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Abstract. In this paper, we introduce a new approach of proximity
structure based on the grill notion. For G = P (X)\{φ}, we have the Efre-
movič proximity structure and for the other types of G , we have many types
of proximity structures. Some results on these spaces have been obtained.
Some of these results are : every G -normal T1space is G -proximizable space
(Theorem 3.8). Also, for such space, we show that it has a unique com-
patible G -proximity under the condition that X is compact relative to τ∗

(Theorem 4.10). Finally, for a surjective map f : X −→ (Y, δf(G )) (G is
a grill on X), we establish the largest G -proximity δG on X for which the
map f is a G -proximally continuous (Theorem 4.16).
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1. Introduction

The fundamental concepts of Efremovič proximity and generalized proximity
were introduced by Efremovič, Lodato, and others [2, 3, 8, 9]. The notion of grill
was initiated by choquet [1]. The grill is a powerful tool, since it related to many
topics such as the theory of proximity spaces and the theory of compactifications
etc,. Recently, Kandil et al. [5, 6, 7] introduced a new approaches of proximity
structure based on the ideal notion. Thron [12] showed that the concept of grill
plays an important role in the theory of proximities. Grills are extremely useful and
convenient tool for many situations like filters and nets.

In this paper, based on any given grill G , a new proximity structure is established
namely, G -proximity which is an Efremovič if the grill is P (X)\{φ}. Many prop-
erties of this proximity structures are studied. Some of them are: every G -normal
T1 space is a G -proximizable space (Theorem 3.8) and has a unique compatible G -
proximity provided that the space X is compact with respect to τ∗ (Theorem 4.10).
Also, for a surjective map f : X −→ (Y, δf(G )) (G is a grill on X), we establish the
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largest G -proximity δG on X which makes f a G -proximally continuous mapping
(Theorem 4.16).

Now we recall some definitions and results defined and discussed in [1, 4, 9, 10, 11].

Definition 1.1. A nonempty collection G of subsets of a set X is called a grill on
X, if it satisfies the following conditions:

(i) φ /∈ G ,
(ii) A ∈ G and A ⊆ B ⇒ B ∈ G ,
(iii) A ∪B ∈ G ⇒ A ∈ G or B ∈ G .

Definition 1.2. Let (X, τ) be a topological space and G be a grill on X. Then the
operator

Φ(G ,τ) : P (X) −→ P (X)

defined by

Φ(G ,τ)(A) := {x ∈ X | Ox ∩A ∈ G for every Ox ∈ τ}
is called the local function of A with respect to G and τ , where Ox is open set
containing x. For simplicity, we will call Φ(G ,τ) as Φ.

Proposition 1.3. Let (X, τ) be a topological space and G be a grill on X. Then the
operator

Ψ(G ,τ) : P (X) −→ P (X)

defined by

(1.1) Ψ(G ,τ)(A) = A ∪ Φ(A)

satisfies Kuratwski’s axioms and induces a topology on X called τ∗ given by

(1.2) τ∗ = {A ⊆ X | Ψ(G ,τ)(A
c) = Ac},

where Ac denotes the complement of A and when there is no ambiguity, we will write
Ψ(A) for Ψ(G ,τ)(A).

Definition 1.4. A binary relation δ on P (X) is called an (Efremovič) proximity on
X if δ satisfies the following conditions:

(p1) A δB ⇒ B δA,
(p2) A δ(B ∪ C)⇔ A δB or A δC,
(p3) A δB ⇒ A 6= φ and B 6= φ,
(p4) A ∩B 6= φ⇒ A δB,
(p5) A δB ⇒ there exist C,D ⊆ X such that A δCc, Dc δB and C ∩D = φ.

A proximity space is a pair (X, δ) consisting of a set X and a proximity relation
on X. We shall write AδB if the sets A,B ⊆ X are δ-related, otherwise we shall
write AδB

Lemma 1.5. Let G be a grill on a nonempty set X and f : X −→ Y be an onto
function. Then

f(G ) = {f(A) | A ∈ G }
is a grill.
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2. New structure of proximity spaces

Definition 2.1. Let G be a grill on a nonempty set X. A binary relation δG on
P (X) is called a G -proximity on X if δG satisfies the following conditions:

(GP1) AδGB ⇒ BδGA,
(GP2) AδG (B ∪ C)⇔ AδGB or AδGC,
(GP3) AδGB ⇒ A,B ∈ G ,
(GP4) A ∩B ∈ G ⇒ AδGB,
(GP5) AδGB ⇒ there exist C,D ⊆ X such that A δGC

c, DcδGB and C ∩D /∈ G .

A G -proximity space is a pair (X, δG ) consisting of a set X and a G -proximity
relation on X. We shall write AδGB, if the sets A,B ⊆ X are δG -related, otherwise
we shall write AδGB.
δG is said to be separated, if it satisfies:

(GP6) xδG y ⇒ x = y.

Proposition 2.2. If G = P (X)\{φ}, then the G -proximity relation δG is an Efre-
movič proximity relation.

Proof. Straightforward. �

Example 2.3. Let G be a grill on a nonempty set X and δG be a binary relation
on P (X) defined as:

(2.1) AδGB ⇔ A,B ∈ G .

Then δG is a G -proximity relation. Indeed, one easily sees that δG satisfies conditions
(GP1)-(GP4), and to check that δG also satisfies condition (GP5), let AδGB. It
follows that A /∈ G or B /∈ G . If A /∈ G , by taking C = A and D = Ac, we have the
required properties. If B /∈ G , by taking C = Bc and D = B, we obtain required
properties.

Example 2.4. Let G be a grill on a nonempty set X. For any A,B ⊆ X, let us
define

(2.2) AδGB ⇔ A ∩B ∈ G .

we shall show that δG is a G -proximity on X. It follows directly from the definition
that δG satisfies conditions (GP1)-(GP4). To prove that δG satisfies condition (GP5),
let AδGB. It follows that A∩B /∈ G . If we take C = Bc and D = B, then we obtain
required properties.

Lemma 2.5. If AδGB, A ⊆ C, and B ⊆ D, then CδGD.

Proof. The result is a direct consequence of (GP1) and (GP2). �

Theorem 2.6. Let (X, δG ) be a G -proximity space. Then the δG -operator

δG : P (X) −→ P (X)

defined by

(2.3) AδG = {x ∈ X | xδGA}
satisfies the following:

(1) A ⊆ B ⇒ AδG ⊆ BδG ,
539
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(2) (A ∪B)δG = AδG ∪BδG ,
(3) (A ∩B)δG ⊆ AδG ∩BδG ,
(4) AδG −BδG ⊆ (A−B)δG ,
(5) A /∈ G ⇒ AδG = φ,
(6) B /∈ G ⇒ (A ∪B)δG = AδG = (A−B)δG ,
(7) A4B /∈ G ⇒ AδG = BδG , where A4B = (A−B) ∪ (B −A),
(8) AδG − (BδG )δG ⊆ (A−BδG )δG ,
(9) A * AδG , in general.

Proof. (1) Let x ∈ AδG . Then (2.3) implies that xδGA and lemma 2.5 implies that
x δGB. Thus x ∈ BδG .

(2) By part (1), we get AδG ∪ BδG ⊆ (A ∪ B)δG . To prove the other inclusion,
let x ∈ (A ∪B)δG . Then xδG (A ∪B). Thus (GP2) implies that xδGA or xδGB. So
x ∈ (AδG ∪BδG ). Hence (A ∪B)δG ⊆ AδG ∪BδG . Therefore the result holds.

(3) The result is a direct consequence of part (1).
(4) For any A,B ⊆ X, we know that A = (A − B) ∪ (A ∩ B). Then (2) implies

that AδG = (A−B)δG ∪ (A ∩B)δG . Also (3) implies that (A ∩B)δG ⊆ BδG . Thus

AδG −BδG ⊆ [(A−B)δG −BδG ] ⊆ (A−B)δG .

(5) Let A /∈ G . Then (GP3) implies that xδGA, for all x ∈ X. Thus AδG = φ.
(6) Let B /∈ G . By using (2), (5) and (4) of this theorem, then we have the

required result.
(7) If A 4 B = (A − B) ∪ (B − A) /∈ G , then (A − B), (B − A) /∈ G . Since

AδG = ((A−B)∪(A∩B))
δG and (A−B) /∈ G , by using (6), AδG = (A∩B)δG ⊆ BδG .

It follows that

(2.4) AδG ⊆ BδG .

Similarly, since BδG = ((B − A) ∪ (A ∩ B))
δG and (B − A) /∈ G , by using (6),

BδG = (A ∩B)δG ⊆ AδG . So

(2.5) BδG ⊆ AδG .

Hence, from (2.4) and( 2.5), AδG = BδG .
(8) The proof is obvious ,by using (4).
(9) Let us give an example. Let X = {a, b, c, d}, G = {X, {a}, {d}, {a, b}, {a, c},

{a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}, A = {b, c} and let δG be a
G -proximity which is defined in Example 2.4. Then AδG = φ. �

Lemma 2.7. Let (X, δG ) be a G -proximity space.

(2.6) IfBδGA, thenAδG ⊆ Bc.

Proof. Let AδG ∩ B 6= φ. Then there exists an x ∈ AδG and x ∈ B, that is, xδGA
and x ∈ B. Lemma 2.5 implies A δGB which is a contradiction. Thus the result
holds. �

Theorem 2.8. For every G -proximity δG on X and any sets A,B ⊆ X,

(2.7) BδGA
δG ⇒ BδGA.
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Proof. Let BδGA. Then (GP5) implies that there exist C,D ⊆ X such that

(2.8) BδGC
c, DcδGA and C ∩D /∈ G .

This result, combined with lemma 2.7, implies

(2.9) AδG ⊆ D.

Now, we want to prove that AδG ⊆ Cc. Let x ∈ AδG . Then xδGA. If x ∈ C, then
(2.9) implies that x ∈ C ∩D. By definition 1.1 part (ii), we have {x} /∈ G . Thus,
by (GP3), xδGA, which is a contradiction. So x ∈ Cc. Hence

(2.10) AδG ⊆ Cc.

From (2.8), (2.10) and lemma 2.5, we have BδGA
δG which is a contradiction. There-

fore the result holds. �

Corollary 2.9. For every G -proximity δG on X and any sets A,B ⊆ X,

(2.11) BδG δGA
δG ⇒ BδGA.

Proof. (GP1) and Theorem 2.8 imply the result. �

Remark 2.10. The converse of Theorem 2.8 is not true. Let X be an infinite set,

G = Ginf = {A ⊆ X | A is infinite}
be a grill on X and δG be defined as in Example 2.3. If A,B are infinite subsets of
X, then AδG = φ. Thus B δGA

δG but BδGA.

Lemma 2.11. Let (X, δG ) be a G -proximity space. Then

(2.12) (AδG )δG ⊆ AδG .

Proof. Let x /∈ AδG . Then xδGA. Thus, Theorem 2.8 implies that xδGA
δG , i.e.,

x /∈ (AδG )δG . �

Proposition 2.12. Let (X, δG ) be a G -proximity space, A ⊆ X and G = Ginf ⊆
P (X). Then AδG = φ.

Proof. Let G = Ginf ⊆ P (X). Then {x} /∈ G , for all x ∈ X. (GP3) implies that
xδGA. Thus it follows that AδG = φ. �

Theorem 2.13. For a subset A of a space (X, δG ), the following statements are
valid:

(1) A ∩BδG = φ, for every A /∈ G and B ⊆ X,
(2) xδGX, for all x ∈ X ⇔ G = P (X)\{φ}.

Proof. (1) Let A∩BδG 6= φ and A /∈ G . Then there exists an x ∈ X such that x ∈ A
and xδGB. Thus lemma 2.5 implies that AδGB which is a contradiction with (GP3).
So A ∩ BδG = φ. (2) Let xδGX, for all x ∈ X. Then (GP3) implies that {x} ∈ G ,
for all x ∈ X. Thus G = P (X)\{φ}. Conversely, G = P (X)\{φ} and (GP4) imply
the result. �
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3. G -proximizable spaces

Theorem 3.1. Let (X, δG ) be a G -proximity space. Then the operator

ClδG : P (X) −→ P (X)

defined by

(3.1) ClδG (A) = A ∪AδG

satisfies Kuratwski’s axioms and induces a topology on X called τδG given by:

τδG = {A ⊆ X | ClδG (Ac) = Ac}.

Proof. (1) By (GP3) φδG = φ. Then ClδG (φ) = φ.
(2) (3.1) implies that A ⊆ ClδG (A).
(3) By Theorem 2.6 part (2), we have ClδG (A ∪B) = ClδG (A) ∪ ClδG (B).
(4) By Theorem 2.6 part (1), we have

(3.2) ClδG (A) ⊆ ClδG (ClδG (A)).

Then, it suffices to show that for every A ⊆ X, we have ClδG (ClδG (A)) ⊆ ClδG (A)
or equivalently that

(3.3) Ifx /∈ ClδG (A), thenx /∈ ClδG (ClδG (A)).

Let x /∈ ClδG (A). Then x /∈ A and xδGA. Theorem 2.8 implies that xδGA
δG and

(GP2) implies that xδG (A ∪ AδG ), i.e. , xδGCl
δG (A). This result, combined with

xδGA and (3.2), completes the proof. �

Theorem 3.2. Let (X, δG ) be a G -proximity space. Then the closure operator de-
fined in (3.1) has the following property:

(3.4) BδGA⇔ BδGCl
δG (A).

Proof. The result follows immediately by Theorem 2.8 and (GP2). �

Theorem 3.3. Let (X, δG ) be a G -proximity space. Then

(3.5) ClδG (AδG ) = AδG ,

i.e. AδG is τδG -closed set.

Proof. We want to prove that ClδG (AδG ) ⊆ AδG . Let x ∈ ClδG (AδG ). Then x ∈ AδG

or xδGA
δG . It follows that x ∈ (AδG )δG . Thus by lemma 2.11, we get x ∈ AδG . �

Proposition 3.4. Let (X, δG ) be a G -proximity space, A ⊆ X and G = Ginf ⊆
P (X). Then τδG = P (X).

Proof. The result follows immediately by proposition 2.12. �

Definition 3.5. A topological space (X, τ) is called a G -normal space, if for every
F1, F2 ∈ τ∗c such that F1 ∩ F2 /∈ G , there exist H,G ∈ τ such that

F1 ⊆ H, F2 ⊆ G and H ∩G /∈ G ,
where τ∗c is the family of all τ∗-closed sets.
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Example 3.6. Let (X, τ) be a G -normal space and δG be a relation on P (X) defined
as:

(3.6) AδGB ⇔ Ψ(A) ∩Ψ(B) ∈ G , for every A,B ⊆ X.

Then δG is a G -proximity relation on X. It follows directly from (3.6) that δG satisfies
conditions (GP1)-(GP4). To prove that δG satisfies condition (GP5), let AδGB. Then
Ψ(A)∩Ψ(B) /∈ G . Since Ψ (A) satisfies Kuratwski,s axioms, Ψ(Ψ (A)) = Ψ (A), i.e.
, Ψ (A) ∈ τ∗c. Similarly, Ψ (B) ∈ τ∗c. Since (X, τ) is a G -normal space, it follows
that there exist H,G ∈ τ such that Ψ(A) ⊆ H, Ψ(B) ⊆ G and H ∩ G /∈ G . Thus
there exist H,G ⊆ X such that AδGH

c, Gc δGB and H ∩G /∈ G .

Definition 3.7. A topological space(X, τ) is called a G -proximizable space, if there
exists G -proximity relation δG such that τδG = τ∗. Moreover, δG is said to be a
compatible G -proximity with τ∗.

Theorem 3.8. Let G be a grill on a nonempty set X, (X, τ) be a G -normal T1
space and δG be defined as in Example 3.6. Then (X, τ) is a G -proximizable space.

Proof. To prove the theorem, it suffices to show that the topology generated by the
closure operator Ψ coincide with the topology generated by ClδG . In other words,
we show that for every A ⊆ X,

(3.7) Ψ(A) = ClδG (A).

Let x ∈ ClδG (A). Then x ∈ A or x ∈ AδG .
If x ∈ A, then the result holds.
Now, if x ∈ AδG , then xδGA. Thus Ψ({x}) ∩Ψ(A) ∈ G . Since (X, τ) is T1 space

and τ c ⊆ τ∗c, {x} ∩Ψ(A) ∈ G . So x ∈ Ψ(A). Hence

(3.8) ClδG (A) ⊆ Ψ(A).

Now, we want to prove that Ψ(A) ⊆ ClδG (A) or equivalently, if x /∈ ClδG (A),
then x /∈ Ψ(A). Let x /∈ ClδG (A). Then x /∈ A and x /∈ AδG . It follows that xδGA.
Thus (3.6) implies that Ψ({x}) ∩Ψ(A) /∈ G . Since (X, τ) is G -normal T1 space and
τ c ⊆ τ∗c, there exist H,G ∈ τ such that

(3.9) {x} ⊆ H,Ψ(A) ⊆ G and H ∩G /∈ G .

By definition 1.1 part (ii) and (3.9), we get H ∩A /∈ G , i.e. , there exists an H ∈ τ
such that x ∈ H and H ∩A /∈ G . So x /∈ Φ(A) and we have x /∈ A. Hence x /∈ Ψ(A).
It follows that

Ψ(A) ⊆ ClδG (A).

This result, combined with (3.8) and Definition 3.7, completes the Proof of the
theorem. �

4. G -proximal neighborhood structure and G -proximity mapping

Definition 4.1. A subset B of a G -proximity space (X, δG ) is a δG -neighborhood
of A (in symbols, A�G B), if AδGB

c.
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Theorem 4.2. Let (X, δG ) be a G -proximity space. Then
(1) A�G B implies ClδG (A)�G B,
(2) A�G B implies A�G intδG (B),

where intδG (B) is the interior of B with respect to τδG .

Proof. (1) By using Theorem 3.2, AδGB
c implies ClδG (A)δGB

c, i.e., ClδG (A) �G

B.
(2) AδGB

c implies AδGCl
δG (Bc). Equivalently, AδG (intδG (B))c, i.e., A �G

intδG (B). �

Theorem 4.3. Let (X, δG ) be a G -proximity space. Then the relation �G satisfies
the following properties

(1) X �G X,
(2) A�G B implies A ∩Bc /∈ G ,
(3) A ⊆ B �G C ⊆ D implies A�G D,

(4) A�G Bi, for i = 1, 2, . . . , n iff A�G

n
∩
i=1
B,

(5) A�G B implies Bc �G Ac,
(6) if A /∈ G or B /∈ G , then A�G Bc,
(7) A�G B implies there exist C,D ⊆ X such that

A�G C, Dc �G B and C ∩D /∈ G ,
(8) if δG is a separated G -proximity, then x 6= y ⇒ x�G {y}c.

Proof. (1) (GP3) and Definition 1.1 implies that AδGφ, i.e., X �G X.
(2) Let A�G B. Then (GP4) implies A ∩Bc /∈ G .
(3) Suppose that A 6�G D. Then A δGD

c. Lemma 2.5 implies that BδGC
c, i.e.,

B 6�G C, which is a contradiction.
(4) It suffices to consider n = 2. A �G B1 and A �G B2 ⇔ AδG (B1 ∩ B2)c ⇔

A�G (B1 ∩B2).
(5) If A�G B, then AδGB

c and (GP1) implies BcδGA. Thus Bc �G Ac.
(6) Let A /∈ G . Then (GP3) implies AδGB, i.e., A �G Bc. If B /∈ G , then

similarly, A�G Bc.
(7) A �G B implies AδGB

c. (GP5) implies there exist C,D ⊆ X such that
AδGC

c, BcδGD
c and C ∩D /∈ G , i.e. A�G C, Dc �G B and C ∩D /∈ G .

(8) x 6= y implies xδG y, by (GP6), i.e., x�G {y}c. �

Corollary 4.4. Ai �G Bi for i = 1, 2, . . . , n implies
n
∩
i=1
Ai �G

n
∩
i=1
Bi and

n
∪
i=1
Ai �G

n
∪
i=1
Bi

Theorem 4.5. If �G is a binary relation on X satisfying (1)-(7) in Theorem 4.3
and δG is defined by

(4.1) AδGB ⇔ A�G Bc,

then δG is a G -proximity relation on X. B is a δG -neighborhood of A if and only if
A�G B. Moreover, if �G also satisfies (8) in Theorem 4.3, then δG is separated.

Proof. (GP1) A δGB implies A �G B c. Then by Theorem 4.3 part 5), B �G Ac.
Thus B δGA.
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(GP2) (A ∪ B)δGC implies (A ∪ B) �G Cc. Then by Theorem 4.3) part (3),
A�G Cc and B �G Cc, i.e., AδGC and BδGC.

Conversely if AδGC and BδGC, then by (GP1), CδGA and CδGB, that is, C �G

Ac and C �G Bc. Thus by Theorem 4.3 part (4), C �G (Ac ∩ Bc), i.e., C �G

(A ∪B)c. So CδG (A ∪B).
(GP3) Let A /∈ G . Then by Theorem 4.3 part (6), A �G Bc, i.e., AδGB. If

B /∈ G , then similarly, AδGB.
(GP4) AδGB implies A�G Bc. By Theorem 4.3 part (2), A ∩B /∈ G .
(GP5) Suppose AδGB, i.e. A �G Bc. Then by Theorem 4.3 part (7), there

exist C,D ⊆ X such that A �G C, Dc �G Bc and C ∩D /∈ G . Thus there exist
C,D ⊆ X such that AδGC

c, DcδGB and C ∩D /∈ G . �

Theorem 4.6. If A�G B and B /∈ G , then A /∈ G .

Proof. A�G B implies AδGB
c. Then by (GP4), B /∈ G and by Definition 1.1 part

(iii), we have (A ∩ Bc) ∪ B /∈ G , i.e., A ∪ B /∈ G . Thus by Definition 1.1 part (ii),
A /∈ G . �

Theorem 4.7. A�G B for every B ⊆ X if and only if A /∈ G

Proof. Let A�G B, for every B ⊆ X. Then A�G φ, i.e., AδGX. Thus by (GP4),
A /∈ G .

Conversely, if A /∈ G , then (GP3) implies that AδGB
c, for every B ⊆ X. Thus

A�G B, for every B ⊆ X. �

Lemma 4.8. Let (X, δG ) be a G -proximity space, A,B and C ⊆ X such that AδGB
and (Bc ∩ C) /∈ G . Then AδGC.

Proof. Since (Bc ∩ C) /∈ G , (GP3) implies AδG (Bc ∩ C) and we have AδGB. Then
AδG (B ∪ C), by (GP2). Thus AδGC. �

Theorem 4.9. Let G be a grill on a nonempty set X, δG be a G -proximity relation
on X and (X, τ) be a G -normal T1 space such that τ∗ = τδG . If A is compact with

respect to τ∗, B is closed set in τ∗ and A ∩B /∈ G , then AδGB.

Proof. For all a ∈ A, if a ∈ B, then {a} /∈ G . Thus, (GP3) implies aδGB. Also, if
a /∈ B and B is closed, then aδGB. This result implies that there exist C,D ⊆ X
such that aδGC

c, DcδGB and C ∩D /∈ G . This result and Lemma 4.8 imply CδGB,
i.e., C �G BC . So we have a �G C and C �G Bc. By Theorem 4.2 part (2),
a�G intδG (C) ⊆ C �G B c. Let Na = intδG (C). Then NaδGB.

On the other hand, {Na : a ∈ A} is an open cover of the compact set A. Then
there is a finite subcover {Nai : i = 1, 2, . . . , n}. Thus by (GP2), NδGB, where

N =
n
∪
i=1
Nai . But A ⊂ N . So A δGB. �

Theorem 4.10. Let (X, τ) be a G -normal T1 and let X be compact with respect to
τ∗. Then the space (X, τ) has a unique compatible G -proximity defined as:

AδGB ⇔ Ψ(A) ∩Ψ(B) ∈ G , for every A,B ⊆ X
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Proof. We proved that τ∗ = τδG in Theorem 3.8. Then δG is a compatible G -
proximity with τ∗. Thus, it remains to show that δG is unique. Let αG be any
compatible G -proximity and AδGB. Then Ψ(A) ∩ Ψ(B) ∈ G . Thus by (GP4),
Theorem 3.2 and (GP1), we get AαGB. To prove the other inclusion, suppose that
AδGB. Then Ψ(A) ∩ Ψ(B) /∈ G . Since closed subsets of a compact space are
compact. Then Theorem 4.9 implies AαGB. Thus the result holds. �

Definition 4.11. Let (X, δG1
) and (Y, δG2

) be two G -proximity spaces. A function
f : X −→ Y is said to be a G -proximity mapping, if

(4.2) AδG1B ⇒ f(A)δG2f(B).

Equivalently f is a G -proximity mapping iff

CδG2D ⇒ f−1(C)δG1f
−1(D)

Theorem 4.12. A G -proximity mapping f : (X, δG1) −→ (Y, δG2) is continuous
with respect to τ(δG1

) and τ(δG2
).

Proof. Since f is a G -proximity mapping, if x δg1A, then we have f(x) δg2 f(A) ,
i.e., f(AδG1 ) ⊆ (f(A))δG2 . Thus

f(ClδG1
(A)) = f(A) ∪ f(AδG1 ) ⊆ f(A) ∪ (f(A))δG2 = ClδG2

(f(A)).

So the result holds. �

Remark 4.13. The converse of the foregoing theorem is not true in general. Let
G = P (X)\{Φ}, then the continuous function is not necessary to be a proximity
mapping [9].

Theorem 4.14. Let G be a grill on a nonempty set X, f : X −→ Y be an onto
function, (X, δG ) and (Y, δf(G )) be two proximity spaces, and (X, τ) be a G -normal
T1 space. If X is compact with respect to τ∗, then every continuous function f :
(X, δG ) −→ (Y, δf(G )) is a G -proximity mapping.

Proof. Let A,B ⊆ X such that AδGB. Then Ψ(A) ∩ Ψ(B) ∈ G , by Theorem
4.10. Thus f(Ψ(A)) ∩ f(Ψ(B)) ∈ f(G ). (GP4) implies that f(Ψ(A))δf(G )f(Ψ(B)).
Since f is continuous, f(Ψ(A)) ⊆ Clδf(G )

(f(A)) and f(Ψ(B)) ⊆ Clδf(G )
(f(B)). So

Clδf(G )
(f(A)) δf(G )Clδf(G )

(f(B)). From Theorem 3.2 and (GP1), it follows that

f(A)δf(G )f(B). Hence f is a G -proximity mapping. �

Remark 4.15. A function f is said to be G -proximally continuous mapping if it is
G -proximity mapping.

Theorem 4.16. Let G be a grill on a set X, f : X −→ Y be an onto function,
and (Y, δf(G )) be a G -proximity space. The largest G -proximity δG which may be
assigned to X such that f : X −→ (Y, δf(G )) is a G -proximally continuous is defined
by
(4.3)
AδGB ⇔ there exists a C ⊆ Y such that f(A)δf(G )Y − C and f(B) ∩ C /∈ f(G )
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Proof. We first verify that δG is a G -proximity on X.
(GP1) Suppose AδGB. Then there exists a C ⊆ Y such that

f(A)δf(G )Y − C and f(B) ∩ C /∈ f(G ).

Thus by Lemma 4.8, f(B)δf(G )f(A). Let D = Y − f(A). Since f(B)δf(G )f(A) and

f(A) ∩D = φ /∈ G , BδGA.
(GP2) (A ∪B)δGC implies there exists a D ⊆ Y such that

(f(A) ∪ f(B))δf(G )Y −D and f(C) ∩D /∈ f(G ).

Then by (GP2), we have AδGC and BδGC.
Conversely, suppose AδGC and BδGC. Then there exist D1, D2 ⊆ Y such that
f(A)δf(G )Y −D1, f(B)δf(G )Y −D2, f(C) ∩D1 /∈ f(G ) and f(C) ∩D2 /∈ f(G ).

Thus by (GP2) and Definition 1.1 part (iii), we have
(f(A) ∪ f(B))δf(G )Y − (D1 ∪D2) and f(C) ∩ (D1 ∪D2) /∈ f(G ).

So (A ∪B)δGC.
(GP3) Suppose A /∈ G and let C = φ ⊆ Y . Since f(A)δf(G )Y and f(B) ∩ C =

φ /∈ f(G ), AδGB.
(GP4) Suppose AδGB. Then there exists a C ⊆ Y such that

f(A)δf(G )Y − C and f(B) ∩ C /∈ f(G ).

Thus by Lemma 4.8, f(A)δf(G )f(B). So f(A) ∩ f(B) /∈ f(G ), by (GP4) . Since
f(A ∩ B) ⊆ f(A) ∩f(B), f(A ∩ B) /∈ f(G ), by Definition 1.1 part (2). Hence
A ∩B /∈ g.

(GP5) Suppose AδGB. Then there exists a C ⊆ Y such that
f(A)δf(G )Y − C and f(B) ∩ C /∈ f(G ).

Thus by (GP5), there exist D1, D2 ⊆ Y such that
f(A)δf(G )Y −D1, Y −D2δf(G )Y − C and D1 ∩D2 /∈ f(G ).

Let E = f−1(D1) and F = f−1(D2). Since f(A)δf(G )Y −D1 and f(X −E)∩D1 =

φ /∈ f(G ), AδG (X − E).
On the other hand, f(X − F ) ⊆ Y −D2δf(G )Y −C and f(B)∩C /∈ f(G ). Then

(X − F )δf(G )B. Thus there exist E,F ⊆ X such that

A δ̄G (X − E), (X − F ) δ̄f(G )B and E ∩ F /∈ G .
To prove that f : (X, δG ) −→ (Y, δf(G )) is G -proximally continuous, suppose that

A,B ⊆ X such that f(A)δf(G )f(B). Then by (GP5), there exist C,D ⊆ Y such
that

f(A)δf(G )Y − C, Y −Dδf(G )f(B) and C ∩D /∈ f(G ).

Thus by Lemma 4.8, we have Cδf(G )f(B). So f(B) ∩ C /∈ f(G ), by (GP4). This

result and f(A)δf(G )Y − C imply AδGB.
It remains to show that δG is the largest G -proximity relation on X. Let αG be

any G -proximity such that f : (X,αG ) −→ (Y, δf(G )) is G -proximally continuous and

AδGB. Then there exists a C ⊆ Y such that f(A)δf(G )Y −C and f(B)∩C /∈ f(G ).

Thus by Lemma 4.8, f(A)δf(G )f(B). Since f is G -proximally continuous, AαGB.
So the result holds. �
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5. Conclusions

Proximity is a very important structure, since it related to many topics in topo-
logical spaces as compactifications and extension problems etc. In this paper we
have presented a new structure of proximity spaces based on the grill notion. For
G = P (X) \ {φ}, we have the Efremovič proximity structure and for the other types
of G , we have many types of proximity structures. Some of the important results
are : every G -normal T1space is G -proximizable space and has a unique compatible
G -proximity under the condition that X is compact relative to τ∗. Also, for a sur-
jective map f : X −→ (Y, δf(G )), we established the largest G -proximity δG on X
for which f is a G -proximally continuous. Finally, The notion of δG -neighborhood
structure and G -proximity mapping have been investigated.
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