely  $\beta G$  continuous mapping,

(2) If f is an IF completely  $\beta G$  continuous mapping and g is an IF $\beta G$  continuous mapping, then  $g \circ f$  is an IF $\beta G$  continuous mapping.

*Proof.* (1) Let *B* be an IF $\beta$ GOS in *Z*. Since *g* is an IF $\beta$ G irresolute mapping,  $g^{-1}(B)$  is an IF $\beta$ GOS in *Y*. Also, since *f* is an IF completely  $\beta$ G continuous mapping,  $f^{-1}(g^{-1}(B))$  is an IFROS in *X*. Since  $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B)), g \circ f$  is an IF completely  $\beta$ G continuous mapping.

(2)Let B be an IFOS in Z. Since g is an IF $\beta$ G continuous mapping,  $g^{-1}(B)$  is an IF $\beta$ GOS in Y. Also, since f is an IF completely  $\beta G$  continuous mapping,  $f^{-1}(g^{-1}(B))$  is an IFROS in X. Then  $f^{-1}(g^{-1}(B))$  is an IF $\beta$ GOS in X. From the fact that  $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ , it follows that  $g \circ f$  is an IF $\beta$ G continuous mapping.

#### References

- [1] K. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy sets and systems 20 (1986) 87–96.
- [2] C. Chang, Fuzzy topological spaces J. Math. Anal. Appl. 24 (1968) 182–190.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems 88 (1997) 81-89.
- [4] H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (2) (1997) 365–378.
- [5] I. M Hanafy and El-Arish, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Mathematical Journal 53 (128) (2003) 793–803.
- [6] R. Santhi and D. Jayanthi, Intuitionistic Fuzzy Almost Generalized Semi-pre Continuous Mappings, Tamkang Journal of Mathematics 42 (2) (2011) 175–191.
- [7] M. Saranya and D. Jayanthi, On Intuitionistic fuzzy β Generalized Closed Sets, International Journal of Computational Engineering Research (IJCER) 6 (3) (2016) 37–42.
- [8] M. Saranya and D. Jayanthi, On Intuitionistic Fuzzy β Generalized T1/2 spaces, Imperial Journal of Interdisciplinary Research (IJIR) 2 (6) (2016) 447–451.
- [9] M. Saranya and D. Jayanthi, On Intuitionistic Fuzzy  $\beta$  Generalized continuous mappings, International Journal of Advance Foundation and Research in Science and Engineering (IJAFRSE) 2 (10) (2016) 42–51.
- [10] M. Saranya and D. Jayanthi, Intuitionistic Fuzzy Almost  $\beta$  Generalized Continuous Mappings, To be accepted in NIFS.
- [11] Seok Jong Lee and Eun Pyo Lee, The Category of Intuitionistic Fuzzy Topological Spaces, Bull. Korean Math.Soc. 3 (1) (2000) 63–76.

### M. SARANYA (saranya20maths@gmail.com)

Department of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

#### D. JAYANTHI (jayanthimathss@gmail.com)

Department of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India