Annals of Fuzzy Mathematics and Informatics Volume 15, No. 1, (February 2018), pp. 29-46 ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
© $\mathbb{F}_{\mathbb{M}} \mathbb{M}$
(c) Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Intuitionistic topological spaces

J. Kim, P. K. Lim, J. G. Lee, K. Hur

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 15, No. 1, February 2018

Annals of Fuzzy Mathematics and Informatics Volume 15, No. 1, (February 2018), pp. 29-46
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr

OMMII
(c) Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Intuitionistic topological spaces

J. Kim, P. K. Lim, J. G. Lee, K. Hur

Received 12 November 2017; Revised 22 November 2017; Accepted 14 December 2017

Abstract

First of all, we list some concepts and results introduced by $[10,15]$. Second, we give some examples related to intuitionistic topologies and intuitionistic bases, and obtain two properties of an intuitionistic base and an intuitionistic subbase. And we define intuitionistic intervals in \mathbb{R}. Finally, we define some types of intuitionistic closures and interiors, and obtain their some properties.

2010 AMS Classification: 54A10
Keywords: Intutionistic set, Intutionistic topological space, Intutionistic base, Intutionistic neighborhood, Intutionistic closure, Intutionistic interior.

Corresponding Author: J. Kim (junhikim@wku.ac.kr)

1. Introduction

In 1983, Atanassove [1] proposed the notion of intuitionistic fuzzy set as the generalization of fuzzy sets by introduced by Zadeh [21] considering the degree of membership and non-membership (See [2, 3, 4, 5, 6], in order to refer to the details of intuitionistic fuzzy sets). In 1996, Coker [10] introduced the concept of an intuitionistic set (called an intuitionistic crisp set by Salama et al.[18]) as the generalzation of an ordinary set and the specialization of an intuitionistic fuzzy set. After that time, many researchers $[7,8,11,12,13,17,19]$ applied the notion to topology and Selvanayaki and Ilango [20] studied homeomorphisms in intuitionistic topological spaces. In particular, Bayhan and Coker [9] dealt with pairwise separation axioms in intuitionistic topological spaces and some relationships between categories DblTop and Bitop. Furthermore, Lee and Chu [16] introduced the category ITop and investigated some relationships between ITop and Top. Recently, Kim et al. [15] investigate the category ISet composed of intuitionistic sets and morphisms between them in the sense of a topological universe.

In this paper, first of all, we list some concepts and results introduced by [10, 15]. Second, we give some examples (See Examples 3.2, 3.2,3.10,3.13 and 3.15) related to intuitionistic topologies and intuitionistic bases, and obtain two properties of
an intuitionistic base and an intuitionistic subbase. And we define intuitionistic intervals in \mathbb{R}. Finally, we define some types of intuitionistic closures and interiors, and obtain their some properties.

2. Preliminaries

In this section, we list the concepts of an intuitionistic set, an intuitionistic point, an intuitionistic vanishing point and operations of intuitionistic sets. Also we list some results obtained by [10, 15].

Definition 2.1 ([10]). Let X be a non-empty set. Then A is called an intuitionistic set (in short, IS) of X, if it is an object having the form

$$
A=\left(A_{T}, A_{F}\right)
$$

such that $A_{T} \cap A_{F}=\phi$, where A_{T} [resp. A_{F}] is called the set of members [resp. nonmembers] of A.

In fact, A_{T} [resp. A_{F}] is a subset of X agreeing or approving [resp. refusing or opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by ϕ_{I} resp. $\left.X_{I}\right]$, is defined by $\phi_{I}=(\phi, X)$ [resp. $\left.X_{I}=(X, \phi)\right]$.

In general, $A_{T} \cup A_{F} \neq X$.
We will denote the set of all ISs of X as $I S(X)$.
It is obvious that $A=(A, \phi) \in I S(X)$ for each ordinary subset A of X. Then we can consider an IS of X as the generalization of an ordinary subset of X. Furthermore, it is clear that $A=\left(A_{T}, A_{T}, A_{F}\right)$ is an neutrosophic crisp set in X, for each $A \in I S(X)$. Thus we can consider a neutrosophic crisp set in X as the generalization of an IS of X.

Remark 2.2. Let X be a set and let $A \in I S(X)$ such that $A_{T} \cup A_{F}=X$. We define the mappings $\mu, \nu: X \rightarrow[0,1]$ as follows: for each $x \in X$,

$$
\mu(x)=\chi_{A_{T}}(x), \nu(x)=\chi_{A_{F}}(x)
$$

Then we can easily see that (μ, ν) is an intuitionistic fuzzy set in X introduced by Atanassov [1]. Thus by identifying A with (μ, ν), we can consider the intuitionistic set A in X as an an intuitionistic fuzzy set in X. However, if $A_{T} \cup A_{F} \neq X$, then (μ, ν) is not an intuitionistic fuzzy set in X, since $\mu(x)+\nu(x)=0$, for each $x \notin A_{T} \cap A_{F}$.

Definition 2.3 ([10]). Let $A, B \in I S(X)$ and let $\left(A_{j}\right)_{j \in J} \subset I S(X)$.
(i) We say that A is contained in B, denoted by $A \subset B$, if $A_{T} \subset B_{T}$ and $A_{F} \supset B_{F}$.
(ii) We say that A equals to B, denoted by $A=B$, if $A \subset B$ and $B \subset A$.
(iii) The complement of A denoted by A^{c}, is an IS of X defined as:

$$
A^{c}=\left(A_{F}, A_{T}\right)
$$

(iv) The union of A and B, denoted by $A \cup B$, is an IS of X defined as:

$$
A \cup B=\left(A_{T} \cup B_{T}, A_{F} \cap B_{F}\right) .
$$

(v) The union of $\left(A_{j}\right)_{j \in J}$, denoted by $\bigcup_{j \in J} A_{j}$ (in short, $\bigcup A_{j}$), is an IS of X defined as:

$$
\bigcup_{j \in J} A_{j}=\left(\bigcup_{j \in J} A_{j, T}, \bigcap_{j \in J} A_{j, F}\right)
$$

(vi) The intersection of A and B, denoted by $A \cap B$, is an IS of X defined as:

$$
A \cap B=\left(A_{T} \cap B_{T}, A_{F} \cup B_{F}\right)
$$

(vii) The intersection of $\left(A_{j}\right)_{j \in J}$, denoted by $\bigcap_{j \in J} A_{j}$ (in short, $\bigcap A_{j}$), is an IS of X defined as:

$$
\bigcap_{j \in J} A_{j}=\left(\bigcap_{j \in J} A_{j, T}, \bigcup_{j \in J} A_{j, F}\right) .
$$

(viii) $A-B=A \cap B^{c}$.
(ix) [$] A=\left(A_{T}, A_{T}{ }^{c}\right),<>A=\left(A_{F}{ }^{c}, A_{F}\right)$.

Example 2.4. Let $X=\{a, b, c, d, e, f\}$ and let $A=(\{b, c, f\},\{b, d\}) \in I S(X)$.
Then $A^{c}=\left(A_{F}, A_{T}\right)$. Thus

$$
\begin{aligned}
A \cup A^{c} & =\left(A_{T} \cup A_{F}, A_{F} \cap A_{T}\right) \\
& =(\{a, c, f\} \cup\{b, d\},\{b, d\} \cap\{a, c, f\}) \\
& =\{a, b, c, d, f\}, \phi) \\
& \neq X_{I}
\end{aligned}
$$

and

$$
\begin{aligned}
A \cap A^{c} & =\left(A_{T} \cap A_{F}, A_{F} \cup A_{T}\right) \\
& =(\{a, c, f\} \cap\{b, d\},\{b, d\} \cup\{a, c, f\}) \\
& =(\phi,\{a, b, c, d, f\}) \\
& \neq \phi_{I} .
\end{aligned}
$$

Result 2.5 ([15], Proposition 3.6). Let $A, B, C \in I S(X)$. Then
(1) (Idempotent laws): $A \cup A=A, A \cap A=A$,
(2) (Commutative laws): $A \cup B=B \cup A, A \cap B=B \cap A$,
(3) (Associative laws): $A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C$,
(4) (Distributive laws): $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

(5) (Absorption laws): $A \cup(A \cap B)=A, A \cap(A \cup B)=A$,
(6) (DeMorgan's laws): $(A \cup B)^{c}=A^{c} \cap B^{c},(A \cap B)^{c}=A^{c} \cup B^{c}$,
(7) $\left(A^{c}\right)^{c}=A$,
(8) (8a) $A \cup \phi_{I}=A, A \cap \phi_{I}=\phi_{I}$,
(8b) $A \cup X_{I}=X_{I}, A \cap X_{I}=A$,
(8c) $X_{I}^{c}=\phi_{I}, \phi_{I}{ }^{c}=X_{I}$,
(8d) in general, $A \cup A^{c} \neq X_{I}, A \cap A^{c} \neq \phi_{I}$.
Result 2.6 ([15], Proposition 3.7). Let $A \in I S(X)$ and let $\left(A_{j}\right)_{j \in J} \subset I S(X)$. Then
(1) $\left([10]\right.$, Corollary 2.7) $\left(\bigcap A_{j}\right)^{c}=\bigcup A_{j}^{c},\left(\bigcup A_{j}\right)^{c}=\bigcap A_{j}{ }^{c}$,
(2) $A \cap\left(\bigcup A_{j}\right)=\bigcup\left(A \cap A_{j}\right), A \cup\left(\bigcap A_{j}\right)=\bigcap\left(A \cup A_{j}\right)$.

Definition 2.7 ([10]). Let X be a non-empty set, $a \in X$ and let $A \in I S(X)$.
(i) The form $\left(\{a\},\{a\}^{c}\right)$ [resp. $\left.\left(\phi,\{a\}^{c}\right)\right]$ is called an intuitionistic point [resp. vanishing point] of X and denoted by a_{I} [resp. $a_{I V}$].
(ii) We say that a_{I} [resp. $\left.a_{I V}\right]$ is contained in A, denoted by $a_{I} \in A$ [resp. $\left.a_{I V} \in A\right]$, if $a \in A_{T}$ [resp. $\left.a \notin A_{F}\right]$.

We will denote the set of all intuitionistic points or intuitionistic vanishing points in X as $I P(X)$.

Result 2.8 ([10], Proposition 3.4). Let $\left(A_{j}\right)_{j \in J} \subset I S(X)$ and let $p \in X$.
(1) $p_{I} \in \bigcap A_{j}$ [resp. $p_{I V} \in \bigcap A_{j}$] if and only if $p_{I} \in A_{j}$ [resp. $p_{I V} \in A_{j}$], for each $j \in J$.
(2) $p_{I} \in \bigcup A_{j}$ [resp. $p_{I V} \in \bigcup A_{j}$] if and only if there exists $j \in J$ such that $p_{I} \in A_{j}$ [resp. $p_{I V} \in A_{j}$.

Result 2.9 ([10], Proposition 3.5). Let $A, B \in I S(X)$. Then
(1) $A \subset B$ if and only if $p_{I} \in A \Rightarrow p_{I} \in B$ [resp. $\left.p_{I V} \in A \Rightarrow p_{I V} \in B\right]$, for each $p \in X$.
(2) $A=B$ if and only if $p_{I} \in A \Leftrightarrow p_{I} \in B$ [resp. $\left.p_{I V} \in A \Leftrightarrow p_{I V} \in B\right]$, for each $p \in X$.
Result 2.10 ([10], Proposition 3.6). Let $A \in I S(X)$. Then

$$
A=\left(\bigcup_{a_{I} \in A} a_{I}\right) \cup\left(\bigcup_{a_{I V} \in A} a_{I V}\right)
$$

For each $A \in I S(X)$, let $A_{I}=\bigcup_{a_{I} \in A} a_{I}$ and let $A_{I V}=\bigcup_{a_{I V} \in A} a_{I V}$. Then by the above Result, $A=A_{I} \cup A_{I V}$. In fact, $A_{I}=\left(A_{T}, A_{T}{ }^{c}\right)$ and $A_{I V}=\left(\phi, A_{F}\right)$.
Remark 2.11. Let $A \in I S(X)$ such that $A_{T} \cup A_{F}=X$, then $A_{I V} \subset A_{I}$ and thus

$$
A=A_{I} \cup A_{I V}=A_{I}
$$

We will denote the family of all ISs A in X such that $A_{T} \cup A_{F}=X$ as $I S_{*}(X)$, i.e.,

$$
I S_{*}(X)=\left\{A \in I S(X): A_{T} \cup A_{F}=X\right\}
$$

In this case, it is obvious that $A \cap A^{c}=\phi_{I}$ and $A \cup A^{c}=X_{I}$ and thus

$$
\left(I S_{*}(X), \subset, \phi_{I}, X_{I}\right)
$$

is a Boolean algebra. In fact, there is a one-to-one correspondence between $P(X)$ and $I S_{*}(X)$, where $P(X)$ denotes the power set of X. Moreover, for any $A, B \in I S_{*}(X)$,

$$
A=A_{I}=[] A=<>A \text { and } A \cup B, A \cap B, A-B \in I S_{*}(X)
$$

Example 2.12. Let $X=\{a, b, c, d, e\}$ and let $A=(\{a, b\},\{c, d\})$. Then clearly, $a_{I}, b_{I} \in A$. Thus

$$
a_{I} \cup b_{I}=(\{a, b\},\{c, d, e\}) \neq A
$$

On the other hand,

$$
\begin{aligned}
A_{I} & =\bigcup_{a_{I} \in A} a_{I}=(\{a\} \cup\{b\},\{b, c, d, e\} \cap\{a, c, d, e\})=(\{a, b\},\{c, d, e\}) \\
& =\left(A_{T}, A_{T}^{c}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{I V}=\bigcup_{a_{I V} \in A} a_{I V}=(\phi,\{b, c, d, e\} \cap\{a, c, d, e\} \cap\{a, b, c, d\})=(\phi,\{c, d\}) \\
& \quad=\left(\phi, A_{F}\right)
\end{aligned}
$$

3. Intuitionistic topological spaces

Coker [11] introduced an intuitionistic topological space, an intuitionistic base, an intuitionistic continuity and an intuitionistic compact space and studied their some properties. In this section, we give additional examples of intuitionistic topologies and obtain two properties related to an intuitionistic base and an intuitionistic subbase. And we define intuitionistic intervals in \mathbb{R}.
Definition 3.1 ([11]). Let X be a non-empty set and let $\tau \subset I C(X)$. Then τ is called an intuitionistic topology (in short IT) on X, it satisfies the following axioms:
(i) $\phi_{I}, X_{I} \in \tau$,
(ii) $A \cap B \in \tau$, for any $A, B \in \tau$,
(iii) $\bigcup_{j \in J} A_{j} \in \tau$, for each $\left(A_{j}\right)_{j \in J} \subset \tau$.

In this case, the pair (X, τ) is called an intuitionistic topological space (in short, ITS) and each member O of τ is called an intuitionistic open set (in short, IOS) in X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if $F^{c} \in \tau$.

It is obvious that $\left\{\phi_{I}, X_{I}\right\}$ is the smallest IT on X and will be called the intuitionistic indiscreet topology and denoted by $\tau_{I, 0}$. Also $I S(X)$ is the greatest IT on X and will be called the intuitionistic discreet topology and denoted by $\tau_{I, 1}$. The pair ($X, \tau_{I, 0}$) [resp. $\left.\left(X, \tau_{I, 1}\right)\right]$ will be called the intuitionistic indiscreet [resp. discreet] space.

We will denote the set of all ITs on X as $I T(X)$. For an ITS X, we will denote the set of all IOSs [resp. ICSs] on X as $I O(X)$ [resp. $I C(X)]$.
Example 3.2. (1) ([11], Example 3.2) For any ordinary topological space (X, τ_{o}), let $\tau=\left\{\left(A, A^{c}\right): A \in \tau_{o}\right\}$. Then clearly, (X, τ) is an ITS.
(2) Let $X=\{a, b\}$. Then $\tau_{I, 1}=\left\{\phi_{I}, a_{I}, b_{I},(a, \phi),(a, \phi), a_{I V}, b_{I V}, X_{I}\right\}$.
(3) ([11], Example 3.4) Let (X, τ) be an ordinary topological space such that τ is not indiscrete, where $\tau=\{\phi, X\} \cup\left\{G_{j}: j \in J\right\}$. Then there exist two ITs on X as follows: $\tau^{1}=\left\{\phi_{I}, X_{I}\right\} \cup\left\{\left(G_{j}, \phi\right): j \in J\right\}$ and $\tau^{2}=\left\{\phi_{I}, X_{I}\right\} \cup\left\{\left(\phi, G_{j}^{c}\right): j \in J\right\}$.
(4) Let X be a set and let $A \in I S(X)$. Then A is said to be finite, if A_{T} is finite. Consider the family $\tau=\left\{U \in I S(X): U=\phi_{I}\right.$ or U^{c} is finite $\}$. Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cofinite topology on X and denoted by $\operatorname{ICof}(X)$.
(5) Let X be a set and let $A \in I S(X)$. Then A is said to be countable, if A_{T} is countable. Consider the family $\tau=\left\{U \in I S(X): U=\phi_{I}\right.$ or U^{c} is countable $\}$. Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cocountable topology on X and denoted by $\operatorname{ICoc}(X)$.
Result 3.3 ([11], Proposition 3.5). Let (X, τ) be an ITS. Then the following two ITs on X can be defined by:

$$
\tau_{0,1}=\{[] U: U \in \tau\}, \tau_{0,2}=\{<>U: U \in \tau\}
$$

Furthermore, the following two ordinary topologies on X can be defined by (See [8]):

$$
\tau_{1}=\left\{U_{T}: U \in \tau\right\}, \tau_{2}=\left\{U_{F}^{c}: U \in \tau\right\}
$$

Remark 3.4. (1) Let (X, τ) be an ITS such that $\tau \subset I S_{*}(X)$. Then it is obvious that $\tau=\tau_{0,1}=\tau_{0,2}$.
(2) For an IT τ on a set X, we will denote two ITs $\tau_{0,1}$ and $\tau_{0,2}$ defined in Result 3.3 as $\tau_{0,1}=[] \tau$ and $\tau_{0,2}=<>\tau$, respectively.
(3) For an IT τ on a set X, let τ_{1} and τ_{2} be ordinary topologies on X defined in Result 3.3. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a bitopological space by Kelly [14] (Also see Proposition 3.1 in [9]).

The following is the immediate result of Definition 3.1.
Proposition 3.5. Let X be an ITS. Then
(1) $\phi_{I}, X_{I} \in I C(X)$,
(2) $A \cup B \in I C(X)$, for any $A, B \in I C(X)$,
(3) $\bigcap_{j \in J} A_{j} \in I C(X)$, for each $\left(A_{j}\right)_{j \in J} \subset I C(X)$.

Definition 3.6 ([11]). Let $\tau_{1}, \tau_{2} \in I T(X)$. Then we say that τ_{1} is contained in τ_{2} or τ_{1} is coarser than τ_{2} or τ_{2} is finer than τ_{1}, if $\tau_{1} \subset \tau_{2}$, i.e., $G \in \tau_{2}$, for each $G \in \tau_{1}$.

It is clear that $\tau_{I, 0} \subset \tau \subset \tau_{I, 1}$.
Result 3.7 ([11], Proposition 3.8). Let $\left(\tau_{j}\right)_{j \in J} \subset I T(X)$. Then $\bigcap_{j \in J} \tau_{j} \in I T(X)$. In fact, $\bigcap_{j \in J} \tau_{j}$ is the coarsest IT on X containing each τ_{j}.
Proposition 3.8. Let $\tau, \gamma \in I T(X)$. We define $\tau \wedge \gamma$ and $\tau \vee \gamma$ as follows:

$$
\tau \wedge \gamma=\{W: W \in \tau \text { and } W \in \gamma\}
$$

and

$$
\tau \vee \gamma=\{W: W=U \cup V, U \in \tau \text { and } V \in \gamma\}
$$

Then
(1) $\tau \wedge \gamma$ is an IT on X which is the finest IT coarser than both τ and γ,
(2) $\tau \vee \gamma$ is an IT on X which is the coarsest IT finer than τ and γ.

Proof. (1) It is easily to verify that $\tau \wedge \gamma \in I T(X)$. Let η be any IT which is coarser than both τ and γ and let $W \in \eta$. Then $W \in \tau$ and $W \in \gamma$. Thus $W \in \tau \wedge \gamma$. So η is coarser than $\tau \wedge \gamma$.
(2) Similarly, we prove that $\tau \vee \gamma \in I T(X)$ and that it is the coarsest IT finer than τ and γ.
Definition 3.9 ([11]). Let (X, τ) be an ITS.
(i) A subfamily β of τ is called an intutionistic base (in short, IB) for τ, if for each $A \in \tau, A=\phi_{I}$ or there exists $\beta^{\prime} \subset \beta$ such that $A=\bigcup \beta^{\prime}$.
(ii) A subfamily σ of τ is called an intutionistic subbase (in short, ISB) for τ, if the family $\beta=\left\{\bigcap \sigma^{\prime}: \sigma^{\prime}\right.$ is a finite subset of $\left.\sigma\right\}$ is a base for τ.

In this case, the IT τ is said to be generated by σ. In fact, $\tau=\left\{\phi_{I}\right\} \cup\left\{\bigcup \beta^{\prime}\right.$: $\left.\beta^{\prime} \subset \beta\right\}$.

Example 3.10. (1) ([11], Example 3.10) Let $\sigma=\{((a, b),(-\infty, a]): a, b \in \mathbb{R}\}$ be the family of ISs in \mathbb{R}. Then σ generates an IT τ on \mathbb{R}, which is called the "usual left intuitionistic topology" on \mathbb{R}. In fact, the IB β for τ can be written in the form $\beta=\left\{\mathbb{R}_{I}\right\} \cup \sigma$ and τ consists of the following ISs in \mathbb{R} :
$\phi_{I}, \mathbb{R}_{I} ;$

$$
\left(\cup\left(a_{j}, b_{j}\right),(-\infty, c]\right)
$$

where $a_{j}, b_{j}, c \in \mathbb{R},\left\{a_{j}: j \in J\right\}$ is bounded from below, $c<\inf \left\{a_{j}: j \in J\right\}$;

$$
\left(\cup\left(a_{j}, b_{j}\right), \phi\right)
$$

where $a_{j}, b_{j} \in \mathbb{R},\left\{a_{j}: j \in J\right\}$ is not bounded from below.
Similarly, one can define the "usual right intuitionistic topology" on \mathbb{R} using an analogue construction.
(2) ([11], Example 3.11) Consider the family σ of ISs in \mathbb{R}

$$
\sigma=\left\{\left((a, b),\left(-\infty, a_{1}\right] \cup\left[b_{1}, \infty\right)\right): a, b, a_{1}, b_{1} \in \mathbb{R}, a_{1} \leq a, b_{1} \leq b\right\}
$$

Then σ generates an IT τ on \mathbb{R}, which is called the "usual intuitionistic topology" on \mathbb{R}. In fact, the IB β for τ can be written in the form $\beta=\left\{\mathbb{R}_{I}\right\} \cup \sigma$ and the elements of τ can be easily written down as in the above example.
(3) Consider the family $\sigma_{[0,1]}$ of ISs in \mathbb{R}

$$
\sigma_{[0,1]}=\{([a, b],(-\infty, a) \cup(b, \infty)): a, b \in \mathbb{R} \text { and } 0 \leq a \leq b \leq 1\}
$$

Then $\sigma_{[0,1]}$ generates an IT $\tau_{[0,1]}$ on \mathbb{R}, which is called the "usual unit closed interval intuitionistic topology" on \mathbb{R}. In fact, the IB $\beta_{[0,1]}$ for $\tau_{[0,1]}$ can be written in the form $\beta_{[0,1]}=\{\mathbb{R}\} \cup \sigma_{[0,1]}$ and the elements of τ can be easily written down as in the above example.

In this case, $\left([0,1], \tau_{[0,1]}\right)$ is called the "intuitionistic usual unit closed interval" and will be denoted by $[0,1]_{I}$, where $[0,1]_{I}=([0,1],(-\infty, 0) \cup(1, \infty))$.
(4) Let X be a non-empty set and let $\beta=\left\{p_{I}: p \in X\right\} \cup\left\{p_{I V}: p \in X\right\}$. Then β is an IB for the intuitionistic discrete topology τ_{1} on X.
(5) Let $X=\{a, b, c\}$ and let $\beta=\left\{(\{a, b\},\{c\}),(\{b, c\},\{a\}), X_{I}\right\}$. Assume that β is an base for an IT τ on X. Then by the definition of base, $\beta \subset \tau$. Thus $(\{a, b\},\{c\}),(\{b, c\},\{a\}) \in \tau$. So $(\{a, b\},\{c\}) \cap(\{b, c\},\{a\})=(\{\{b\},\{a, c\}) \in \tau$. But for any $\beta^{\prime} \subset \beta,\left(\{\{b\},\{a, c\}) \neq \bigcup \beta^{\prime}\right.$. Hence β is not an IB for an IT on X.

From (1), (2) and (3) in Example 3.10, we can define intutionistic intervals as following.

Definition 3.11. Let $a, b \in \mathbb{R}$ such that $a \leq b$. Then
(i) (the closed interval) $[a, b]_{I}=([a, b],(-\infty, a) \cup(b, \infty))$,
(ii) (the open interval) $(a, b)_{I}=((a, b),(-\infty, a] \cup[b, \infty))$,
(iii) (the half open interval or the half closed interval)

$$
(a, b]_{I}=((a, b],(-\infty, a] \cup(b, \infty)),[a, b)_{I}=([a, b),(-\infty, a) \cup[b, \infty))
$$

(iv) (the half intuitionistic real line)
$(-\infty, a]_{I}=((-\infty, a],(a, \infty)),(-\infty, a)_{I}=((-\infty, a),[a, \infty))$,
$[a, \infty)_{I}=([a, \infty),(-\infty, a)),(a, \infty)_{I}=((a, \infty),(-\infty, a])$,
(v) (the intuitionistic real line) $(-\infty, \infty)_{I}=((-\infty, \infty), \phi)=\mathbb{R}_{I}$.

Proposition 3.12. Let X be a non-empty set and let $\beta \subset I S(X)$. Then β is an $I B$ for an IT τ on X if and only if it satisfies the followings:
(1) $X_{I}=\bigcup \beta$,
(2) if $B_{1}, B_{2} \in \beta$ and $p_{I} \in B_{1} \cap B_{2}$ [resp. $p_{I V} \in B_{1} \cap B_{2}$], then there exists $B \in \beta$ such that $p_{I} \in B \subset B_{1} \cap B_{2}$ [resp. $p_{I V} \in B \subset B_{1} \cap B_{2}$].

Proof. The proof is the same as one in ordinary topological spaces.

Example 3.13. Let $X=\{a, b, c\}$ and let $\beta=\{(\{a\},\{b, c\}),(\{a, b\},\{c\}),(\{a, c\},\{b\})\}$. Then clearly, β satisfies two conditions of Proposition 3.12. Thus β is an IB for an IT τ on X. Furthermore, $\tau=\left\{\phi_{I},(\{a\},\{b, c\}),(\{a, b\},\{c\}),(\{a, c\},\{b\}), X_{I}\right\}$.

Proposition 3.14. Let X be a non-empty set and let $\sigma \subset I S(X)$ such that $X_{I}=$ $\bigcup \sigma$. Then there exists a unique IT τ on X such that σ is an ISB for Γ.

Proof. Let $\beta=\left\{B \in I S(X): B=\bigcup_{i=1}^{n} S_{i}\right.$ and $\left.S_{i} \in \sigma\right\}$. Let $\tau=\{U \in I S(X): U=$ ϕ_{I} or there is a subcollection β^{\prime} of β such that $\left.U=\bigcup \beta^{\prime}\right\}$. Then we can show that τ is the unique IT on X such that σ is an ISB for τ.

In Proposition 3.14, τ is called the IT on X generated by σ.
Example 3.15. Let $X=\{a, b, c, d, e\}$ and let $\sigma=\{(\{a\},\{b, c, d, e\}),(\{a, b, c\},\{d, e\})$, $(\{b, c, e\},\{a, d\}),(\{c, d\},\{a, b, e\})\}$. Then clearly,

$$
\bigcup \sigma_{T}=\{a\} \cup\{a, b, c\} \cup\{b, c, e\} \cup\{c, d\}=X
$$

and

$$
\bigcap \sigma_{F}=\{b, c, d, e\} \cap\{d, e\} \cap\{a, d\} \cap\{a, b, e\}=\phi .
$$

Thus $\bigcup \sigma=X_{I}$. Let β be the collection of all finite intersections of members of σ. Then $\beta=\{(\{a\},\{b, c, d, e\}),(\{b, c\},\{a, d, e\}),(\{c\},\{a, b, d, e\}),(\{a, b, c\},\{d, e\})$, $(\{b, c, e\},\{a, d\}),(\{c, d\},\{a, b, e\})\}$. Thus the generated intutionistic topology τ by σ is

$$
\begin{aligned}
\tau=\left\{\phi_{I},\right. & (\{a\},\{b, c, d, e\}),(\{c\},\{a, b, d, e\}),(\{a, c\},\{b, d, e\}),(\{b, c\},\{a, d, e\}), \\
& (\{c, e\},\{a, b, d\}),(\{a, b, c\},\{d, e\}),(\{a, c, e\},\{b, d\}),(\{b, c, d\},\{a, e\}), \\
& \left.(\{b, c, e\},\{a, d\}),(\{a, b, c, d\},\{e\}),(\{a, b, c, e\},\{d\}),(\{b, c, d, e\},\{a\}), X_{I}\right\} .
\end{aligned}
$$

Proposition 3.16. Let (X, τ) be a ITS such that $\tau \subset I S_{*}(X)$ and let $A \in I S_{*}(X)$.
(1) If there is $U \in \tau$ such that $a_{I} \in U \subset A$, for each $a_{I} \in A$, then $A \in \tau$.
(2) If there is $U \in \tau$ such that $a_{I V} \in U \subset A$, for each $a_{I V} \in A$, then $A \in \tau$.

Proof. (1) By the hypothesis, there is $U_{a_{I}} \in \tau$ such that $a_{I} \in U_{a_{I}} \subset A$. Then $a \in U_{a_{I}, T} \subset A_{T}$. Thus $A_{T}=\bigcup_{a \in A_{T}} U_{a_{I}, T}$. Since $\tau \subset I S_{*}(X)$ and $A \in I S_{*}(X)$,

$$
A_{F}=A_{T}^{c}=\bigcap_{a \notin A_{F}} U_{a_{I}, T}^{c}=\bigcap_{a \notin A_{F}} U_{a_{I}, F}
$$

So $A=\bigcup_{a_{I} \in A} U_{a_{I}}$. Since $U_{a_{I}} \in \tau, A \in \tau$.
(2) The proof is similar to (1)

Remark 3.17. If either the condition $\tau \subset I S_{*}(X)$ or the condition $A \in I S_{*}(X)$ is drawn, then Proposition 3.16 does not hold, in general.

Example 3.18. (1) Let $X=\{a, b, c\}$ and consider the IT τ on X given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right.
$$

where $A_{1}=(\{a, b\},\{c\}), A_{2}=(\{b, c\},\{a\}), A_{3}=(\{a, c\},\{b\})$,

$$
A_{4}=(\{a\},\{b, c\}), A_{5}=(\{b\},\{a, c\}), A_{5}=(\{c\},\{a, b\})
$$

Let $A=(\{a\},\{c\})$. Then clearly, $\tau \subset I S_{*}(X)$ but $A \notin I S_{*}(X)$. Moreover, $a_{I} \in$ $A_{4} \subset A$ and $a_{I V} \in \phi_{I} \subset A$ but $A \notin \tau$.
(2)) Let $X=\{a, b, c\}$ and consider the IT τ on X given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}\right.
$$

where $A_{1}=(\{a\},\{b\}), A_{2}=(\{b\},\{c\}), A_{3}=(\{c\},\{a\})$,

$$
A_{4}=(\phi,\{b, c\}), A_{5}=(\phi,\{a, c\}), A_{6}=(\phi,\{a, b\})
$$

$$
A_{7}=(\{b, c\}, \phi), A_{8}=(\{a, c\}, \phi), A_{9}=(\{a, b\}, \phi)
$$

Let $A=(\{a\},\{b, c\})$. Then clearly, $\tau \not \subset I S_{*}(X)$ but $A \in I S_{*}(X)$. Moreover, $a_{I} \in A_{1} \subset A$, and $a_{I V} \in A_{4} \subset A$ and $a_{I V} \in \phi_{I} \subset A$ but $A \notin \tau$.

4. IntuItionistic neighborhoods

Coker [12] introduced the notions of an intuitionistic neighborhood and intuitionistic vanishing neighborhood, obtained some properties and gave some examples. In this section, we give additional examples and properties. Moreover, we define some types of intuitionistic closures and interiors, and obtain some properties.

Definition 4.1 ([12]). Let X be an ITS, $p \in X$ and let $N \in I S(X)$. Then
(i) N is called a neighborhood of p_{I}, if there exists an IOS G in X such that

$$
p_{I} \in G \subset N \text {, i.e., } p \in G_{T} \subset N_{T} \text { and } G_{F} \supset N_{F} \text {, }
$$

(ii) N is called a neighborhood of $p_{I V}$, if there exists an IOS G in X such that

$$
p_{I V} \in G \subset N \text {, i.e., } G_{T} \subset N_{T} \text { and } p \notin G_{F} \supset N_{F}
$$

We will denote the set of all neighborhoods of $p_{I}\left[\right.$ resp. $\left.p_{I V}\right]$ by $N\left(p_{I}\right)$ [resp. $\left.N\left(p_{I V}\right)\right]$.

Result 4.2 ([12], Proposition 3.2). Let X be an ITS and let $p \in X$.
[IN1] If $N \in N\left(p_{I}\right)$, then $p_{I} \in N$.
[IN2] If $N \in N\left(p_{I}\right)$ and $N \subset N$, then $M \in N\left(p_{I}\right)$.
[IN3] If $N, M \in N\left(p_{I}\right)$, then $N \cap M \in N\left(p_{I}\right)$.
[IN4] If $N \in N\left(p_{I}\right)$, then there exists $M \in N\left(p_{I}\right)$ such that $N \in N\left(q_{I}\right)$, for each $q_{I} \in M$.

Result 4.3 ([12], Proposition 3.3). Let X be an ITS and let $p \in X$.
[IN1] If $N \in N\left(p_{I V}\right)$, then $p_{I V} \in N$.
[IN2] If $N \in N\left(p_{I V}\right)$ and $N \subset N$, then $M \in N\left(p_{I V}\right)$.
[IN3] If $N, M \in N\left(p_{I V}\right)$, then $N \cap M \in N\left(p_{I V}\right)$.
[IN4] If $N \in N\left(p_{I V}\right)$, then there exists $M \in N\left(p_{I V}\right)$ such that $N \in N\left(q_{I V}\right)$, for each $q_{I V} \in M$.

Result 4.4 ([12], Proposition 3.4). Let (X, τ) be an ITS. We define the families

$$
\tau_{I}=\left\{G: G \in N\left(p_{I}\right), \text { for each } p_{I} \in G\right\}
$$

and

$$
\tau_{I V}=\left\{G: G \in N\left(p_{I V}\right), \text { for each } p_{I V} \in G\right\}
$$

Then $\tau_{I}, \tau_{I V} \in I T(X)$.

Remark 4.5. (1) From Result 4.4, we can easily see that for an IT τ on a set X and each $U \in \tau$,

$$
\tau_{I}=\tau \cup\left\{\left(U_{T}, S_{U}\right): S_{U} \subset U_{F}\right\} \cup\{(\phi, S): S \subset X\}
$$

and

$$
\tau_{I V}=\tau \cup\left\{\left(S_{U}, U_{F}\right): S_{U} \supset U_{T} \text { and } S_{U} \cap U_{F}=\phi\right\}
$$

(2) For an IT τ on a set X, four ITs can be defined on X :

$$
\tau_{I, 0,1}=\left\{[] U: U \in \tau_{I}\right\}, \tau_{I V, 0,1}=\left\{[] U: U \in \tau_{I V}\right\}
$$

and

$$
\tau_{I, 0,2}=\left\{<>U: U \in \tau_{I}\right\}, \tau_{I V, 0,2}=\left\{<>U: U \in \tau_{I V}\right\}
$$

In fact, $\tau_{I, 0,1}=\tau_{0,1}$ and $\tau_{I V, 0,2}=\tau_{0,2}$.
(3) For an IT τ on a set X, four ordinary topologies can be defined on X :

$$
\tau_{I, 1}=\left\{U_{T}: U \in \tau_{I}\right\}, \tau_{I V, 1}=\left\{U_{T}: U \in \tau_{I V}\right\}
$$

and

$$
\tau_{I, 2}=\left\{U_{F}^{c}: U \in \tau_{I}\right\}, \tau_{I V, 2}=\left\{U_{F}^{c}: U \in \tau_{I V}\right\}
$$

In fact, $\tau_{I, 1}=\tau_{1}$ and $\tau_{I V, 2}=\tau_{2}$.
Example 4.6. Let $X=\{a, b, c\}$ and let τ be the IT on X given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}\right\}
$$

where $A_{1}=(\{a, b\},\{c\}), A_{2}=(\{b\},\{a\}), A_{3}=(\{a, b\}, \phi), A_{4}=(\{b\},\{a, c\})$.
Then $\tau_{I}=\tau \cup\left\{\left(\{b\}, S_{A_{4}}\right): S_{A_{4}} \subset\{a, c\}\right\} \cup\{(\phi, S \subset X\}$

$$
=\tau \cup\left\{A_{5}, A_{6}, A_{7}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}, A_{13}\right\}
$$

and

$$
\tau_{I V}=\tau \cup\left\{\left(S_{A_{2}},\{a\}\right): S_{A_{2}} \supset\{b\}, S_{A_{2}} \cap\{a\}=\phi\right\}=\tau \cup\left\{A_{14}\right\}
$$

where $A_{5}=(\{b\},\{c\}), A_{6}=(\{b\}, \phi), A_{7}=(\phi,\{a\}), A_{8}=(\phi,\{b\})$,

$$
A_{9}=(\phi,\{c\}), A_{10}=(\phi,\{a, b\}), A_{11}=(\phi,\{b, c\}), A_{12}=(\phi,\{a, c\})
$$

$$
A_{13}=(\phi, \phi), A_{14}=(\{b, c\},\{a\})
$$

Thus we have four ITs and ordinary topologies on X as follows:

$$
\begin{aligned}
& \tau_{I, 0,1}=\left\{\phi_{I}, X_{I}, A_{1}, A_{4}\right\}=\tau_{0,1} \\
& \tau_{I V, 0,1}=\left\{\phi_{I}, X_{I}, A_{1}, A_{4}, A_{14}\right\} \\
& \tau_{I, 0,2}=\left\{\phi_{I}, X_{I}, A_{1}, A_{14}, A_{4},<>A_{8},<>A_{10},<>A_{11}\right\} \\
& \tau_{I V, 0,2}=\left\{\phi_{I}, X_{I}, A_{1}, A_{14}, A_{4}\right\}=\tau_{0,2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \tau_{I, 1}=\{\phi, X,\{a, b\},\{b\}\}=\tau_{1} \\
& \tau_{I V, 1}=\{\phi, X,\{a, b\},\{b\},\{b, c\}\} \\
& \tau_{I, 2}=\{\phi, X,\{a, b\},\{b, c\},\{b\},\{a, c\},\{c\},\{a\}\} \\
& \tau_{I V, 2}=\{\phi, X,\{a, b\},\{b, c\},\{b\}\}=\tau_{2}
\end{aligned}
$$

Result 4.7 ([12], Proposition 3.5). Let (X, τ) be an ITS. Then $\tau \subset \tau_{I}$ and $\tau \subset \tau_{I V}$.
The following is the immediate result of Result 4.7.
Corollary 4.8. Let (X, τ) be an ITS and let $I C_{\tau}\left[r e s p . I C_{\tau_{I}}\right.$ and $\left.I C_{\tau_{I V}}\right]$ be the set of all ICSs w.r.t. $\tau\left[\right.$ resp. τ_{I} and $\left.\tau_{I V}\right]$. Then

$$
I C_{\tau}(X) \subset I C_{\tau_{I}}(X) \text { and } I C_{\tau}(X) \subset I C_{\tau_{I V}}(X)
$$

Example 4.9. Let $X=\{a, b, c, d\}$ and consider the family of ISs

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}\right\}
$$

where

$$
A_{1}=(\{a, b\},\{d\}), A_{2}=(\{c\},\{b, d\}), A_{3}=(\phi,\{b, d\}), A_{4}=(\{a, b, c\},\{d\})
$$

Then from Example 3.6 in [12], (X, τ) is an ITS, and two ITs τ_{I} and $\tau_{I V}$ on X are given, respectively as follows:

$$
\tau_{I}=\tau \bigcup\left\{A_{i}: i=5,6, \cdots, 23\right\}
$$

where

$$
\begin{aligned}
& A_{5}=(\{c\},\{b\}), A_{6}=(\{c\},\{d\}), A_{7}=(\{a, b\}, \phi), A_{8}=(\{a, b, c\}, \phi), \\
& A_{9}=(\{c\}, \phi), A_{10}=(\phi,\{a\}), A_{11}=(\phi,\{b\}), A_{12}=(\phi,\{c\}), \\
& A_{13}=(\phi,\{d\}), A_{14}=(\phi,\{a, b\}), A_{15}=(\phi,\{a, c\}), A_{16}=(\phi,\{a, d\}), \\
& A_{17}=(\phi,\{b, c\}), A_{18}=(\phi,\{c, d\}), A_{19}=(\phi,\{a, b, c\}), A_{20}=(\phi,\{a, b, d\}), \\
& A_{21}=(\phi,\{a, c, d\}), A_{22}=(\phi,\{b, c, d\}), A_{23}=(\phi, \phi)
\end{aligned}
$$

and

$$
\tau_{I V}=\tau \cup\left\{A_{24}, A_{25}\right\}
$$

where

$$
A_{24}=(\{a, c\},\{b, d\}), A_{25}=(\{a\},\{b, d\})
$$

Thus $I C_{\tau}(X)=\left\{\phi_{I}, X_{I}, A_{1}{ }^{c}, A_{2}{ }^{c}, A_{3}{ }^{c}, A_{4}{ }^{c}\right\}$,

$$
I C_{\tau_{I}}(X)=I C_{\tau}(X) \bigcup\left\{A_{i}{ }^{c}: i=5,6, \cdots, 23\right\}
$$

$$
I C_{\tau_{I V}}(X)=I C_{\tau}(X) \cup\left\{A_{24}{ }^{c}, A_{25}^{c}\right\}
$$

where

$$
A_{1}^{c}=(\{d\},\{a, b\}), A_{2}^{c}=(\{b, d\},\{c\}), A_{3}^{c}=(\{b, d\}, \phi), A_{4}^{c}=(\{d\},\{a, b, c\}),
$$

$$
A_{5}{ }^{c}=(\{b\},\{c\}), A_{6}{ }^{c}=(\{d\},\{c\}), A_{7}^{c}=(\phi,\{a, b\}), A_{8}{ }^{c}=(\phi,\{a, b, c\})
$$

$$
A_{9}^{c}=\left(\phi,\{c\}, A_{10}^{c}=(\{a\}, \phi), A_{11}^{c}=(\{b\}, \phi), A_{12}^{c}=(\{c\}, \phi),\right.
$$

$$
A_{13}^{c}=(\{d\}, \phi), A_{14}{ }^{c}=(\{a, b\}, \phi), A_{15}{ }^{c}=(\{a, c\}, \phi), A_{16}^{c}=(\{a, d\}, \phi),
$$

$$
A_{17}{ }^{c}=(\{b, c\}, \phi), A_{18}{ }^{c}=(\{c, d\}, \phi), A_{19}^{c}=(\{a, b, c\}, \phi), A_{20}{ }^{c}=(\{a, b, d\}, \phi),
$$

$$
A_{21}^{c}=(\{a, c, d\}, \phi), A_{22}^{c}=(\{b, c, d\}, \phi), A_{23}^{c}=(\phi, \phi),
$$

$$
A_{24}{ }^{c}=(\{b, d\},\{a, c\}), A_{25}{ }^{c}=(\{b, d\},\{a\})
$$

So $I C_{\tau}(X) \subset I C_{\tau_{I}}(X)$ and $I C_{\tau}(X) \subset I C_{\tau_{I V}}(X)$.
The following is the converse of Result 4.2.
Result 4.10 ([12], Proposition 3.8). Let X be a non-empty set. Suppose $N^{*}: X \rightarrow$ $P(I S(X))$ is the mapping satisfying the properties [IN1], [IN2], [IN3] and [IN4] in Result 4.2, where $N^{*}\left(p_{I} \in P(I S(X))\right.$. Then there exists an IT τ_{I} on X such that $N^{*}\left(p_{I}\right)=I N\left(p_{I}\right)$, for each $p \in X$, where $I N\left(p_{I}\right)$ denotes the set of INs of p_{I} in an $\operatorname{ITS}\left(X, \tau_{I}\right)$.

The following is the converse of Result 4.3.
Result 4.11 ([12], Proposition 3.7). Let X be a non-empty set. Suppose $N^{*}: X \rightarrow$ $P(I S(X))$ is the mapping satisfying the properties [IN1], [IN2], [IN3] and [IN4] in Result 4.3, where $N^{*}\left(p_{I V} \in P(I S(X))\right.$. Then there exists an IT $\tau_{I V}$ on X such that $N^{*}\left(p_{I V}\right)=I N\left(p_{I V}\right)$, for each $p \in X$, where $I N\left(p_{I V}\right)$ denotes the set of INs of $p_{I V}$ in an $\operatorname{ITS}\left(X, \tau_{I V}\right)$.

Result 4.12 ([12], Proposition 3.9). Let (X, τ) be an ITS. Then $\tau=\tau_{I} \cap \tau_{I V}$.
The following is the immediate result of Result 4.12.
Corollary 4.13. Let (X, τ) be an ITS and let $\left.I C_{\tau}\right]$. Then

$$
I C_{\tau}(X)=I C_{\tau_{I}}(X) \cap I C_{\tau_{I V}}(X)
$$

Example 4.14. In Example 4.9, we can easily check that

$$
I C_{\tau}(X)=I C_{\tau_{I}}(X) \cap I C_{\tau_{I V}}(X)
$$

Definition 4.15. Let (X, τ) be an ITS and let $A \in I S(X)$.
(i) ([11]) The intuitionistic closure of A w.r.t. τ, denoted by $\operatorname{Icl}(A)$, is an IS of X defined as:

$$
\operatorname{Icl}(A)=\bigcap\left\{K: K^{c} \in \tau \text { and } A \subset K\right\} .
$$

(ii) ([11]) The intuitionistic interior of A w.r.t. τ, denoted by $\operatorname{Iint}(A)$, is an IS of X defined as:

$$
\operatorname{Iint}(A)=\bigcup\{G: G \in \tau \text { and } G \subset A\}
$$

(iii) The intuitionistic closure of A w.r.t. τ_{I}, denoted by $c l_{\tau_{I}}(A)$, is an IS of X defined as:

$$
c l_{\tau_{I}}(A)=\bigcap\left\{K: K^{c} \in \tau_{I} \text { and } A \subset K\right\}
$$

(iv) The intuitionistic interior of A w.r.t. τ_{I}, denoted by $\operatorname{int}_{I}(A)$, is an IS of X defined as:

$$
\operatorname{int}_{\tau_{I}}(A)=\bigcup\left\{G: G \in \tau_{I} \text { and } G \subset A\right\}
$$

(v) The intuitionistic closure of A w.r.t. $\tau_{I V}$, denoted by $c l_{\tau_{I V}}(A)$, is an IS of X defined as:

$$
c l_{\tau_{I V}}(A)=\bigcap\left\{K: K^{c} \in \tau_{I V} \text { and } A \subset K\right\}
$$

(vi) The intuitionistic interior of A w.r.t. $\tau_{I V}$, denoted by $\operatorname{int}_{I V}(A)$, is an IS of X defined as:

$$
\operatorname{int}_{\tau_{I V}}\left(A=\bigcup\left\{G: G \in \tau_{I V} \text { and } G \subset A\right\}\right.
$$

From Definition 4.16, we can easily see that

$$
\operatorname{Iint}(A) \subset \operatorname{int}_{\tau_{I}}(A), \quad \operatorname{Iint}(A) \subset \operatorname{int}_{I V}(A)
$$

and

$$
c l_{\tau_{I}}(A) \subset \operatorname{Icl}(A), c l_{\tau_{I V}}(A) \subset \operatorname{Icl}(A)
$$

However, the reverse inclusions do not need to hold.
Example 4.16. In Example 4.9, let $A=(\{a, c\},\{d\}), B=(\{d\},\{a, c\})$. Then

$$
\operatorname{Iint}(A)=\bigcup\{G \in \tau: G \subset A\}=A_{2} \cup A_{3}=A_{2}=(\{c\},\{b, d\})
$$

$$
\operatorname{int}_{\tau_{I}}(A)=\bigcup\left\{G \in \tau_{I}: G \subset A\right\}
$$

$$
=A_{2} \cup A_{3} \cup A_{6} \cup A_{13} \cup A_{16} \cup A_{18} \cup A_{20} \cup A_{21} \cup A_{22}
$$

$$
=(\{c\},\{d\})
$$

$$
\operatorname{int}_{\tau_{I V}}(A)=\bigcup\left\{G \in \tau_{I V}: G \subset A\right\}=A_{2} \cup A_{3} \cup A_{24}=(\{a, b, c\},\{b, d\})
$$

and

$$
\begin{aligned}
& \operatorname{Icl}(B)=\bigcap\left\{F: F^{c} \in \tau, B \subset F\right\}=A_{2}^{c} \cap A_{3}^{c} \cap X_{I}=(\{b, d\},\{c\}), \\
& c l_{\tau_{I}}(B)=\bigcap\left\{F: F^{c} \in \tau_{I} \text { and } B \subset F\right\} \\
& =A_{2}^{c} \cap A_{3}^{c} \cap A_{6}^{c} \cap A_{13}^{c} \cap A_{16}^{c} \cap A_{18}^{c} \cap A_{20}^{c} \cap A_{21}^{c} \cap A_{22}^{c} \cap X_{I} \\
& 40
\end{aligned}
$$

$$
\begin{aligned}
& =(\{d\},\{c\}), \\
c l_{\tau_{I V}}(B) & =\bigcap\left\{K: K^{c} \in \tau_{I V} \text { and } B \subset K\right\}=A_{24}^{c} \cap A_{25}^{c} \cap X_{I}=(\{b, d\},\{a, c\}) .
\end{aligned}
$$

Thus we can confirm the following inclusions:

$$
\operatorname{Iint}(A) \subset \operatorname{int}_{\tau_{I}}(A), \operatorname{Iint}(A) \subset \operatorname{int}_{I V}(A)
$$

and

$$
c l_{\tau_{I}}(B) \subset \operatorname{Icl}(B), c l_{\tau_{I V}}(B) \subset \operatorname{Icl}(B) .
$$

Result 4.17 ([11], Proposition 3.15). Let (X, τ) be an ITS and let $A \in I S(X)$. Then

$$
\operatorname{Iint}\left(A^{c}\right)=(\operatorname{Icl}(A))^{c} \text { and } \operatorname{Icl}\left(A^{c}\right)=(\operatorname{Iint}(A))^{c} .
$$

Result 4.18 ([12], Proposition 3.10). Let (X, τ) be an ITS and let $A \in I S(X)$. Then

$$
\operatorname{Iint}(A)=\operatorname{int}_{\tau_{I}}(A) \cap \operatorname{int}_{\tau_{I V}}(A) .
$$

The following is the immediate result of Definition 4.15 and Results 4.17 and 4.18.
Corollary 4.19. Let (X, τ) be an ITS and let $A \in I S(X)$. Then

$$
I c l(A)=c l_{\tau_{I}}(A) \cup c l_{\tau_{I V}}(A) .
$$

Example 4.20. In Example 4.9, let $A=(\{a, c\},\{d\}), B=(\{d\},\{a, c\})$. Then we can see that

$$
\operatorname{Icl}(B)=(\{b, d\},\{c\}), c l_{\tau_{I}}(A)=(\{d\},\{c\}), c l_{\tau_{I V}}(A)=(\{b, d\},\{a, c\})
$$

and

$$
\operatorname{Iint}(A)=(\{c\},\{b, d\}), \operatorname{int}_{\tau_{I}}(A)=(\{c\},\{d\}), \operatorname{int}_{\tau_{I V}}(A)=(\{a, b, c\},\{b, d\}) .
$$

Thus

$$
c l_{\tau_{I}}(B) \cup c l_{\tau_{I V}}(B)=(\{d\},\{c\}) \cup(\{b, d\},\{a, c\})=(\{b, d\},\{c\})=\operatorname{Icl}(B)
$$

and

$$
\operatorname{int}_{\tau_{I}}(A) \cap \operatorname{int}_{\tau_{I V}}(A)=(\{c\},\{d\}) \cap(\{a, b, c\},\{b, d\})=(\{c\},\{b, d\})=\operatorname{Iint}(A) .
$$

The following is the immediate result of Definition 4.15.
Proposition 4.21. Let X be an ITS and let $A \in I S(X)$. Then
(1) $A \in I C(X)$ if and only if $A=\operatorname{Icl}(A)$,
(2) $A \in \operatorname{IO}(X)$ if and only if $A=\operatorname{Iint}(A)$.

Result 4.22 ([11], Proposition 3.16, Kuratowski Closure Axioms). Let X be an ITS and let $A, B \in I S(X)$. Then
$[\mathrm{IK} 0]$ if $A \subset B$, then $\operatorname{Icl}(A) \subset \operatorname{Icl}(B)$,
[IK1] $\operatorname{Icl}\left(\phi_{I}\right)=\phi_{I}$,
$[\mathrm{IK} 2] ~ A \subset \operatorname{Icl}(A)$,
[IK3] $\operatorname{Icl}(\operatorname{Icl}(A))=\operatorname{Icl}(A)$,
$[\operatorname{IK4}] \operatorname{Icl}(A \cup B)=\operatorname{Icl}(A) \cup \operatorname{Icl}(A)$.
Let $I c l^{*}: I S(X) \rightarrow I S(X)$ be the mapping satisfying the properties [IK1], [IK2],[IK3] and [IK4]. Then we will call the mapping $I c c^{*}$ as the intuitionistic closure operator on X.

Proposition 4.23. Let $I c l^{*}$ be the intuitionistic closure operator on X. Then there exists a unique $I T \tau$ on X such that $\operatorname{Icl}^{*}(A)=\operatorname{Icl}(A)$, for each $A \in I S(X)$, where $\operatorname{Icl}(A)$ denotes the intuitionistic closure of A in the ITS (X, τ). In fact,

$$
\tau=\left\{A^{c} \in I S(X): \operatorname{Icl}^{*}(A)=A\right\}
$$

Proof. The proof is almost similar to the case of ordinary topological spaces.
Result 4.24 ([11], Proposition 3.16). Let X be an ITS and let $A, B \in I S(X)$. Then
$[$ III0] if $A \subset B$, then $\operatorname{Iint}(A) \subset \operatorname{Iint}(B)$,
[II1] $\operatorname{Iint}\left(X_{I}\right)=X_{I}$,
[II2] $\operatorname{Iint}(A) \subset A$,
[II3] $\operatorname{Iint}(\operatorname{Iint}(A))=\operatorname{Iint}(A)$,
$[$ II4] $\operatorname{Iint}(A \cap B)=\operatorname{Iint}(A) \cap \operatorname{Iint}(A)$.
Let Iint $^{*}: I S(X) \rightarrow I S(X)$ be the mapping satisfying the properties [II1], [II2],[II3] and [II4]. Then we will call the mapping Iint * as the intuitionistic interior operator on X.

Proposition 4.25. Let Iint* be the intuitionistic interior operator on X. Then there exists a unique IT τ on X such that $\operatorname{Iint} t^{*}(A)=\operatorname{Iint}(A)$, for each $A \in I S(X)$, where $\operatorname{Iint}(A)$ denotes the intuitionistic interior of A in the $\operatorname{ITS}(X, \tau)$. In fact,

$$
\tau=\left\{A \in I S(X): \operatorname{Iint}^{*}(A)=A\right\}
$$

Proof. The proof is similar to one of Proposition 4.23.
Definition 4.26 ([12]). Let (X, τ) be an ITS, $p \in X$ and let $A \in I S(X)$. Then
(i) $p_{I} \in A$ is called a τ_{I}-interior point of A, if $A \in N\left(p_{I}\right)$,
(ii) $p_{I V} \in A$ is called a $\tau_{I V}$-interior point of A, if $A \in N\left(p_{I V}\right)$,

We will denote the union of all τ_{I}-interior points [resp. $\tau_{I V}$-interior points] of A as $\tau_{I}-\operatorname{int}(A)\left[\operatorname{resp} . \tau_{I V}-i n t(A)\right]$. It is clear that

$$
\tau_{I}-\operatorname{int}(A)=\bigcup\left\{p_{I}: A \in N\left(p_{I}\right)\right\}\left[\text { resp. } \tau_{I V}-i n t(A)=\bigcup\left\{p_{I V}: A \in N\left(p_{I V}\right)\right\}\right] .
$$

Result 4.27 ([12], Proposition 4.2). Let (X, τ) be an ITS and let $A \in I S(X)$.
(1) $A \in \tau_{I}$ if and only if $A_{I}=\tau_{I}-i n t(A)$.
(2) $A \in \tau_{I V}$ if and only if $A_{I V}=\tau_{I V}-\operatorname{int}(A)$.

Result 4.28 ([12], Proposition 4.3). Let X be a non-empty set, $\left(G_{j}\right)_{j \in J} \subset I S(X)$ and let $G=\bigcup_{j \in J} G_{j}$. Then
(1) $G_{I}=\bigcup_{j \in J} G_{j, I}$,
(2) $G_{I V}=\bigcup_{j \in J} G_{j, I V}$.

Result 4.29 ([12], Proposition 4.4). Let (X, τ) be an ITS and let $A \in I S(X)$. Then
(1) $\tau_{I}-\operatorname{int}(A)=\bigcup_{G \subset A, G \in \tau_{I}} G_{I}$,
(2) $\tau_{I V}-\operatorname{int}(A)=\bigcup_{G \subset A, G \in \tau_{I V}} G_{I V}$.

Remark $4.30([12]) . \quad \tau_{I^{-}}-\operatorname{int}(A) \subset i n t_{\tau_{I}}(A)$ and $\tau_{I V}-i n t(A) \subset i n t_{\tau_{I V}}(A)$.
But the converse inclusions do not hold, in general.
Example 4.31. Let $X=\{a, b, c, d, e\}$ and let us consider ITS (X, τ) given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}\right\}
$$

where $A_{1}=(\{a, b, c\},\{e\}), A_{2}=(\{c\},,\{d\}), A_{3}=(\{c\},\{d, e\}), A_{4}=(\{a, b, c\}, \phi)$. Then we can easily find τ_{I} and $\tau_{I V}$:

$$
\tau_{I}=\tau \cup\left\{A_{5}, A_{6}\right\}
$$

where $A_{5}=(\{c\}, \phi), A_{6}=(\{c\},\{e\})$
and

$$
\tau_{I V}=\tau \cup\left\{A_{7}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}\right\}
$$

where $A_{7}=(\{a, b, c, d\},\{e\}), A_{8}=(\{a, b, c\},\{d\}), A_{9}=(\{b, c, e\},\{d\})$,
$A_{10}=(\{a, b, c, e\},\{d\}), A_{11}=(\{a, c\},\{e\}), A_{12}=(\{b, c\},\{e\})$,
$A_{13}=(\{c, d\},\{e\}), A_{14}=(\{a, c, d\},\{e\}), A_{15}=(\{a, b, c, d\}, \phi)$,
$A_{16}=(\{a, b, c, e\}, \phi)$.
Now let $A=(\{b, c\},\{e\})$. Then

$$
\operatorname{Iint}(A)=\bigcup\{G \in \tau: G \subset A\}=A_{3}
$$

$\operatorname{int}_{\tau_{I}}(A)=\bigcup\left\{G \in \tau_{I}: G \subset A\right\}=A_{3} \cup A_{6}=A_{6}$,
$\operatorname{int}_{\tau_{I V}}(A)=\bigcup\left\{G \in \tau_{I V}: G \subset A\right\}=A_{3} \cup A_{12}=A_{12}$,
$\tau_{I}-\operatorname{int}(A)=\bigcup\left\{p_{I}: A \in N\left(p_{I}\right)\right\}=c_{I}$,
$\tau_{I V}-\operatorname{int}(A)=\bigcup\left\{p_{I V}: A \in N\left(p_{I V}\right)\right\}=a_{I V}$.
Thus we have the following strict inclusions:
$\tau_{I}-i n t(A) \subset \operatorname{int}_{\tau_{I}}(A), \tau_{I}-\operatorname{int}(A) \neq \operatorname{int}_{\tau_{I}}(A)$,
$\tau_{I V}-i n t(A) \subset \operatorname{int}_{\tau_{I V}}(A), \tau_{I V}-i n t(A) \neq i n t_{\tau_{I V}}(A)$.
Result 4.32 ([12], Proposition 4.6). Let (X, τ) be an ITS and let $A, B \in I S(X)$. Then
(1) $\tau_{I}-\operatorname{int}(A) \subset A_{I}, \tau_{I V}-i n t(A) \subset A_{I V}$,
(2) if $A \subset B$, then $\tau_{I}-\operatorname{int}(A) \subset \tau_{I}-\operatorname{int}(B), \tau_{I V}-\operatorname{int}(A) \subset \tau_{I V-i n t}(B)$,
(3) $\tau_{I}-\operatorname{int}(A \cap B)=\tau_{I}-\operatorname{int}(A) \cap \tau_{I}-\operatorname{int}(B)$,
$\tau_{I V}-\operatorname{int}(A \cap B)=\tau_{I V}-\operatorname{int}(A) \cap \tau_{I V}-\operatorname{int}(B)$,
(4) $\tau_{I}-\operatorname{int}\left(X_{I}\right)=X_{I}, \tau_{I V}-\operatorname{int}\left(X_{I}\right)=X_{I}$.

Definition 4.33. Let (X, τ) be an ITS, $p \in X$ and let $A \in I S(X)$. Then
(i) p_{I} is called a τ_{I}-closure point of A, if for each $N \in N\left(p_{I}\right)$,

$$
A \cap N \neq \phi_{I}, \text { i.e., } A_{T} \cap N_{T} \neq \phi \text { or } A_{F} \cup N_{F} \neq X,
$$

(ii) $p_{I V}$ is called a $\tau_{I V}$-closure point of A, if for each $N \in N\left(p_{I V}\right)$,

$$
A \cap N \neq \phi_{I} \text {, i.e., } A_{T} \cap N_{T} \neq \phi \text { or } A_{F} \cup N_{F} \neq X .
$$

We will denote the union of all τ_{I}-closure points [resp. $\tau_{I V}$-closure points] of A as $\tau_{I}-c l(A)\left[\right.$ resp. $\left.\tau_{I V}-c l(A)\right]$. It is obvious that

$$
\tau_{I}-c l(A)=\bigcup\left\{p_{I}: A \cap N \neq \phi_{I}, \forall N \in N\left(p_{I}\right)\right\}
$$

[resp. $\left.\tau_{I V}-c l(A)=\bigcup\left\{p_{I V}: A \cap N \neq \phi_{I}, \forall N \in N\left(p_{I V}\right)\right\}\right]$.
Remark 4.34. $\quad \tau_{I^{-}}-c l(A) \subset c l_{\tau_{I}}(A)$ and $\tau_{I V^{-}}-c l(A) \subset c l_{\tau_{I V}}(A)$.
But the converse inclusions do not hold, in general.
Example 4.35. In Example 4.31, let us consider ITS (X, τ) given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}\right\}
$$

where $A_{1}=(\{a, b, c\},\{e\}), A_{2}=(\{c\},\{d\}), A_{3}=(\{c\},\{d, e\}), A_{4}=(\{a, b, c\}, \phi)$ and $X=\{a, b, c, d, e\}$. Then we can easily find $I C_{\tau}(X), I C_{\tau_{I}}(X)$ and $I C_{\tau_{I V}}(X)$:

$$
I C_{\tau}(X)=\left\{\phi, X_{I}, A_{1}^{c}, A_{2}^{c}, A_{3}^{c}, A_{4}^{c}\right\},
$$

where $A_{1}^{c}=(\{e\},\{a, b, c\}), A_{2}^{c}=(\{d\},\{c\}), A_{3}^{c}=(\{d, e\},\{c\}), A_{4}^{c}=(\phi,\{a, b, c\})$,

$$
I C_{\tau_{I}}(X)=I C_{\tau}(X) \cup\left\{A_{5}^{c}, A_{6}^{c}\right\}
$$

where $A_{5}^{c}=(\phi,\{c\}), A_{6}^{c}=(\{e\},\{c\})$
and

$$
I C_{\tau_{I V}}(X)=I C_{\tau}(X) \cup\left\{A_{7}^{c}, A_{8}^{c}, A_{9}^{c}, A_{10}^{c}, A_{11}^{c}, A_{12}^{c}, A_{13}^{c}, A_{14}^{c}, A_{15}^{c}, A_{16}^{c}\right\},
$$

where $A_{7}^{c}=(\{a, b, c, d\},\{e\}), A_{8}^{c}=(\{a, b, c\},\{d\}), A_{9}^{c}=(\{b, c, e\},\{d\})$,

$$
A_{10}^{c}=(\{a, b, c, e\},\{d\}), A_{11}^{c}=(\{e\},\{a, c\}), A_{12}^{c}=(\{e\},\{b, c\}),
$$

$$
A_{13}^{c}=(\{e\},\{c, d\}), A_{14}^{c}=(\{e\},\{a, c, d\}), A_{15}^{c}=(\phi,\{a, b, c, d\}),
$$

$$
A_{16}^{c}=(\phi,\{a, b, c, e\})
$$

Now let $A=(\{e\},\{b, c\})$. Then

$$
\begin{aligned}
& \operatorname{Icl}(A)=\bigcap\left\{F \in I C_{\tau}(X): A \subset F\right\}=X_{I} \cap A_{3}^{c}=A_{3}^{c}, \\
& c l_{\tau_{I}}(A)=\bigcap\left\{F \in I C_{\tau_{I}}(X): A \subset F\right\}=X_{I} \cap A_{3}^{c} \cap A_{6}^{c}=A_{6}^{c}, \\
& c l_{\tau_{I V}}(A)=\bigcap\left\{F \in I C_{\tau_{I V}}(X): A \subset F\right\}=X_{I} \cap A_{3}^{c} \cap A_{13}^{c}=A_{13}^{c}, \\
& \tau_{I^{-}}-c l(A)=\bigcup\left\{p_{I}: N_{T} \cap A_{T} \neq \phi, \forall N \in N\left(p_{I}\right)\right\}=e_{I}, \\
& \tau_{I V}-c l(A) \\
& \\
& \quad=\bigcup\left\{p_{I V}: N_{F} \cup A_{F} \neq X, \forall N \in N\left(p_{I V}\right)\right\} \\
& \quad=a_{I V} \cup b_{I V} \cup d_{I V} . \\
& \quad=(\phi,\{c\}) .
\end{aligned}
$$

Thus we have the following strict inclusions:

$$
\begin{aligned}
& \tau_{I}-c l(A) \subset \operatorname{cl}_{\tau_{I}}(A), \quad \tau_{I}-c l(A) \neq \operatorname{cl}_{\tau_{I}}(A) \\
& \tau_{I V}-c l(A) \subset \operatorname{cl}_{\tau_{I V}}(A), \quad \tau_{I V}-c l(A) \neq l_{\tau_{I V}}(A)
\end{aligned}
$$

Proposition 4.36. Let (X, τ) be an ITS and let $A \in I S(X)$. Then
(1) $\left(\tau_{I}-\operatorname{int}(A)\right)^{c}=\tau_{I}-c l\left(A^{c}\right), \tau_{I}-\operatorname{int}\left(A^{c}\right)=\left(\tau_{I}-c l(A)\right)^{c}$
(2) $\left(\tau_{I V}-\operatorname{int}(A)\right)^{c}=\tau_{I V}-c l\left(A^{c}\right), \tau_{I V}-i n t\left(A^{c}\right)=\left(\tau_{I V}-c l(A)\right)^{c}$.

Proof. (1) Let $p_{I} \in\left(\tau_{I}-i n t(A)\right)^{c}$. Then $A \notin N\left(p_{I}\right)$. Thus $G \not \subset A$, i.e., $G_{T} \not \subset A_{T}$ or $G_{F} \not \supset A_{F}$, for each $G \in \tau$ with $p_{I} \in G$. So $\phi=G_{T} \cap G_{F} \not \supset G_{T} \cap A_{F}$, i.e., $G_{T} \cap A_{F} \neq \phi$. Hence $p_{I} \in \tau_{I}-c l\left(A^{c}\right)$.

Suppose $p_{I} \in \tau_{I}-c l\left(A^{c}\right)$ and let $N \in N\left(p_{I}\right)$. Then $N_{T} \cap A_{F} \neq \phi$, say $q \in N_{T} \cap A_{F}$. Assume that $N \subset A$, i.e., $N_{T} \subset A_{T}$ and $N_{F} \supset A_{F}$. Since $q \in N_{T} \cap A_{F}, q \in A_{T}$ and $q \in N_{F}$. Thus $N_{T} \cap N_{F} \neq \phi$ and $A_{T} \cap A_{F} \neq \phi$. These are contradictions from $N_{T} \cap N_{F}=\phi$ and $A_{T} \cap A_{F}=\phi$. So $N_{T} \not \subset A_{T}$ or $N_{F} \not \supset A_{F}$, i.e., $A \notin N\left(p_{I}\right)$, i.e., $p_{I} \notin \tau_{I^{-}}-i n t(A)$ and thus $p_{I} \in\left(\tau_{I}-i n t(A)\right)^{c}$. Hence $\left(\tau_{I}-i n t(A)\right)^{c}=\tau_{I^{-}} c l\left(A^{c}\right)$.

The proof of the second part is similar.
(2) The proof is similar to (1).

Proposition 4.37. Let (X, τ) be an ITS and let $A \in I S_{*}(X)$. Then
(1) $A \in I C_{\tau_{I}}(X)$ if and only if $A_{I}=\tau_{I}-c l(A)$,
(2) $A \in I C_{\tau_{I V}}(X)$ if and only if $A_{I V}=\tau_{I V}-\operatorname{cl}(A)$.

Proof. (1) Since $A \in I S_{*}(X)$, by Remark 2.12, $A=A_{I}=[] A=<>A$. Then clearly, $\left(A_{I}\right)^{c}=\left(A^{c}\right)_{I}$. Thus
$A \in I C_{\tau_{I}}(X)$ if and only if $A^{c} \in \tau_{I}$
if and only if $\left(A^{c}\right)_{I}=\tau_{I}-\operatorname{int}\left(A^{c}\right)$ [By Result 4.27 (1)]
if and only if $\left(A_{I}\right)^{c}=\left(\tau_{I}-c l(A)\right)^{c}[$ By Proposition 4.36 (1)]
if and only if $A_{I}=\tau_{I}-c l(A)$.
(2) The proof is similar to (1).

Lemma 4.38. Let X be a set, $\left(F_{j}\right)_{j \in J} \subset I S(X)$ and let $F=\bigcap_{j \in J} F_{j}$. Then
(1) $F_{I}=\bigcap_{j \in J} F_{I, j}$,
(2) $F_{I V}=\bigcap_{j \in J} F_{I V, j}$.

Proof. (1) Let $p_{I} \in F_{I}$. Then $p \in F$, i.e., $p \in \bigcap_{j \in J} F_{T, j}$. Thus there exists $j \in J$ such that $p \in F_{T, j}$, i.e., $p_{I} \in F_{I, j}$. So $p_{I} \in \bigcap_{j \in J} F_{I, j}$. Hence $F_{I} \subset \bigcap_{j \in J} F_{I, j}$.

Conversely, suppose $p_{I} \in \bigcap_{j \in J} F_{I, j}$. Then there exists $j \in J$ such that $p_{I} \in F_{I, j}$. Thus $p \in F_{T, j}$. So $p \in \bigcap_{j \in J} F_{T, j}$, i.e., $p_{I} \in F_{I}$. Hence $\bigcap_{j \in J} F_{I, j} \subset F_{I}$. Therefore the result holds.
(2) The proof is similar to (1).

Proposition 4.39. Let (X, τ) be an ITS and let $A \in I S_{*}(X)$. Then
(1) $\tau_{I}-c l(A)=\bigcap_{A \subset F, F \in I C_{\tau_{I}}(X)} F_{I}$,
(2) $\tau_{I V}-c l(A)=\bigcap_{A \subset F, F \in I C_{\tau_{I V}}(X)} F_{I V}$.

Proof. (1)

$$
\begin{aligned}
\tau_{I}-c l(A) & =\left(\tau_{I}-i n t\left(A^{c}\right)\right)^{c}[\text { By Result } 4.27(1)] \\
& =\left(\bigcup_{G \subset A^{c}, G \in \tau_{I}} G_{I}\right)^{c}[\text { By Result } 4.29(1)] \\
& =\bigcap_{A \subset G^{c}, G^{c} \in I C_{\tau_{I}(X)}(}\left(G^{c}\right)_{I} \\
& =\bigcap_{A \subset F, F \in I C_{\tau_{I}(X)}} F_{I} .
\end{aligned}
$$

(2) The proof is similar to (1).

From Result 4.32 and Proposition 4.36, the followings can be easily proved.
Proposition 4.40. Let (X, τ) be an ITS and let $A, B \in I S_{*}(X)$. Then
(1) $A_{I} \subset \tau_{I}-c l(A), A_{I V} \tau_{I V}-i n t(A) \subset \tau_{I V}-c l(A)$,
(2) if $A \subset B$, then $\tau_{I}-c l(A) \subset \tau_{I}-c l(B), \tau_{I V}-c l(A) \subset \tau_{I V}-c l(B)$,
(3) $\tau_{I}-c l(A \cup B)=\tau_{I}-c l(A) \cup \tau_{I}-c l(B)$, $\tau_{I V}-c l(A \cup B)=\tau_{I V-c l}(A) \cup \tau_{I V}-c l(B)$,
(4) $\tau_{I}-c l\left(X_{I}\right)=X_{I}, \tau_{I V}-c l\left(X_{I}\right)=X_{I}$.

5. Conclusions

From Results 4.4 and 4.5, for any IT τ on a set X, two ITs τ_{I} and $\tau_{I V}$ were defined on X such that $\tau \subset \tau_{I}$ and $\tau \subset \tau_{I V}$. In the future, by using three ITs τ, τ_{I} and $\tau_{I V}$ in an intuitionistic topological space, we expect that some types continuities, open and closed mappings can be defined.

Acknowledgements. The authors thankful to the Referees for their valuable comments which helped in rewriting the paper in the present form.

References

[1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (September, 1983) (in Bugaria).
[2] K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, Polish Symp. on Interval and Fuzzy Mathematics, Poznan (August, 1983), Proceeding: 23-26.
[3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
[4] K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFaIS-1-88, Sofia 1-8.
[5] K. Atanassov, Intuitionistic Fuzzy Sets, Springer, (Heidelberg, 2012).
[6] K. Atanassov, On Intuitionistic Fuzzy Sets Theory, Springer, Berlin 1999.
[7] C. Bavithra, M. K. Uma and E. Roja, Feeble compactness of intuitionistic fell topological space, Ann. Fuzzy Math. Inform. 11 (3) (1016) 485-494.
[8] Sadik Bayhan and D. Coker, On separation axioms in intuitionistic topological spaces, IJMMS 27 (10) (2001) 621-630.
[9] Sadik Bayhan and D. Coker, Pairwise separation axioms in intuitionistic topological spaces, Hacettepe Journal of Mathematics and Statistics 34 S (2005) 101-114.
[10] D. Coker A note on intuitionistic sets and intuitionistic points, Tr. J. of Mathematics 20 (1996) 343-351.
[11] D. Coker An introduction to intuitionistic topological spaces, BUSEFAL 81 (2000) 51-56.
[12] E. Coskun and D. Coker On neighborhood structures in intuitionistic topological spaces, Math. Balkanica (N. S.) 12 (3-4) (1998) 283-909.
[13] Taha H. Jassim Completely normal and weak completely normal in intuitionistic topological spaces, International Journal of Scientific and Engineering Research 4 (10) (2013) 438-442.
[14] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-89.
[15] J. H. Kim, P. K. Lim, J. G. Lee, K. Hur, The category of intutionistic sets, To be submitted.
[16] S. J. Lee and J. M. Chu, Categorical properties of intuitinistic topological spaces, Commun. Korean Math. Soc. 24 (4) (2009) 595-603.
[17] Ahmet Z. Ozcelik and Serkan Narli, On submaximality in intuitionistic topological spaces, International Scholarly and Scientific Research and Innovation 1 (1) (2007) 64-66.
[18] A. A. Salama, Mohamed Abdelfattah and S. A. Alblowi, Some Intuitionistic Topological Notions of Intuitionistic Region, Possible Application to GIS Topological Rules, International Journal of Enhanced Research in Management and Computer Applications 3 (5) (2014) 4-9.
[19] S. Selvanayaki and Gnanambal Ilango, IGPR-continuity and compactness intuitionistic topological spaces, British Journal of Mathematics and Computer Science 11 (2) (2015) 1-8.
[20] S. Selvanayaki and Gnanambal Ilango, Homeomorphism on intuitionistic topological spaces, Ann. Fuzzy Math. Inform. 11 (6) (2016) 957-966.
[21] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

J. KIM (junhikim@wku.ac.kr)

Department of Mathematics Education, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
P. K. Lim (pklim@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

J. G. LEE (jukolee@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

K. HUR (kulhur@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

