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Abstract. There are lots of methods for multi-attribute decision mak-
ing problems. However, there is no standard to judge which is more reason-
able. This paper proposes a comprehensive assessment method based on
the existing methods for multi-attribute decision making problems. First,
we introduce the ranking vector and the transformation function to make
different methods in one dimension. Then, we give the reliability degree
of different methods and discuss its several desirable properties. Next, we
propose a comprehensive assessment method. Further more, an example
is illustrated to demonstrate the validity and feasibility of the proposed
method.
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1. Introduction

Since hesitant fuzzy set (HFSs) have been introduced as an effective tool to show
the hesitancy, an increasing amount of attention has been attracted in different ar-
eas, especially in multi-attribute decision making (MADM) problems. Meanwhile,
numerous studies [3, 4, 6, 12, 13, 17, 19, 20, 22, 27, 28] focused on solving MADM
problems under hesitant fuzzy environment. Xu and Li [12, 20] proposed a series
of distance and similarity measures of HFSs, which can be utilized to deal with
MADM problems. A variety of aggregation operators were proposed for aggregating
hesitant fuzzy information and applied to develop some models for hesitant fuzzy
MADM problems [13, 17, 18, 23, 24, 25, 26]. Chen et al. [3] presented an approach to
MADM problems based on interval-valued hesitant preference relation considering
the difference of opinions between individual decision makers. To address MADM
problems, Zhang and Wei [27] extended the concept of VIKOR and TOPSIS methods
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to develop a methodology for solving MADM problems. Xu and Zhang [19] intro-
duced a novel approach based on TOPSIS and the maximizing deviation method
for solving MADM problems. Zhang and Xu [28] extended the TODIM method,
which is based on prospect theory to solve MADM problems under hesitant fuzzy
environment. Dong et al. [5] proposed an optimization-based two-stage model based
on consensus measure in the hesitant linguistic group decision making.

However, although numerous methods for MADM problems have been proposed,
they always produce different results. There is no standard to judge which one is
more reasonable. In this paper, we propose a comprehensive assessment method
based on the existing methods for MADM problems. And we mainly address the
following three questions:

1) How to make the existing methods in one dimension?
Different methods for MADM problems were discussed in different dimensions.

Therefore, the first aim of this paper is to make different methods in one dimension.
Actually, different methods rank alternatives by a set of data. So, we introduce the
concept of ranking vector. And then we define the transformation function to make
the existing methods in one dimension.

2) Which one is more reasonable?
As mentioned above, a great deal of methods can address MADM problems.

Therefore, the challenge naturally becomes how to decide which one is more reason-
able. So, the second aim of this paper is to propose reliability degree of different
methods. In Section 3, we give two kinds of reliability degree, the intransitive relia-
bility degree and the transitive reliability degree.

3) How to establish a comprehensive assessment method?
Now that there are too many methods for MADM problems, and they can’t

convince each other. So, the third aim of this paper is to establish a comprehensive
assessment method based on the existing methods for MADM problems. In Section
3, we propose a comprehensive assessment method based on the existing methods
for MADM problems, in which we use the reliability degree as the weight of different
methods.

The remainder of this paper is organized as follows: In Section 2, we describe
basic definitions of HFSs and review the traditional techniques used to rank hesitant
fuzzy elements. In Section 3, we define the ranking vector and the transformation
function to make existing MADM methods in one dimension. In addition, we define
the reliability degree as well as discussing its properties. Then a comprehensive
assessment method is put forward based on existing MADM methods. In Section 4,
we apply the comprehensive assessment method to a numerical example. This paper
is concluded in Section 5.

2. Preliminaries

In this section, we describe basic definitions of HFSs. In addition, we review the
traditional ranking techniques of HFSs in MADM contexts.

Definition 2.1 ([15, 16]). Let X be a nonempty set. Then a hesitant fuzzy set
(HFS) on X is in term of a function that when applied to X returns a subset of
[0, 1].
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For conveniences, the HFS is often expressed simply by mathematical symbol in
Xia and Xu [18]

H = {〈x, h(x)〉 : x ∈ X},

where h(x) is a set of values in [0,1], denoting the possible membership degrees of
element x ∈ X to the set H. According to Rodŕıguez et al. [14] and Xia and Xu [18],
we call h(x) the hesitant fuzzy element (HFE).

Example 2.2. If X = {x1, x2, x3}, h(x1) = {0.3, 0.5}, h(x2) = {0.1, 0.4} and
h(x3) = {0.6, 0.7, 0.9} are the HFEs of xi(i = 1, 2, 3) to a set H, respectively. Then
H can be considered as a HFS, i.e.,

H = {〈x1, {0.3, 0.5}〉, 〈x2, {0.1, 0.4}〉, 〈x3, {0.6, 0.7, 0.9}〉}.

Clearly, a HFS H can be seen as a FS, if there is only one element in h(x). In
this situation, HFSs include FSs as a special case.

Hereafter, for notional convenience, h stands for HFE h(x) for x ∈ X and we as-
sume that |h| = n, that is, h = ∪γ∈h{γ} = {γ(1), γ(2), · · · , γ(n)}, where all elements

in h are arranged in increasing order, i.e., γ(1) ≤ γ(2) ≤ · · · ≤ γ(n).
In what follows, we will describe briefly the existing techniques which are avail-

able for ranking HFEs. We group these techniques of ranking HFEs into three major
categories: component-wise ordering technique, score function ordering technique,
lexicographical ordering technique. Farhadinia [7] showed that a ranking function of
HFSs is directly defined by the use of ranking function of its HFEs. Therefore, we
mainly discuss here the ranking functions of HFEs and drop the discussion on the
corresponding ranking functions of HFSs.

(i) Component-wise ordering technique [8]:
Let h1 = ∪α∈h1

{α} = {α(1), α(2), · · · , α(n)} and h2 = ∪β∈h2
{β} = {β(1), β(2), · · · ,

β(n)} be two HFEs. The component-wise ordering law of HFEs is defined as:

(2.1) h1 � h2 if and only if α(i) ≤ β(i) 1 ≤ i ≤ n.

Note that the number of values in different HFEs may be different. We denote
l(h(x)) as the number of elements in h(x), that is, l(h(x)) = |h(x)|. To operate
correctly, [20] and [1] gave the following regulation: If l(h1(x)) < l(h2(x)), then new
elements h derived by h = ξh+ +(1− ξ)h− can be appended to h1(x), where h+ and
h− are the maximum and minimum elements in h1(x),respectively. The parameter
ξ can be seen as an index of risk. Here, we extent the shorter one by adding the
maximum value.

Example 2.3. Continued Example 2.2, compare h2 and h3 with component-wise
ordering technique. By above regulation, then h2 = {0.1, 0.4, 0.4}. Since 0.1 < 0.6,
0.4 < 0.7, 0.4 < 0.9, then h2 � h3.

(ii) Score function ordering technique [7, 10, 18, 20]:
Denote S(h) as score function of a HFE h, the score function ordering law between

two HFEs h1 and h2 as follows:
If S(h1) > S(h2), then h1 > h2; If S(h1) = S(h2), then h1 = h2.
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Let h = {γ(1), γ(2), · · · , γ(n)}. Xu and Xia [18] considered the arithmetic-mean
as the score function of a HFE h, denoted here by

(2.2) SAM (h) =
1

n

n∑
i=1

γ(i).

Farhadinia [10] proposed the novel score function SN (h) as follows:

(2.3) SN (h) =
Σni=1δ(i)γ

(i)

Σni=1δ(i)
,

where {δ(1), δ(2), · · · , δ(n)} is a positive-valued monotonic increasing sequence of
index i.

Another score function was introduced by Xu and Xia [20] based on the similarity
measure between a HFE and the full HFE 1h = {1} by

(2.4) S−s(h) = s(h,1h),

where s is a similarity measure for HFEs. Among the score functions, there are two
representative ones defined as:
· The hesitant normalized Hamming similarity score function [20]

(2.5) S−shnh(h) = 1− shnh(h,1h) = 1− 1

n

n∑
i=1

|γi − 1|.

· The hesitant normalized Euclidean similarity score function [20]

(2.6) S−shne(h) = 1− shne(h,1h) = 1−

(
1

n

n∑
i=1

(
γ(i) − 1

)2) 1
2

.

In the sequel, Farhadinia gave a series of score functions in [7] for ranking HFEs.
Here we will not list one by one.

(iii) Lexicographical ordering technique [2, 9, 11]:

Definition 2.4 ([1]). For X, Y ∈ Rn, the lexicographical ordering on the Euclidean
space Rn, denoted by <lex, is defined by requiring X = (x1, x2, · · · , xn) <lex Y =
(y1, y2, · · · , yn) if and only if there is 1 ≤ i ≤ n so that

xj = yj holds for j < i and xi < yi.

Let H be a HFS and H = {〈x, h(x)〉 : x ∈ X}. We denote the ranking vector
associated with h by R(h). The lexicographical ordering comparative law between
two HFEs h1 and h2 as follows:

If R(h1) <lex R(h2), then h1 < h2; If R(h1) =lex R(h2), then h1 = h2.
Chen et al. [2] considered R(h) = (SAM (h), 1 − σc(h)), where SAM (h) is the

arithmetic-mean given by Equation (2.2), and σc(h) is the deviation function defined
by

(2.7) σc(h) =

(
1

n

n∑
i=1

(
γ(i) − SAM (h)

)2) 1
2

.
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Liao et al. [11] considered R(h) = (SAM (h), 1− σl(h)), where σl(h) is the devia-
tion function defined by

(2.8) σl(h) =

 1

C2
n

n∑
i<j=1

(
γ(j) − γ(i)

)2 1
2

.

Farhadinia [9] considered R(h) = (SAM (h), vφ(h)), where vφ(h) is the successive
deviation function defined by

(2.9) vφ(h) =

n−1∑
i=1

φ(γ(i+1) − γ(i)).

Here, φ : [0, 1]→ [0, 1] is an increasing real function with φ(0) = 0.

3. Comprehensive assessment method based on the existing methods
for MADM

There are many methods proposed to solve multi-attribute decision making prob-
lems. Each method has its advantage together with disadvantage. They can’t con-
vince each other. Now we establish a fuzzy comprehensive assessment method based
on the results of the existing methods for multi-attribute making problems.

Actually, for any sequence corresponds to a ranking vector.

Example 3.1. In the illustrative example of Ref. [9], Scxx(HFSY 1) = 0.5167,
Scxx(HFSY 2) = 0.5275, Scxx(HFSY 3) = 0.4937, Scxx(HFSY 4) = 0.5708. Then,
Y3 ≤ Y1 ≤ Y2 ≤ Y4. Obviously, the ranking result of xi is decided by the set of date
(0.5167, 0.5275, 0.4937, 0.5708). So we call this data ranking vector.

Example 3.2. In the illustrative example of Ref. [9], the ranking result of Xu
and Xia’s method (via S−dhne

xux ) is x3 > x2 > x4 > x1; The ranking result of
GHFWG1(via Sxix) is x4 > x1 > x3 > x2.

From Example 3.1 and Example 3.2, we can see, different methods have different
ranking results for the same MADM problem. Let X = {x1, x2, x3, x4}. The raking
result of score function method is x4 > x2 > x1 > x3, and the ranking result of
GHFWG1(via Sxix) is x4 > x1 > x3 > x2. For simplicity, we denote the first
ranking result o1, and the second ranking result o2, that is, o1 represents x4 > x2 >
x1 > x3 and o2 represents x4 > x1 > x3 > x2. For each order oi, each alternative
correspond a value. For example, the corresponding value of x1 under o1 is 0.5167.

Definition 3.3. LetX = {x1, x2, · · · , xn} be a set of alternatives, O = {o1, o2, · · · , om}
be a set of existing orders, and aij is a corresponding value of xj under order oi.
Then, we call vector Ai = (ai1, ai2, · · · , ain) the ranking vector of order oi.

Example 3.4. Let X = {x1, x2, x3, x4}. For the same MADM problem, the
ranking vectors of different method are different. The ranking vector of o1 is
(0.5024, 0.5366, 0.5456, 0.5101); The ranking vector of o2 is (1.234, 1.462, 1.466, 1.513);
The ranking vector of o3 is (0.0867, 0.0875, 0.0937, 0.0908).
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From Example 3.4, it is easy to see that the ranking vectors of different methods
are established on different dimensions for the same MADM problem. Therefore, we
give the following definition so that the data can be unified in one dimension.

Definition 3.5. LetX = {x1, x2, · · · , xn} be a set of alternatives, O = {o1, o2, · · · , om}
be a set of existing orders, and Ai = (ai1, ai2, · · · , ain) is the ranking vector of order
oi. Then we define transformation function: T : {A1, A2, · · · , Am} → Rn as follows:

(3.1) T (Ai) = (
ai1

Σnk=1aik
, · · · , aij

Σnk=1aik
, · · · , ain

Σnk=1aik
)

Write T (Ai) = A
′

i.

Remark 3.6. By the transformation function above, we can see, the ranking vector
of order oi transform Ai into A

′

i. In the process of transformation, it is easy to see
the effect of dimension has been eliminated. Besides, it shows a nice property that
the proportion of the interval between adjacent alternatives stay the same.

Example 3.7. Continued Example 3.4, by the transformation function, different
ranking vectors in different methods can be normalized as follows: The ranking vec-
tor of o1 becomes (0.2398, 0.2562, 0.2605, 0.2435); The ranking vector of o2 becomes
(0.2174, 0.2577, 0.2583, 0.2666); The ranking vector of o3 becomes (0.2417, 0.2439, 0.26
12, 0.2531).

Different methods provide different ranking results. It is worth to study that
which ranking result is more reasonable. To propose the reliability degree, we make
parameter specification first.

Let X = {x1, x2, · · · , xn} be a set of alternatives, and O = {o1, o2, · · · , om} be a
set of existing orders. Assume o1 : x1 > x3 > x2 > x4, then 2o1adj = {x1 > x3, x3 >

x2, x2 > x4} and 2o1 = {x1 > x3, x1 > x2, x1 > x4, x3 > x2, x3 > x4, x2 > x4}.

F t(xi > xj) =

{
1, xi > xj ∈ 2otadj ;

0, otherwise.
, F t

′

(xi > xj) =

{
1, xi > xj ∈ 2ot ;

0, otherwise.

For any xi > xj ∈ 2okadj , Fk(xi > xj) =
m∑
t=1

F t and for any xi > xj ∈ 2ok ,

F
′

k(xi > xj) =
m∑
t=1

F t
′

.

Remark 3.8. LetX = {x1, x2, · · · , xn} be a set of alternatives, andO = {o1, o2, · · · ,
om} be a set of existing orders. Then for any i, j, there must be Fk(xi > xj) ≤
F

′

k(xi > xj).

Example 3.9. For the same MADM problem, assume the ranking result of this
problem are o1 : x4 < x3 < x1 < x2, o2 : x3 < x2 < x4 < x1 and o3 : x4 < x1 <
x3 < x2 respectively. Then 2o1adj = {x4 > x3, x3 > x1, x1 > x2}, 2o2adj = {x3 >

x2, x2 > x4, x4 > x1} and 2o3adj = {x4 > x1, x1 > x3, x3 > x2}. F 1(x3 > x2) = 0,

F 2(x3 > x2) = 1 and F 3(x3 > x2) = 1. So F2(x3 > x2) = 0 + 1 + 1 = 2. Besides,
2o1 = {x4 > x3, x4 > x1, x4 > x2, x3 > x1, x3 > x2, x1 > x2}, 2o2 = {x3 > x2, x3 >
x4, x3 > x1, x2 > x4, x2 > x1, x4 > x1} and 2o3 = {x4 > x1, x4 > x3, x4 > x2, x1 >
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x3, x1 > x2, x3 > x2}. F 1
′

(x3 > x2) = 1, F 2
′

(x3 > x2) = 1 and F 3
′

(x3 > x2) = 1.

So F
′

2(x3 > x2) = 1 + 1 + 1 = 3.

Definition 3.10. (Definition of intransitive reliability degree) LetX = {x1, x2, · · · , xn}
be a set of alternatives, and O = {o1, o2, · · · , om} is a set of existing orders, then we
define the intransitive reliability degree Rk(xi > xj) as follows:

(3.2) Rk(xi > xj) =

∑
i,j

Fk(xi > xj)

m∑
k=1

∑
i,j

Fk(xi > xj)
.

Proposition 3.11. (Properties of the intransitive reliability degree Rk(xi > xj))
Let X = {x1, x2, · · · , xn} be a set of alternatives, and O = {o1, o2, · · · , om} is a
set of existing orders. Then the intransitive reliability degree Rk(xi > xj) has the
following properties:

(1) 0 ≤ Rk(xi > xj) ≤ 1,

(2)
m∑
k=1

Rk(xi > xj) = 1,

(3) if Rk(xi > xj) = 1, then m = k = 1.

Proof. The proof is straightforward. �

Definition 3.12. (Definition of transitive reliability degree) LetX = {x1, x2, · · · , xn}
be a set of alternatives, and O = {o1, o2, · · · , om} is a set of existing orders, then we

define the transitive reliability degree R
′

k(xi > xj) as follows:

(3.3) R
′

k(xi > xj) =

∑
i,j

F
′

k(xi > xj)

m∑
k=1

∑
i,j

F
′
k(xi > xj)

.

Proposition 3.13. (Properties of the transitive reliability degree R
′

k(xi > xj)) Let
X = {x1, x2, · · · , xn} be a set of alternatives, and O = {o1, o2, · · · , om} is a set of

existing orders. Then the transitive reliability degree R
′

k(xi > xj) has the following
properties:

(1) 0 ≤ R
′

k(xi > xj) ≤ 1,

(2)
m∑
k=1

R
′

k(xi > xj) = 1,

(3) if R
′

k(xi > xj) = 1, then m = k = 1.

Proof. The proof is straightforward. �

Remark 3.14. The reliability degree shows that one ranking result obtains recog-
nition degree among the others existing ranking results. The more reliability degree
is, the bigger weight should be.

Next, we develop a new multi-attribute decision making method by assessing
comprehensively the existing methods.

Comprehensive assessment method:
413
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Step 1. Let X = {x1, x2, · · · , xn} be a discrete set of alternatives, and O =
{o1, o2, · · · , om} be a set of existing orders about X, ω = (ω1, ω2, · · · , ωm)T be

the weight vector of the orders with
m∑
i=1

ωi = 1 and ωi ≥ 0(i = 1, 2, · · · ,m).

Ai = (ai1, ai2, · · · , ain) is the ranking vector of order oi. We utilize transformation

function to transform Ai into A
′

i. Then we unified different orders in one dimension.
Step 2. To make our method have larger feasibility and wider practicability, the

weights of the orders are also properly incorporated into a multi-attribute decision
making problems. If the weight vector ω = (ω1, ω2, · · · , ωm)T of all orders is known,
then go to Step 3; Otherwise, the weight of each order needs to be accounted for.
So we use the transitive reliability degree R

′

k(xi > xj) as the weight of ok, i.e.,

ωk = R
′

k(xi > xj).
Step 3. Obtain a new hesitant fuzzy set. Based on Step 1 and Step 2, we can

get a new hesitant fuzzy set {〈xi, h(xi)〉 : xi ∈ X} where h(xi) = {ωka
′

ki : k =
1, 2, · · · ,m}.

Step 4. Reorder xi by techniques for ranking HFEs.
Comprehensive assessment method is based the existing method. We use scientific

approach to obtain the weights of different orders. The core of the method is to
select more recognizable alternative in each position. So, Comprehensive assessment
method is more accurate. Besides, Comprehensive assessment method can be used
to test whether a method is reasonable. However, it is difficult to choose all existing
MADM methods.

4. Numerical comparisons

To illustrate the validity of the comprehensive assessment method, we apply an
example to the method.

Example 4.1. (adapted from [21]) Due to the limited technology and capital, an
enterprise itself may be unable to build the cloud platform and tries to seek a cloud
service to realize its CRM. After the market research and preliminary screening,
there are four potential cloud services for further evaluation, including SAP Sales
on Demand (x1), Salesforce Sales Cloud (x2), Microsoft Dynamic CRM (x3) and
Oracle Cloud CRM (x4). Five experts are invited to evaluate these cloud services on
four indicators (attributes), including performance (a1), payment (a2), reputation
(a3) and security (a4). The attribute weight is given by decision maker as ω =
(0.2, 0.3, 0.15, 0.35)T . The four candidates xi(i = 1,2,3,4) are to be evaluated in
anonymity with hesitant fuzzy information by the decision makers under the above
four attributes aj(j = 1, 2, 3, 4), as listed in Table 1.

Table 1. Hesitant fuzzy decision matrix

a1 a2 a3 a4

x1 {0.2, 0.4, 0.7} {0.2, 0, 6, 0.8} {0.2, 0.3, 0.6, 0.7, 0.9} {0.3, 0.4, 0.5, 0.7, 0.8}
x2 {0.2, 0.4, 0.7, 0.9} {0.1, 0.2, 0.4, 0.5} {0.3, 0.4, 0.6, 0.9} {0.5, 0.6, 0.8, 0.9}
x3 {0.3, 0.5, 0.6, 0.7} {0.2, 0.4, 0.5, 0.6} {0.3, 0.5, 0.7, 0.8} {0.1, 0.5, 0.6, 0.8}
x4 {0.3, 0.5, 0.6} {0.2, 0.4} {0.5, 0.6, 0.7} {0.8, 0.9}
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To get the comprehensive ranking result, the following steps are obtained as
comprehensive assessment method:

Step 1. To solve this MADM problem with existing methods, normalized ranking
vectors and ranking results based on existing methods are listed in Table 2.

Table 2. Different methods’ ranking results

Techniques Normalized ranking vectors Ranking results

SAM (0.2450, 0.2502, 0.2341, 0.2707) o1 : x4 � x2 � x1 � x3

S−shnh (0.2354, 0.2533, 0.2371, 0.2742) o2 : x4 � x2 � x3 � x1

S−shne (0.2612, 0.2432, 0.2385, 0.2571) o3 : x1 � x4 � x2 � x3

GHFWA1 (0.2413, 0.2574, 0.2218, 0.2795) o4 : x4 � x2 � x1 � x3

GHFWG1 (0.2491, 0.2409, 0.2428, 0.2672) o5 : x4 � x1 � x3 � x2

Step 2. Calculate the weights of different methods using the transitive reliability
degree as follows:

F
′
(x1 > x2) = 2, F

′
(x1 > x3) = 4, F

′
(x1 > x4) = 1, F

′
(x2 > x1) = 3,

F
′
(x2 > x3) = 4, F

′
(x2 > x4) = 0, F

′
(x3 > x1) = 1, F

′
(x3 > x2) = 1,

F
′
(x3 > x4) = 0, F

′
(x4 > x1) = 4, F

′
(x4 > x2) = 5, F

′
(x4 > x3) = 5.

Then
∑
i,j

F
′

1(xi > xj) = F
′
(x4 > x2) + F

′
(x4 > x1) + F

′
(x4 > x3)

+F
′
(x2 > x1) + F

′
(x2 > x3) + F

′
(x1 > x3)

= 5 + 4 + 5 + 3 + 4 + 4 = 25.
Similarly,

∑
i,j

F
′

2(xi > xj) = 22,
∑
i,j

F
′

3(xi > xj) = 21,∑
i,j

F
′

4(xi > xj) = 25,
∑
i,j

F
′

5(xi > xj) = 21.

Thus, R
′

1(xi > xj) = 25
114 , R

′

2(xi > xj) = 22
114 , R

′

3(xi > xj) = 21
114 ,

R
′

4(xi > xj) = 21
114 , R

′

5(xi > xj) = 21
114 .

So, the weights of the orders is ( 25
114 ,

22
114 ,

21
114 ,

25
114 ,

21
114 ), respectively.

Step 3. The new hesitant fuzzy set is obtained as {〈xi, h(xi)〉 : xi ∈ X}, where
h(x1) = (0.0537, 0.0454, 0.0481, 0.0529, 0.0459),
h(x2) = (0.0549, 0.0489, 0.0448, 0.0564, 0.0444),
h(x3) = (0.0513, 0.0458, 0.0439, 0.0486, 0.0447),
h(x4) = (0.0594, 0.0529, 0.0474, 0.0613, 0.0492).

Step 4. Rank the new HFEs by score function.
S(h(x1)) = 0.0492, S(h(x2)) = 0.0499, S(h(x3)) = 0.0469, S(h(x4)) = 0.0540.
Then we can obtain a new order x4 � x2 � x1 � x3.
From the final result, it is accordant completely with score function andGHFWA1

ranking results. Therefore, in this example, score function and GHFWA1 method
have higher accuracy relatively. The reliability degrees of score function andGHFWA1

method are also highest, which keep consistent in final result.

5. Conclusion

Since HFS is introduced, many methods for MADM problems have been proposed.
However, there is no unified standard. It is necessary to present a comprehensive
assessment method based on the existing MADM methods under the environment
of HFSs. Firstly, we proposed the ranking vector and the transformation function
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to make existing methods in one dimension. Subsequently, we introduced the reli-
ability degree and discussed its properties. Finally, we presented a comprehensive
assessment method in which we use the transitive reliability degree R

′

k(xi > xj) as
the weight of ok.
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