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ABSTRACT. In this paper we prove a fuzzy integral inequality for r;-
convex function and r2-convex function. Some examples satisfying results
are also given.
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1. INTODUCTION

In 1974 theory of fuzzy measures and fuzzy integrals was introduced by M.
Sugeno in his Ph.D. thesis [11]. In [12, 13, 141], Hadamard inequalities for convex
function is given. Since then many authors have worked on fuzzy integrals inequal-
ities [2, 3, 4, 7, 8, 9, 10].

Motivated from the above results in this paper we present Hermite-Hadamard
type inequality for r;-convex function and r-convex function using Sugeno integrals.

2. PRELIMINARIES

Now we give some basic definitions and properties of the fuzzy integral given
in [L1, 16]. Suppose that @ is a o-algebra of subsets of X and p: p — [0,00) be a
non-negative, extended real valued set function. We say that p is a fuzzy measure,
if
(i) () =
(ii) E,F € p and £ C F 1mply w(E) < u(F),
(iii) {E,} C 9, E1 C Ey C ..., imply lim,, o0 u(Ey) = p(U,—y En),
(iv) {En} C o, E1 D Es D ..., p(Er) < oo, imply lim,, o0 u(Ey) = p((Noey En).
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If f is non-negative real-valued function defined on X, we denote the set {z €
X:f(@)>a}={xeX: f>a}byF, fora >0, where if « < 3, then F3 C F,.

Let (X, p, 1) be a fuzzy measure space, we denote M T the set of all non-negative
measurable functions with respect to p.

Definition 2.1 ([11], Sugeno). Let (X, p,u) be a fuzzy measure space, f € M+
and A € g, the Sugeno integral (or fuzzy integral) of f on A, with respect to the
fuzzy measure p, is defined as:

(2.1) (s) /A Fdp = a\z/o[a A (AN EY),
when A = X,
(2.2) (s) /X fdp = a\z/o[a A n(F)),

where \/ and A denote the operations sup and inf on [0, o), respectively.
Some of the properties of fuzzy integral are as follows.

Proposition 2.2 ([15]). Let (X, p,un) be fuzzy measure space, A, B € p and f,g €
M+ then

(s) <
(s) [, kdp =k A u(A), k for non-negative constant,
(8) [4 fdu < (s) [ gdp, for f <g,

WANS > a}) S = (5) [, fdn > a,

wAN{fza}) Sa=(s) [, fdu < a,

6) (s) [, fdu > a <= there exists v > o such that W(AN{f >~}) > a,

(7) (s) [, fdpu < a <= there exists v < a such that p(AN{f >~}) <
Consider the distribution function F' associated to f on A, that is, F(a) = u(AN{f >
a}). Then from (4) and (5) of Proposition 2.2, we have F(a) = o = (s) [, fdp =
«. Fuzzy integral can be obtained by solving the equation F(a) = a.

Definition 2.3 ([1]). a positive function f is called r-convex on [a,b], if for each
x,y € [a,b] and t € [0, 1],

[t (@) + (L= f (W), r#0,
[F@I T @], r=0.
It is obvious 0-convex functions are simply log-convex functions and 1-convex func-

tions are ordinary convex functions. Note that if f is r-convex [a,b], then f7 is a
convex function (r > 0).

(2.3) fltr+(1—-t)y) < {

3. MAIN RESULTS

The Hermite-Hadamard type inequality for r-convex function and s-convex
function obtained in [5].
614
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Theorem 3.1. Let f,g: [a,b] — (0,00) be r-convex and s-convex function respec-
tively on [a,b] and r,s > 0. Then the following inequality holds

e < 5 () e = e
s s+2 2@
e ()

fa) # f(b), g(a) # g(b).

Now we give an example.

Example 3.2. Consider X = [0,1] and let x be the Lebesgue measure on X. If we

take r = s = Z-convex functions, f(z) = "’”—22 and g(z) = % on [0,1], we have f and

g are r-convex and s-convex functions respectively, from simple calculation we get

(3.2) (s) /1 JUZzldu = 0.1380,
0
and the other hand
1( r >fr+2(b) _ fr+2(a) 1< s >gs+2(b) 7gs+2(a)
r+2)  fr(b) = f(a) s+2/) g¢°(b) —g°(a)

This proves that the inequality (3.1) is not satisfied for Sugeno integral.
Now we give Hermite-Hadamard type inequality for Sugeno integral using ri-
convex and rp-convex functions.

= 0.076.

Theorem 3.3. Let f,g:[0,1] — [0,00) be the ri-conver and ro-convex functions
respectively. Let r1,79 > 0 and p be the Lebesgue measure on R with f(0) # f(1)

and g(0) # g(1).
Case 1. If f(1) > f(0) and g(1) > ¢(0), then

(3.3) (s) /O fodu < min{B,1},

where (8 is given by

(3-4)
(i) (o) (e )

Case 2. If f(0) > f(1) and g(0) > ¢(1), then

1
(35) () [ Fodu < min{s,1),
0
where B is satisfying the following equation

3.6)  BUMA) = f(0) (g™ (1) - g”éo)) — (B = f0) (8™ —¢"(0)) = 0.
15
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Proof. Since f and g are r1-convex and ro-convex function respectively, we have
f@)=f(z.1+ (1 —2).0)

<1 (1) + (L= 2) f0)]V"™ = I (2),
g(x) =g(x.1+ (1 — x).0)

<[a.g" (1) + (1 —)g" (0)]"/" = ho().

Then from Proposition 2.2, we have
(s)/o fodu :(s)/o F@d + (1= 2).0).g(z.1 + (1 — 2).0)dy

S(s)/o 2.7 (1) 4 (1= 2) 7 (0)]7 [a.g™ (1) + (1 — 2)g™ (0)] /2 dps
(3.7) —(s) /O o () ha () dp.

Now to obtain right hand side of (3.7), we consider the distribution function F'
given by:

F(B) =p((0, 1] N {z|hi (x)ha(x) = B})
=p([0, 1] N {z[h1(x) = B}).pu((0, 1] N {z[ho(z) > B})
=(n([0, 1] N {e|fa.f7 (1) + (1 =) f (0] = BY))
(3-8) X (p((0, 1) N {z[[z. 9”’(1) (1—a)g"™(0)]"/"2 > BY)).
Case 1. If f(1) > f(0) and g(1) > , then from (3.8), we have

£ =n(l0 00 {ete 2 5 TR f}l }> (010 w2 2 )
71 1 0 T2 __ 7’2

(3.9) (f?l()ffr(l()c)) 1)#(952() gr<>1>

3.9

(o) - Go-e)
) =

and solution of (3.9) is F(8) = 8 given in (3.4). From Proposition 2.2, we have

(s) / Fodu < min{8,1}.
0
Case 2. If f(0) > f(1) and g(0) > g(1), then from (3.8), we have

(3.10) - (O’ frﬁ:(ll)_f f( ()0) ) ” (0’ QZT:U_ 9( (2)))
3.10

N (fir(ll) ! f(0(>0) > < iZ) g( <)o>)
616
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and solution of (3.10) is F'(8) = B, given in (3.6). From Proposition 2.2, we have

1
() | fadn < minp. 1}
O

Remark 3.4. In case if we put f(0) = f(1) and g(0) = g(1) in Theorem 3.3 then

(5) / f(@)g(@)du < (5) / F(0)g(0)dp = F(0)g(0) A 1.

Example 3.5. Consider X = [0,1] and let x4 be the Lebesgue measure on X. If we
take f(z) = ‘%3 and g(z) = %3 then f(x), g(z) are ry = ry = %-convex function then
from Theorem 3.3 we have

1.6
(3.11) 0.0712 = (s)/ %du < min{0.1781,1} = 0.1781.
0

Now we give the following theorem which is general case of Theorem 3.3.

Theorem 3.6. Let r1,72 > 0 and let p be the Lebesque measure on R. Let f,g :
[a,b] — [0,00) be r1-convex and ro-convez function with f(a) # f(b) and g(a) #
g(b).

Case 1. If f(b) > f(a) and g(b) > g(a), then

b
(5) [ fodu < min{p.b - al.

where B is given by:

(b—a)Q—(b—a)Q(m> ‘<b“‘>2<m)

(3.12) o= (Z 2w (o) =

Case 2. If f(a) > f(b) and g(a) > g(b), then

b
(s) [ fodu < min{p.b - al.

where B satisfies the following equation

(3.13)
B(B) = f(@)(g™(b) — g™ (a)) — (b—a)*(B™ — f*(a)) (8™ — g™ (a)) = 0.
617
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and the solution of (3.15) is F'(8) = 3, given in (3.12). From (1) of Proposition 2.2,
we have

1
S)/ fgdp < min{B,b — a}.
Case 2. If f(a) > f(b) and g(a) > g(b), then from (3.14), we have

@) >
v 5) )
(10 ot < 0~ (G2 ) + <))

(o 0= (g L) )00 (G i) )
(3.16)

(- w0 G rm)

(
and the solution of (3.16) is F(8) = S, given in (3.13). By (1) of Proposition 2.2,
we have

1
8)/ fgdu < min{B,b— a}.
0
O

Remark 3.7. If we put f(a) = f(b) and g(a) = g(b), then from Theorem 3.6, we
have

b
@/’ﬂ@ 2)dp < (s /1f a)dy = f(a)g(a) Ab - a.
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