Annals of Fuzzy Mathematics and Informatics
Volume 14, No. 5, (November 2017), pp. 433-443
O $\mathbb{A} \mathbb{M}$ II
ISSN: 2093-9310 (print version)
© Kyung Moon Sa Co.
ISSN: 2287-6235 (electronic version)
http://www.kyungmoon.com
http://www.afmi.or.kr

k-pseudo similar intuitionistic fuzzy matrices

P. Jenita, E. Karuppusamy, D. Thangamani

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 14, No. 5, November 2017

k-pseudo similar intuitionistic fuzzy matrices

P. Jenita, E. Karuppusamy, D. Thangamani

Received 4 January 2017; Revised 2 February 2017; Accepted 27 March 2017
Abstract. In this paper, we shall define k-pseudo similarity (right k -pseudo similar or left k-pseudo similar) for intuitionistic fuzzy matrices and prove that, for a pair of intuitionistic fuzzy matrices $A, B \in(I F)_{n}$, if A is said to be right (left) k-pseudo similar to B then A^{s} is said to be right (left) k-pseudo similar to B^{s} for any integer $s \geq 1$, but the converse is not true which is illustrated by an example. Also prove that, A is said to be right (left) k-pseudo similar to B if and only if B^{T} is said to be left (right) k-pseudo similar to A^{T}. We exhibit that the k-pseudo similarity on A and B preserve k-regularity of the intuitionistic fuzzy matrices A and B. As a special case, for $k=1$ it reduces to pseudo similar intuitionistic fuzzy matrices [3].

2010 AMS Classification: 03E72, 15B15
Keywords: Intuitionistic fuzzy matrix (IFM), k-pseudo similar, k-regular fuzzy matrix, k-g inverse.

Corresponding Author: P. Jenita(sureshjenita@yahoo.co.in)

1. Introduction

We deal with the fuzzy matrices that is the matrices over the fuzzy algebra with support $[0,1]$ under the max-min operations $\{+,$.$\} defined as a+b=\max \{a, b\}$ and $a . b=\min \{a, b\}$ for all $a, b \in\{F: F=[0,1]\}$. Let $F_{m n}$ the set of all $m \times n$ fuzzy matrices over the fuzzy algebra F. A matrix $A \in F_{m \times n}$ is said to be regular if there exists X such that $A X A=A ; X$ is called a generalized $\left(g^{-}\right)$inverse of A and is denoted by A^{-}. A development of theory of fuzzy matrices analogous to that of Boolean matrices is made by Kim and Roush [5]. Atanassov has introduced and developed the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets [1]. A study on regularity and various g-inverse of intuitionistic fuzzy matrices over intuitionistic fuzzy algebra are discussed in [10]. Basic properties of intuitionistic fuzzy matrices as a generalization of the results on fuzzy matrices have been derived by Pal and Khan [4]. Meenakshi and Gandhimathi have studied on regularity of
intuitionistic fuzzy matrices [8]. In [11], some properties on both idempotent intuitionistic fuzzy matrices and idempotent intuitionistic fuzzy matrices of T-type are discussed. In [12], a problem of reducing intuitionistic fuzzy matrices is examined and some useful properties are obtained with respect to nilpotent intuitionistic fuzzy matrices. In [6], some properties of a transitive fuzzy matrix are examined and the canonical form of the transitive fuzzy matrix is given using the properties also obtained a canonical form of the transitive intuitionistic fuzzy matrix. In [13], szpilrajn's theorem on ordering is generalized to intuitionistic fuzzy orderings. In [14], Riyaz Ahmad Padder and Murugadas have introduced the max-max operations on intuitionistic fuzzy matrices to study the conditions for convergence of intuitionistic fuzzy matrices. In [2], Cho has discussed the consistency of fuzzy matrix equations. Recently, Meenakshi and Jenita have introduced the concept of k-regular fuzzy matrix as a generalization of regular fuzzy matrix [9]. Further to learn about fuzzy matrix theory and applications one may refer [7]. In this paper, we have introduced the concept of k-pseudo similar intuitionistic fuzzy matrices(IFM) as a generalization of pseudo similar intuitionistic fuzzy matrices [3].

2. Preliminaries

In this paper, we are concerned with fuzzy matrices, that is matrices over a fuzzy algebra $\mathrm{FM}(\mathrm{FN})$ with support $[0,1]$, under maxmin(minmax) operations and the usual ordering of real numbers. Let $(I F)_{m \times n}$ be the set of all intuitionistic fuzzy matrices of order $m \times n, F_{m \times n}^{M}$ be the set of all fuzzy matrices of order $m \times n$, under the maxmin composition and $F_{m \times n}^{N}$ be the set of all fuzzy matrices of order $m \times n$, under the minmax composition.

If $A=\left(a_{i j}\right) \in(I F)_{m \times n}$, then $A=\left(\left\langle a_{i j \mu}, a_{i j \vartheta}\right\rangle\right)$, where $a_{i j \mu}$ and $a_{i j \vartheta}$ are the membership values and non membership values of $a_{i j}$ in A respectively with respect to the fuzzy sets μ and ϑ, maintaining the condition $0 \leq a_{i j \mu}+a_{i j \vartheta} \leq 1$.

We shall follow the matrix operations on intuitionistic fuzzy matrices as defined in [8].

For $A, B \in(I F)_{m \times n}$,
$A+B=\left(\left\langle\max \left\{a_{i j \mu}, b_{i j \mu}\right\}, \min \left\{a_{i j \vartheta}, b_{i j \vartheta}\right\}\right\rangle\right)$,
$A B=\left(\left\langle\max _{k} \min \left\{a_{i k \mu}, b_{k j \mu}\right\}, \min _{k} \max \left\{a_{i k \vartheta}, b_{k j \vartheta}\right\}\right\rangle\right)$.
Let us define the order relation on $(I F)_{m \times n}$ as:
$A \leq B \Leftrightarrow a_{i j \mu} \leq b_{i j \mu}$ and $a_{i j \vartheta} \geq b_{i j \vartheta}$, for all i and j.
In this work, we shall represent $A \in(I F)_{m \times n}$ as Cartesian product of fuzzy matrices.

For $A=\left(a_{i j}\right) \in(I F)_{m \times n}$. Let $A=\left(a_{i j}\right)=\left(\left\langle a_{i j \mu}, a_{i j \vartheta}\right\rangle\right) \in(I F)_{m \times n}$. We define $A_{\mu}=\left(a_{i j \mu}\right) \in F_{m \times n}^{M}$ as the membership part of A and $A_{\vartheta}=\left(a_{i j \vartheta}\right) \in F_{m \times n}^{N}$ as the non-membership part of A. Thus A is written as the Cartesian product A_{μ} and A_{ϑ}, $A=<A_{\mu}, A_{\vartheta}>$ with $A_{\mu} \in F_{m \times n}^{M}, A_{\vartheta} \in F_{m \times n}^{N}$.
Definition 2.1 ([8]). For $A, B \in(I F)_{m \times n}$, if $A=<A_{\mu}, A_{\vartheta}>$ and $B=<B_{\mu}, B_{\vartheta}>$, then $A+B=<A_{\mu}+B_{\mu}, A_{\vartheta}+B_{\vartheta}>$.

Definition 2.2 ([8]). For $A \in(I F)_{m \times p}, B \in(I F)_{p \times n}$ if $A=<A_{\mu}, A_{\vartheta}>$ and $B=<B_{\mu}, B_{\vartheta}>$, then
(i) $A B=<A_{\mu} B_{\mu}, A_{\vartheta} B_{\vartheta}>$, where $A_{\mu} B_{\mu}$ is the max min product in $F_{m \times n}^{M}$ and $A_{\vartheta} B_{\vartheta}$ is the min max product in $F_{m \times n}^{N}$,
(ii) $A^{T}=<A_{\mu}^{T}, A_{\vartheta}^{T}>$.

Definition 2.3 ([8]). A matrix $A \in(I F)_{n}$ is said to be invertible, if there exists $X \in(I F)_{n}$ such that $A X=X A=I_{n}=<I_{n}^{M}, I_{n}^{N}>$, where I_{n} is the identity matrix in $(I F)_{n}$.

Definition 2.4 ([8]). A square intuitionistic fuzzy matrix is called intuitionistic fuzzy permutation matrix, if every row and column contains exactly one $<1,0>$ and all the other entries are $<0,1>$. Let P_{n} be the set of all $n \times n$ permutation matrices in $(I F)_{n}$.

Definition 2.5 ([4]). An $A \in(I F)_{m \times n}$ is said to be regular, if there exists $X \in$ $(I F)_{m \times n}$ satisfying $A X A=A$. In this case, X is called a generalized inverses (g-inverse) of A and is denoted by \bar{A}.

Let $A\{1\}$ be the set of all g-inverses of A.
Definition 2.6 ([3]). $A \in(I F)_{m}$ and $B \in(I F)_{n}$ are said to be pseudo similar, denoted by $A \cong B$, if there exist $X \in(I F)_{m n}$ and $Y \in(I F)_{n m}$ such that

$$
A=X B Y, B=Y A X \text { and } X Y X=X
$$

Lemma 2.7 ([3]). Let $A \in(I F)_{m}$ and $B \in(I F)_{n}$. Then the following are equivalent:
(1) $A \cong B$,
(2) there exist $X \in(I F)_{m n}, Y \in(I F)_{n m}$ such that $A=X B Y, B=Y A X, X Y X=$ X and $Y X Y=Y$,
(3) There exist $X \in(I F)_{m n}, Y \in(I F)_{n m}$ such that $A=X B Y, B=Z A X, X Y X=$ $X=X Z X$.

Theorem 2.8 ([8]). Let $A \in(I F)_{m \times n}$ be of the form $A=\left\langle A_{\mu}, A_{\vartheta}\right\rangle$. Then A is regular $\Leftrightarrow A_{\mu}$ is regular in $F_{m \times n}^{M}$ under max-min composition and A_{ϑ} is regular in $F_{m \times n}^{N}$ under min-max composition. $A_{\mu}=\left(a_{i j \mu}\right) \in F_{m \times n}^{M}$ as the membership part of A and $A_{\vartheta}=\left(a_{i j \vartheta}\right) \in F_{m \times n}^{N}$ as the non-membership part of A.

3. k-Pseudo Similar Intuitionistic Fuzzy Matrices

Definition 3.1. A matrix $A \in(I F)_{n}$, is said be right k-regular, if there exists a matrix $X \in(I F)_{n}$ such that $A^{k} X A=A^{k}$, for some positive integer k.

In this case, X is called a right k-g-inverse of A.
Let $A_{r}\left\{1^{k}\right\}=\left\{X / A^{k} X A=A^{k}\right\}$.
Definition 3.2. A matrix $A \in(I F)_{n}$, is said be left k-regular, if there exists a matrix $Y \in(I F)_{n}$ such that $A Y A^{k}=A^{k}$, for some positive integer k.

In this case, Y is called a left k-g-inverse of A.
Let $A_{\ell}\left\{1^{k}\right\}=\left\{Y / A Y A^{k}=A^{k}\right\}$.
In general, right k-regular is different from left k-regular. Then a right k-g-inverse need not be a left k-g-inverse (refer to Example 3.4). Thus forth we call a right kregular (or) left k-regular IFM as a k-regular IFM.

Example 3.3. Let us consider $A=\left[\begin{array}{rr}\langle 0.3,0\rangle & \langle 0,1\rangle \\ \langle 0.5,0\rangle & \langle 0.2,0\rangle\end{array}\right] \in(I F)_{2}$, where $A_{\mu}=$ $\left[\begin{array}{rr}0.3 & 0 \\ 0.5 & 0.2\end{array}\right] \in F_{2}^{M}$ and $A_{\vartheta}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in F_{2}^{N}$. Since each row of A_{μ} cannot be expressed as linear combination of the other row, by Definition 2.5 of (5), the rows are linearly independent. Then by Definition 2.6 of (2) ,they form a standard basis for the row space of A_{μ}.
For both permutation matrices $P_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], A_{\mu} P_{1} A_{\mu}=$ $\left[\begin{array}{rr}0.3 & 0 \\ 0.3 & 0.2\end{array}\right] \neq A_{\mu}$ and $A_{\mu} P_{2} A_{\mu}=\left[\begin{array}{cc}0.3 & 0.2 \\ 0.5 & 0.2\end{array}\right] \neq A_{\mu}$. Thus A_{μ} is not regular by step 3 in Algorithm 1 of (2). Namely, A_{μ} is regular iff $A_{\mu} P A_{\mu}=A_{\mu}$, for some permutation matrix P. Since A_{ϑ} is idempotent, A_{ϑ} itself is a g-inverse of $A_{\vartheta}, A_{\vartheta}$ is regular under min max composition. So by Theorem 2.8, A is not regular.
For this $A, A^{2}=\left[\begin{array}{cc}\langle 0.3,0\rangle & \langle 0,1\rangle \\ \langle 0.3,0\rangle & \langle 0.2,0\rangle\end{array}\right]$. For $X=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 0,1\rangle \\ \langle 0,0\rangle & \langle 0.2,0\rangle\end{array}\right], A^{2} X A=A^{2}=$ $A X A^{2}$ holds. Hence A is 2-regular.

Example 3.4. Let $A=\left[\begin{array}{rrr}\langle 1,0\rangle & \langle 0.5,0.5\rangle & \langle 0,0\rangle \\ \langle 0,0\rangle & \langle 0,1\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.5\rangle & \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right]$. Then A_{μ} is not regu-
lar (See [9]). Thus by Theorem 2.8, A is not regular.
For this $A, A^{2}=\left[\begin{array}{ccc}\langle 1,0\rangle & \langle 0.5,0\rangle & \langle 0.5,0\rangle \\ \langle 0.5,0\rangle & \langle 0,0.5\rangle & \langle 0,0\rangle \\ \langle 0.5,0\rangle & \langle 0.5,0\rangle & \langle 0,0\rangle\end{array}\right], A^{3}=\left[\begin{array}{ccc}\langle 1,0\rangle & \langle 0.5,0\rangle & \langle 0.5,0\rangle \\ \langle 0.5,0\rangle & \langle 0.5,0\rangle & \langle 0,0\rangle \\ \langle 0.5,0\rangle & \langle 0.5,0\rangle & \langle 0.5,0\rangle\end{array}\right]$.
For $X=\left[\begin{array}{rrr}\langle 1,0\rangle & \langle 0,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.5\rangle & \langle 0,1\rangle & \langle 0.5,0\rangle \\ \langle 0.5,0\rangle & \langle 0.5,0.5\rangle & \langle 0.5,0\rangle\end{array}\right], A^{3} X A=A^{3} \neq A X A^{3}$ holds. So X
is a right $3-\mathrm{g}$ inverse but X is not a $3-\mathrm{g}$ inverse of A .
Theorem 3.5. Let $A=\left\langle A_{\mu}, A_{\vartheta}\right\rangle \in(I F)_{n}$. Then A is right k-regular $I F M \Leftrightarrow$ $A_{\mu}, A_{\vartheta} \in F_{n}$ are right k-regular.

Proof. Let $A=\left\langle A_{\mu}, A_{\vartheta}\right\rangle \in(I F)_{n}$. Since A is right k-regular IFM, there exists $X \in(I F)_{n}$, such that $A^{k} X A=A^{k}$.

Let $X=\left\langle X_{\mu}, X_{\vartheta}\right\rangle \in(I F)_{n}$ with $X_{\mu}, X_{\vartheta} \in F_{n}$. Then by Definition 2.2, $A^{k} X A=$ A^{k}. Thus $\left\langle A_{\mu}, A_{\vartheta}\right\rangle^{k}\left\langle X_{\mu}, X_{\vartheta}\right\rangle\left\langle A_{\mu}, A_{\vartheta}\right\rangle=\left\langle A_{\mu}, A_{\vartheta}\right\rangle^{k}$,

$$
\left\langle A_{\mu}^{k}, A_{\vartheta}^{k}\right\rangle\left\langle X_{\mu}, X_{\vartheta}\right\rangle\left\langle A_{\mu}, A_{\vartheta}\right\rangle=\left\langle A_{\mu}^{k}, A_{\vartheta}^{k}\right\rangle,
$$

$$
\left\langle A_{\mu}^{k} X_{\mu} A_{\mu}, A_{\vartheta}^{k} X_{\vartheta} A_{\vartheta}\right\rangle=\left\langle A_{\mu}^{k}, A_{\vartheta}^{k}\right\rangle,
$$

$$
A_{\mu}^{k} X_{\mu} A_{\mu}=A_{\mu}^{k} \text { and } A_{\vartheta}^{k} X_{\vartheta} A_{\vartheta}=A_{\vartheta}^{k}
$$

So $A_{\mu}, A_{\vartheta} \in F_{n}$ are right k-regular.
Conversely, suppose $A_{\mu}, A_{\vartheta} \in F_{n}$ are right k-regular. Then $A_{\mu}^{k} X_{\mu} A_{\mu}=A_{\mu}^{k}$ and $A_{\vartheta}^{k} X_{\vartheta} A_{\vartheta}=A_{\vartheta}^{k}$, for some $X_{\mu}, X_{\vartheta} \in F_{n}$. Thus X_{μ} is a right k-g inverse of A_{μ} and X_{ϑ} is a right k-g inverse of A_{ϑ}.

Now let us define the IFM $Z=\langle V, W\rangle$, where V is a right k-g inverse of A_{μ} and W is a right k-g inverse of A_{ϑ}. We claim that Z is a right k-g inverse of A . Then by

Definition 2.2,

$$
A^{k} Z A=\left\langle A_{\mu}, A_{\vartheta}\right\rangle^{k}\langle V, W\rangle\left\langle A_{\mu}, A_{\vartheta}\right\rangle=\left\langle A_{\mu}^{k} V A_{\mu}, A_{\vartheta}^{k} W A_{\vartheta}\right\rangle=\left\langle A_{\mu}^{k}, A_{\vartheta}^{k}\right\rangle=A^{k} .
$$

Thus A is right k-regular IFM. So the proof is done.
Theorem 3.6. Let $A=\left\langle A_{\mu}, A_{\vartheta}\right\rangle \in(I F)_{n}$. Then A is left k-regular $I F M \Leftrightarrow A_{\mu}, A_{\vartheta} \in$ F_{n} are left k-regular.

Proof. This can be proved along the same lines as that of Theorem 3.5.

Definition 3.7. $A \in(I F)_{n}$ is said to be right k-pseudo similar to $B \in(I F)_{n}$, denoted by $A \cong_{r}^{k} B$, if there exist $X, Y \in(I F)_{n}$ such that $A=X B Y, B=$ $Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$.

Definition 3.8. $A \in(I F)_{n}$ is said to be left k-pseudo similar to $B \in(I F)_{n}$, denoted by $A \cong_{\ell}^{k} B$, if there exist $X, Y \in(I F)_{n}$ such that $A=X^{k} B Y, B=Y A X, X Y X^{k}=$ X^{k} and $Y X Y=Y$.

Remark 3.9. In particular for $\mathrm{k}=1$, Definitions 3.7 and 3.8 are identical. Then k -pseudo similar is reduced to Lemma 2.7. However, both right and left k-pseudo similarity of intuitionistic fuzzy matrices are not symmetric as in the case of pseudo similarity of intuitionistic fuzzy matrices.
Lemma 3.10. Let $A, B \in(I F)_{n}$. If $A \cong{ }_{r}^{k} B$, then we have the following:
(1) $A^{s}=X B^{s} Y$, for any integer $s \geq 1$,
(2) $B Y X=Y X B=B$,
(3) $A X Y=X Y A=A$,
(4) $B^{s}=Y A^{s} X$, for any integer $s \geq 1$.

Proof. Since $A \cong{ }_{r}^{k} B, A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$.
(1) Since $A=X B Y, A^{2}=(X B Y)(X B Y)=X(B Y X) B Y$. Thus

$$
B Y X=\left(Y A X^{k}\right) Y X=Y A\left(X^{k} Y X\right)=Y A X^{k}=B
$$

So, $A^{2}=(X B Y)(X B Y)=X(B Y X) B Y=X B B Y=X B^{2} Y$. Hence in general, $A^{s}=X B^{s} Y$, for any integer $s \geq 1$.
(2) $Y X B=Y X\left(Y A X^{k}\right)=(Y X Y) A X^{k}=Y A X^{k}=B$
and $B Y X=\left(Y A X^{k}\right) Y X=Y A\left(X^{k} Y X\right)=Y A X^{k}=B$.
(3) $A X Y=(X B Y) X Y=X B(Y X Y)=X B Y=A$
and $\quad X Y A=X Y(X B Y)=X(Y X B) Y=X B Y=A$.
(4) Clearly, $B=Y X B$. Then $B^{s}=Y X B^{s}$. Thus $B^{s}=Y X\left(B^{s} Y X\right)=$ $Y\left(X B^{s} Y\right) X=Y A^{s} X$.

Lemma 3.11. Let $A, B \in(I F)_{n}$. If $A \cong{ }_{\ell}^{k} B$. Then we have the following:
(1) $B^{s}=Y A^{s} X$, for any integer $s \geq 1$,
(2) $A X Y=X Y A=A$,
(3)) $B Y X=Y X B=B$,
(4) $A^{s}=X B^{s} Y$, for any integer $s \geq 1$.

Proof. This can be proved as that of Lemma 3.10 and then omitted.

Theorem 3.12. Let $A, B \in(I F)_{n}$ such that $A \cong{ }_{r}^{k} B$. A is right(left) k-regular $\Leftrightarrow B$ is right(left) k-regular.

Proof. Since $A \cong{ }_{r}^{k} B, A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$. When the positive integers k and s are same in Lemma 3.10, we have

$$
A^{k}=X B^{k} Y, B Y X=Y X B=B, A X Y=X Y A=A
$$

and

$$
B^{k}=Y A^{k} X, \text { for any integer } k \geq 1
$$

Let A be right k-regular, i.e., $A^{k} G A=A^{k}$. Then G is a right k-g-inverse of A. Choose $U=Y G X$. We claim that U is a right k-g-inverse of B. Then

$$
\begin{aligned}
B^{k} U B & =\left(Y A^{k} X\right)(Y G X) B=Y\left(A^{k} X Y\right) G(X B) \\
& =Y A^{k} G(X B Y X)=Y A^{k} G(A X) \\
& =Y\left(A^{k} G A\right) X=Y A^{k} X=B^{k}
\end{aligned}
$$

Conversely, assume that B is right k-regular, i.e., $B^{k} U B=B^{k}$. Then U is a right k-g-inverse of B. Choose $G=X U Y$ We prove that, G is a right k-g-inverse of A. Then

$$
\begin{aligned}
A^{k} G A & =\left(X B^{k} Y\right)(X U Y)(X B Y) \\
& =X\left(B^{k} Y X\right) U(Y B X) Y \\
& =X B^{k} U B Y=X B^{k} Y \\
& =A^{k}
\end{aligned}
$$

On the other hand, A is left k-regular $\Leftrightarrow B$ is left k-regular can be proved in the same manner. Thus the proof is done.

Theorem 3.13. Let $A, B \in(I F)_{n}$ such that $A \cong_{\ell}^{k} B$. Then A is right(left) k regular $\Leftrightarrow B$ is right(left) k-regular.

Proof. This can be proved as that of Theorem 3.12 and then omitted.
Remark 3.14. For $k=1$, Theorems 3.12 and 3.13 reduces to the following.
Theorem 3.15 ([3]). Let $A \in(I F)_{m}$ and $B \in(I F)_{n}$ such that $A \cong B$. Then A is a regular matrix $\Leftrightarrow B$ is a regular matrix.

Lemma 3.16. Let $A, B \in(I F)_{n}$ and suppose $A \cong_{r}^{k} B$. Then there exist $X, Y \in$ $(I F)_{n}$ such that $A=X B Y, B=Y A X^{k}$ and $X Y$ is k-potent.

Proof. Since $A \cong_{r}^{k} B, A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$. Then

$$
\begin{aligned}
(X Y)^{k} & =(X Y)^{k-1} X Y \\
& =(X Y)^{k-2} X Y X Y \\
& =(X Y)^{k-2} X(Y X Y) \\
& =(X Y)^{k-2} X Y \\
& =\ldots \ldots \\
& =X Y
\end{aligned}
$$

Thus the proof is done.
Remark 3.17. The converse of the above Lemma need not be true. This is illustrated in the following.

Example 3.18. Let us consider $X=\left[\begin{array}{cc}\langle 0.3,0.3\rangle & \langle 0,1\rangle \\ \langle 0.5,0.5\rangle & \langle 0.2,0.2\rangle\end{array}\right]$
and $Y=\left[\begin{array}{rr}\langle 0,1\rangle & \langle 0,1\rangle \\ \langle 0.5,0\rangle & \langle 0.5,0\rangle\end{array}\right]$. For $A=\left[\begin{array}{rr}\langle 0,1\rangle & \langle 0,1\rangle \\ \langle 0.2,0.3\rangle & \langle 0.2,0.3\rangle\end{array}\right]$
and $B=\left[\begin{array}{rr}\langle 0,1\rangle & \langle 0,1\rangle \\ \langle 0.2,0.3\rangle & \langle 0.2,0.3\rangle\end{array}\right], A=X B Y, B=Y A X^{2}$ and $(X Y)^{2}=X Y$. Then XY is 2-potent, but $X^{2} Y X \neq X^{2}$ and $Y X Y \neq Y$. Here A is not right 2-pseudo similar to B.

Lemma 3.19. Let $A, B \in(I F)_{n}$. If $A \cong_{\ell}^{k} B$, then there exist $X, Y \in(I F)_{n}$ such that $A=X^{k} B Y, B=Y A X$ and $Y X$ is k-potent.

Proof. Since $A \cong_{\ell}^{k} B, A=X^{k} B Y, B=Y A X, X Y X^{k}=X^{k}$ and $Y X Y=Y$. Thus

$$
\begin{aligned}
(Y X)^{k} & =(Y X)^{k-1} Y X \\
& =(Y X)^{k-2} Y X Y X \\
& =(Y X)^{k-2}(Y X Y) X \\
& =(Y X)^{k-2} Y X \\
& =\ldots \ldots \\
& =Y X
\end{aligned}
$$

So the proof is done.

Theorem 3.20. Let $A, B \in(I F)_{n}$. Then the following are equivalent:
(1) $A \cong{ }_{r}^{k} B$,
(2) $B^{T} \cong_{\ell}^{k} A^{T}$,
(3) $P A P^{T} \cong{ }_{r}^{k} P B P^{T}$, for some permutation matrix $P \in(I F)_{n}$.

Proof. (1) $\Leftrightarrow(2)$: This is direct by taking transpose on both sides and by using $\left(A^{T}\right)^{T}=A$ and $(A X)^{T}=X^{T} A^{T}$.
(2) $\Leftrightarrow(3):$ Suppose $A \cong_{r}^{k} B$. Then $A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$. Thus

Since $A=X B Y$,

$$
\begin{equation*}
P A P^{T}=P X B Y P^{T}=\left(P X P^{T}\right)\left(P B P^{T}\right)\left(P Y P^{T}\right) \tag{3.1}
\end{equation*}
$$

Since $B=Y A X^{k}$,

$$
\begin{align*}
P B P^{T} & =P Y A X^{k} P^{T}=\left(P Y P^{T}\right)\left(P A P^{T}\right)\left(P X^{k} P^{T}\right) \\
& =\left(P Y P^{T}\right)\left(P A P^{T}\right)\left(P X P^{T}\right)^{k} \tag{3.2}
\end{align*}
$$

Since $X^{k} Y X=X^{k}, P X^{k} P^{T}=P X^{k} Y X P^{T}$. Thus

$$
\begin{equation*}
P X^{k} P^{T}=\left(P X^{k} P^{T}\right)\left(P Y P^{T}\right)\left(P X P^{T}\right) \tag{3.3}
\end{equation*}
$$

On the other hand, $\left(P X P^{T}\right)^{k}=\left(P X P^{T}\right)^{k}\left(P Y P^{T}\right)\left(P X P^{T}\right)$. Since $Y=Y X Y$, $P Y P^{T}=P Y X Y P^{T}$. Thus

$$
\begin{equation*}
P Y P^{T}=\left(P Y P^{T}\right)\left(P X P^{T}\right)\left(P Y P^{T}\right) \tag{3.4}
\end{equation*}
$$

So $P A P^{T} \cong_{r}^{k} P B P^{T}$.
Conversely, suppose $P A P^{T} \cong{ }_{r}^{k} P B P^{T}$. Pre multiply by P^{T} and post multiply by P in Equations (3.1) to (3.4), we get $A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$. Then $A \cong{ }_{r}^{k} B$. Thus the proof is done.

Example 3.21. The above Theorem 3.20 is illustrated in this example.
Let us consider $A=\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle\end{array}\right], B=\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle\end{array}\right], X=$ $\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.4\rangle & \langle 0.3,0.5\rangle\end{array}\right]$ and $Y=\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle\end{array}\right]$. Here $X \neq X Y X$.
For this $X, X^{2}=\left[\begin{array}{ll}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle\end{array}\right]$.

$$
\begin{gathered}
\text { Now } A=X B Y=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right] \\
B=Y A X^{2}=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right] \\
X^{2}=X^{2} Y X=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right]
\end{gathered}
$$

and

$$
Y=Y X Y=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right]
$$

Then $A \cong{ }_{r}^{k} B$.
For a given A and B ,

$$
\begin{aligned}
& A^{T}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right], B^{T}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right] \\
& X^{T}=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.4\rangle \\
\langle 0.5,0.5\rangle & \langle 0.3,0.5\rangle
\end{array}\right], Y^{T}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(X^{T}\right)^{2}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right] . \text { For this } X^{T}, Y^{T} \in(I F)_{2} \\
& A^{T}=Y^{T} B^{T} X^{T}=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right] \\
& B^{T}=\left(X^{T}\right)^{2} A^{T} Y^{T}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right] \\
& \left(X^{T}\right)^{2}=X^{T} Y^{T}\left(X^{T}\right)^{2}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right] \\
& Y^{T}=Y^{T} X^{T} Y^{T}=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right]
\end{aligned}
$$

Thus $B^{T} \cong_{\ell}^{k} A^{T}$.
Consider a intuitionistic fuzzy permutation matrix $P=\left\langle P_{\mu}, P \vartheta\right\rangle=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 0,1\rangle \\ \langle 0,1\rangle & \langle 1,0\rangle\end{array}\right]$.
For this $P, P^{T}=\left[\begin{array}{ll}\langle 1,0\rangle & \langle 0,1\rangle \\ \langle 0,1\rangle & \langle 1,0\rangle\end{array}\right]$. On the other hand,

$$
P A P^{T}=X\left(P B P^{T}\right) Y=\left[\begin{array}{ll}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle
\end{array}\right]
$$

and

$$
P B P^{T}=Y\left(P A P^{T}\right) X^{2}=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right]
$$

So $P A P^{T} \cong_{r}^{k} P B P^{T}$ for some permutation matrix $P \in(I F)_{n}$.
Theorem 3.22. Let $A, B \in(I F)_{n}$. Then the following are equivalent:
(1) $A \cong_{\ell}^{k} B$,
(2) $B^{T} \cong{ }_{r}^{k} A^{T}$,
(3)) $P A P^{T} \cong_{\ell}^{k} P B P^{T}$, for some permutation matrix $P \in(I F)_{n}$.

Proof. Proof of the theorem is similar to Theorem 3.20 and hence omitted.

Theorem 3.23. Let $A, B \in(I F)_{n}$. If $A \cong{ }_{r}^{k} B$, then $A^{s} \cong{ }_{r}^{k} B^{s}$, for any integer $s \geq 1$.

Proof. Suppose $A \cong{ }_{r}^{k} B$. Then $A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=$ Y.
Prove that, $A^{s} \cong{ }_{r}^{k} B^{s}$. By Lemma 3.10(1), $A^{s}=X B^{s} Y$, for any integer $s \geq 1$.
Next prove that, $B^{s}=Y A^{s} X^{k}$.
By Lemma 3.10(2), $B Y X=Y X B=B$. Then

$$
\begin{aligned}
B^{s} & =Y X B^{s}=Y X B^{s-1} B=Y X B^{s-1}\left(Y A X^{k}\right) \\
& =Y\left(X B^{s-1} Y\right) A X^{k}=Y\left(A^{s-1}\right) A X^{k} \\
& =Y A^{s} X^{k} . \text { Thus } A^{s} \cong_{r}^{k} B^{s}, \text { for any integer } s \geq 1 . \text { So the proof is done. }
\end{aligned}
$$

Remark 3.24. The converse of the above theorem need not be true. This is illustrated in the following.
Example 3.25. Let us consider $X=\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.4\rangle & \langle 0.3,0.5\rangle\end{array}\right]$
and $Y=\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle\end{array}\right]$. For $X^{2}=\left[\begin{array}{cc}\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\ \langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle\end{array}\right]$,
$X Y X \neq X, X^{2} Y X=X^{2}$ and $Y X Y=Y$.

$$
\begin{gathered}
\text { For } A=\left[\begin{array}{cc}
\langle 0.3,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.5,0.4\rangle & \langle 0.5,0.5\rangle
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
\langle 0.5,0.5\rangle & \langle 0.5,0.5\rangle \\
\langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle
\end{array}\right], \\
A^{2}=X B^{2} Y \text { and } B^{2}=Y A^{2} X^{2} .
\end{gathered}
$$

Then A^{2} is right 2-pseudo similar to B^{2}. But $A \neq X B Y$ and $B=Y A X^{2}$. Here A is not right 2-pseudo similar to B.

Theorem 3.26. Let $A, B \in(I F)_{n}$. If $A \cong_{\ell}^{k} B$, then $A^{s} \cong_{\ell}^{k} B^{s}$, for any integer $s \geq 1$.

Proof. This is similar to Theorem 3.23 and then omitted.
Theorem 3.27. Let $A, B, C \in(I F)_{n}$. If $A \cong{ }_{r}^{k} B$ and $B \cong{ }_{r}^{k} C$, then $A \cong{ }_{r}^{k} C$ and if there exist matrices X, Y, Z and L with $Y \in X\left\{1_{r}^{k}\right\}, Z \in L\left\{1_{r}^{k}\right\}, X \in Y\{1\}, L \in$ $Z\{1\}$, and $X L=L X$ satisfying any one of the following:
(1) $L Z Y=Y$,
(2) $Z Y X=Z$,
(3) $X L Z=X$,
(4) $Y X L=L$.

Proof. Since $A \cong{ }_{r}^{k} B, A=X B Y, B=Y A X^{k}, X^{k} Y X=X^{k}$ and $Y X Y=Y$. Since $B \cong_{r}^{k} C, B=L C Z, C=Z B L^{k}, L^{k} Z L=L^{k}$ and $Z L Z=Z$. Thern, $A=X B Y=X(L C Z) Y=(X L) C(Z Y)$.
and

$$
C=Z B L^{k}=Z\left(Y A X^{k}\right) L^{k}=(Z Y) A\left(X^{k} L^{k}\right)=(Z Y) A(X L)^{k}
$$

To prove, $A \cong{ }_{r}^{k} C$, it is enough to prove that $Z Y \in(X L)\left\{1_{r}^{k}\right\}$ and $X L \in(Z Y)\{1\}$.
Suppose (1) holds. Then

$$
\begin{aligned}
(X L)^{k}(Z Y)(X L) & =X^{k} L^{k}(Z Y)(X L)=X^{k} L^{k-1}(L Z Y)(X L) \\
& =X^{k} L^{k-1}(Y)(X L)=L^{k-1} X^{k}(Y)(X L) \\
& =L^{k-1}\left(X^{k} Y X\right) L=L^{k-1} X^{k} L \\
& =(X L)^{k}
\end{aligned}
$$

and

$$
(Z Y)(X L)(Z Y)=Z Y X(L Z Y)=Z Y X Y=Z(Y X Y)=Z Y
$$

Suppose (2) holds. Then

$$
\begin{aligned}
(X L)^{k}(Z Y)(X L) & =(X L)^{k}(Z Y X) L \\
& =(X L)^{k} Z Y=X^{k} L^{k} Z L \\
& =X^{k} L^{k}=(X L)^{k}
\end{aligned}
$$

and

$$
(Z Y)(X L)(Z Y)=(Z Y X) L Z Y=Z L Z Y=(Z L Z) Y=Z Y
$$

Suppose (3) holds. Then

$$
\begin{aligned}
(X L)^{k}(Z Y)(X L) & =(X L)^{k-1}(X L)(Z Y)(X L) \\
& =(X L)^{k-1}(X L Z)(Y X L) \\
& =(X L)^{k-1} X Y X L=L^{k-1} X^{k-1} X Y X L \\
& =L^{k-1} X^{k} Y X L=L^{k-1} X^{k} L \\
& =(X L)^{k}
\end{aligned}
$$

and

$$
(Z Y)(X L)(Z Y)=Z Y(X L Z) Y=Z Y X Y=Z(Y X Y)=Z Y
$$

Suppose (4) holds. Then

$$
\begin{aligned}
(X L)^{k}(Z Y)(X L) & =(X L)^{k} Z(Y X L) \\
& =(X L)^{k} Z L=X^{k} L^{k} Z L=X^{k} L^{k} \\
& =(X L)^{k} \\
\text { and } \quad(Z Y)(X L)(Z Y) & =Z(Y X L) Z Y=Z L Z Y=(Z L Z) Y=Z Y .
\end{aligned}
$$

Thus the proof is done.

Theorem 3.28. Let $A, B, C \in(I F)_{n}$. If $A \cong{ }_{\ell}^{k} B$ and $B \cong_{\ell}^{k} C$, then $A \cong_{\ell}^{k} C$ and if there exist matrices X, Y, Z and L with $Y \in X\left\{1_{\ell}^{k}\right\}, Z \in L\left\{1_{\ell}^{k}\right\}, X \in Y\{1\}, L \in$ $Z\{1\}$, and $X L=L X$ satisfying any one of the following:
(1) $L Z Y=Y$,
(2) $Z Y X=Z$,
(3) $X L Z=X$,
(4) $Y X L=L$.

Proof. This is similar to that of Theorem 3.27 and then omitted.

4. Conclusion

In this paper, the concept of k-regular intuitionistic fuzzy matrix as a generalization of regular intuitionistic fuzzy matrix is introduced. k -pseudo similar intuitionistic fuzzy matrix is defined and the properties are discussed.

References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and System 20 (1986) 87-96.
[2] H. H. Cho, Regular fuzzy matrices and fuzzy equations, Fuzzy Sets and Systems 105 (1999) 445-451.
[3] T. Gandhimathi and AR. Meenakshi, Pseudo similar intuitionistic fuzzy matrices, Applied and Computational Mathematics, 4 (1-2) (2015) 15-19.
[4] S. Khan and Anita paul, The Genaralised inverse of intuitionistic fuzzy matrices, Journal of Physical Science II (2007) 62-67.
[5] K. H. Kim and F. W. Roush, On generalized fuzzy matrices, Fuzzy Sets and Systems 4 (1980) 293-375.
[6] H. Y. Lee and N. G. Jeong, Canonical form of a transitive intuitionistic fuzzy matrices, Honam Mathem. J. 27 (4) (2005) 543-550
[7] AR. Meenakshi, Fuzzy Matrix Theory and Applications, MJP Publishers, Chennai 2008.
[8] AR. Meenakshi and T. Gandhimathi, On regular intuitionistic fuzzy matrices, International Journal of Fuzzy Mathematics 19 (2) (2011) 599-605.
[9] AR. Meenakshi and P. Jenita, Generalized regular fuzzy matrices, Iranian Journal of Fuzzy Systems 8 (2) (2011) 133-141.
[10] Riyaz Ahmad Padder and P. Murugadas, On idempotent intuitionistic fuzzy matrices, of T-type, International Journal of Fuzzy Logic and Intelligent Systems 16 (3) (2016) 181-187.
[11] Riyaz Ahmad Padder and P. Murugadas, Reduction of a nilpotent intuitionistic fuzzy matrix using implication operator, Application of Applied Mathematics 11 (2) (2016) 614-631.
[12] Riyaz Ahmad Padder and P. Murugadas, Generalization of Szpilrajn's theorem on intuitionistic fuzzy matrix, Journal of Mathematics and Informatics 6 (2016) 7-14.
[13] Riyaz Ahmad Padder and P. Murugadas, Max-max operations on intuitionistic fuzzy matrix, Ann. Fuzzy Math.Inform. 12 (6) (2016) 757-766.
[14] M. Pal, S. K. Khan and A. K. Shyamal, Intuitionistic fuzzy matrices, Notes on Intuitionistic Fuzzy Sets 8 (2) (2002) 51-62.

P. JENITA (sureshjenita@yahoo.co.in)

Assistant Professor, Post Graduate and Research, Department of Mathematics, Government Arts College, Coimbatore - 641018
E. KARUPPUSAMY (samy.mathematics@gmail.com)

Assistant Professor, Department of Mathematics, Sri Krishna College of Engineering and Technology, Coimbatore - 641008
D. Thangamani (dthangamani.94@gmail.com)

Scholar, Government Arts College, Coimbatore - 641018

