
Annals of Fuzzy Mathematics and Informatics

Volume 15, No. 2, (April 2018) pp. 149–167

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2018.15.2.149

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

A study on multi-integers forming a multi-integral
domain

Debjyoti Chatterjee, S. K. Samanta

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I
@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 15, No. 2, April 2018



Annals of Fuzzy Mathematics and Informatics

Volume 15, No. 2, (April 2018) pp. 149–167

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2018.15.2.149

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

A study on multi-integers forming a multi-integral
domain

Debjyoti Chatterjee, S. K. Samanta

Received 24 October 2017; Revised 24 December 2017; Accepted 5 January 2018

Abstract. In an attempt to develop multi-number system, in this pa-
per, we introduce a concept of multi-integer system which forms a multi-
integral domain. It is also shown that the multi-integer system is an ex-
tension of multi-natural number system.

2010 AMS Classification: 03E72, 08A72

Keywords: Multiset, Multi-natural number, Multi-integer, Multi-ring, Multi-
integral domain.

Corresponding Author: S. K. Samanta (syamal 123@yahoo.co.in)

1. Introduction

The term multiset (mset in short) as Knuth notes [22], was first suggested by N.
G. de Bruijn [11] in a private correspondence to him. N. G. de Bruijn’s interests in
multisets grew out of his investigations into the combinatorial properties of the set
of divisors of a number. A number or any of its divisors is expressible as a multiset of
prime factors [2, 22]. The repeated prime factors of the number 72, although identical
in all respects, are treated as multiplicity. So, it is convenient to accept a collection
like {2, 2, 2, 3, 3} of prime factors rather than a set like {2, 3}. In classical set theory,
a set is a well-defined collection of distinct objects. If the repeated occurrences of
any object are allowed in a collection, then that mathematical structure is called a
multiset. Owing to aptness, multiset has replaced a variety of terms viz. list, bunch,
heap, bag, sample, weighted set, occurrence set and fireset (finitely repeated element
set) used in different contexts but conveying synonimity with mset. As an important
generalisation of classical set theory, theory of multisets now have become an area
of special interest in various subjects like mathematics, statistics, computer science,
physics and philosophy [2, 9, 11, 13, 15, 26, 28, 30, 32]. Many authors like Yagar [32],
Miyamoto [25], Hickman [17], Blizard [4], Girish and John [13, 14, 15, 29], D. Singh
[30, 31], A. M. Ibrahim [18, 30, 31] etc. have studied the properties of multisets.
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Some authors have also generalised the notion of multisets to form fuzzy multisets
[23], Intuitionistic fuzzy multisets [3, 29], soft multisets [1, 14, 15, 24] etc.

In many situations, it is more convenient to consider a collection like multiset. e.g.,
the repeated eigen values of a matrix, prime factors of a positive integer, repeated
observations in a statistical sample, data structure, information retrieval on the
web, multicriteria decision making, knowledge presentation in data based system,
biological systems and membrane computing [20, 21, 25, 26, 28, 30, 31, 32]. More
studies on multisets can be found in [2, 4, 5, 6, 7, 10, 13, 16, 18, 19, 22]. Although
the studies on multisets revolved around combinatorics in earlier times [2, 4], the
modern research in this field about the structural development in multiset corpus is
relatively new. Various research work on the multiset ordering [4, 12, 30], relations
and functions in multiset context [5, 25], multiset topology [13, 14], multi group
theory [27] etc. have been done recently by some researchers. In order to develop
various structures on multisets we have started from the beginning. Our motif is to
develop a multi-number system which a generalisation of the ordinary number system
and also compatible with the multiset setting as number system plays an important
role in mathematics. In a previous paper [8], we have introduced a concept of multi-
natural number system from the axiomatic point of view and study its properties
related to compositions and order relations. In this paper, we extend it to develop
multi-integers and to study their properties. The organization of the paper is as
follows:

Section 2 is the preliminary part where some definitions and results regarding
multisets and multi-natural numbers have been introduced. In section 3, the no-
tion of multi-difference system together with binary operations and order relation
defined on it has been introduced. Several properties regarding multi-difference sys-
tem have been studied and notions like multi-distributive property, general multiset,
multi-integers, multi-ring, non-multi-zero divisor, multi-integral domain etc. have
been also defined in this section. Finally, Multi-integer system has been introduced,
its isomorphism with multi difference system and its existence and uniqueness have
been established. The straightforward proofs of the propositions have been omitted.

2. Preliminaries

Definition 2.1 ([13, 18]). A multiset (or mset, in short) M drawn from a set X
is represented by a function CountM or CM defined as CM : X → N ∪ {0} where
N represents the set of all natural numbers. Let M be an mset drawn from the set
X = {x1, x2, ..., xn} with xi appearing ki times in M . It is denoted by xi ∈ki M .
The mset M drawn from the set X is then denoted by {k1/x1, k2/x2, ..., kn/xn}.
Also CM (x) is the number of occurrences of the element x in the mset M . However,
those elements which are not include in the mset M have zero count.

Example 2.2. Let X = {a, b, c, d, e}. Then M = {3/a, 2/b, 1/e} is an mset drawn
from X.

Definition 2.3 ([13]). Let M and P be two msets drawn from a set X. Then the
followings are defined:

(i) M = P , if CM (x) = CP (x) ∀x ∈ X,
150
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(ii) M ⊆ P , if CM (x) ≤ Cp(x) ∀x ∈ X (then we call P to be submset of M),
(iii) P = M ∪N , if CP (x) = max{CM (x), CN (x)} ∀x ∈ X,
(iv) P = M ∩N , if CP (x) = min{CM (x), CN (x)} ∀x ∈ X,
(v) P = M ⊕N , if CP (x) = CM (x) + CN (x) ∀x ∈ X,
(vi) P = M 	N , if CP (x) = max{CM (x)− CN (x), 0} ∀x ∈ X,

where ⊕ and 	 represents mset addition and mset subtraction respectively .
Let M be an mset drawn from a set X, then the support set of M denoted by

M∗ is a subset of X and M∗ = {x ∈ X : CM (x) > 0}. i.e., M∗ is an ordinary set
and it is also called root set. The cardinality of an mset M drawn from a set X is
denoted by card(M) or |M | and is given by |M | =

∑
x∈X CM (x).

Remark 2.4 ([13, 19]). A domain X is defined as a set of elements from which
msets are constructed. The mset space [X]m is the set of all msets whose elements
are in X such that no element in the mset occurs more than m times.

The mset space [X]∞ is the set of all msets over a domain X such that there is no
limit on the number of occurrences of an element in an mset. If X = {x1, x2, ..., xk},
then

[X]m = {{m1/x1,m2/x2, ...,mk/xk},
for i = 1, 2, ...,m;mi ∈ {0, 1, 2, ...,m}}.

Definition 2.5 ([13, 19]). Let X be a support set and [X]m be the mset space
defined over X. Then the complement M c of M in [X]m is an element of [X]m such
that

CcM (x) = m− CM (x),∀x ∈ X.

Definition 2.6. (Different types of submsets)
(i) [13] Whole submset: A submset P of an mset M (i.e., P ⊆ M) is a whole

submset of M with each element in P having full multiplicity as in M , i.e., Cp(x) =
CM (x), ∀x ∈ P ∗.

(ii) [13] Partial whole submset: A submset P of an mset M is a partial whole
submset of M with at least one element in P having same multiplicity as in M , i.e.,
Cp(x) = CM (x), for some x ∈ P ∗.

(iii) [13] Full submset: A submset P of an mset M is a full submset of M , if
M∗ = P ∗ and Cp(x) ≤ CM (x), ∀x ∈ P ∗.

(iv) [8] Single whole submset single mset and single submset: A submset P of an
mset M drawn from a set X is a single whole submset, if CP (x) is either CM (x) or
0, ∀x ∈ P ∗ and {x ∈ P ∗ : CP (x) = CM (x)} is a singleton set, say {a}, then let us
denote it as M{a}(= P ), i.e., a single whole submset is such a submset of a multiset
for which exactly one element of the support set belongs to it with the same count
as in the mset.

An mset is a single mset, if it has a singleton support set and a submset P of a
mset M drawn from a set X is a single submset, if P is a single mset.
then immediately, each mset can be expressed as a union of all its single whole
submsets. Thus M = ∪

a∈M∗
M{a}.

In this connection, we note that single whole submsets are pairwise disjoint.

Definition 2.7 ([8]). (Axiomatic definition of multi-natural numbers)
151
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Let (N, 1, σ) be the unique ordinary natural number system defined by Peano.
Then

Axiom 1: For all p, q ∈ N, there exist a multi-natural number denoted by Nq
p ,

Axiom 2: Two multi-natural numbers Nq
p and Ns

r are equal iff p = r and q = s,
Axiom 3: For any multi-natural number Nq

p , p, q ∈ N , there exist a multi-natural

number Nq
σ(P ) (defined to be the support successor of Nq

p ) and another multi-natural

number N
σ(q)
p (defined to be multiplicity successor of Nq

p ),

Axiom 4: Nq
1 ∀q ∈ N is not support successor of any multi-natural number. Also,

N1
p ∀p ∈ N is not multiplicity successor of any multi-natural number,
Axiom 5: Let P (Nq

p ) be any proposition involving a multi-natural number Nq
p .

Suppose that P (N1
1 ) is true. Also suppose that whenever P (Nq

p ) is true. Then

P (Nq
σ(p)) and P (N

σ(q)
p ) both are also true. Thus P (Nq

p ) is true, for every multi-

natural number Nq
p .

The set of all multi-natural numbers is denoted by m(N). p ∈ N and q ∈ N are
respectively the support and the multiplicity of a multi-natural number Nq

p .

Definition 2.8 ([8]). (Successor Functions) S : m(N)→ m(N) defined by S(Nq
p ) =

Nq
σ(P ) is the support successor function. M : m(N) → m(N) defined by S(Nq

p ) =

N
σ(q)
p is the multiplicity successor function. S and M both are one to one since σ is

one to one.

Definition 2.9 ([8]). (Definition of addition)
There exists a unique function A : m(N) × m(N) → m(N) with the following

properties:
Axiom 1: A(Nq

p , N
1
1 ) = S(Nq

p ),
Axiom 2: A(Nq

p , S(Nm
n )) = S(A(Nq

p , N
m
n )),

Axiom 3: A(Nq
p ,M(Nm

n )) = M (q)(A(Nq
p , N

m
n )) which is called addition of two

multi-natural numbers and it is given by A(Nq
p , N

m
n ) = Nqm

p+n, N
q
p , N

m
n ∈ m(N).

A(Nq
p , N

m
n ) is also denoted by Nq

p +Nm
n .

Proposition 2.10 ([8]). Properties of addition:
(1) S(Nq

p ) = Nq
p +N1

1 , ∀Nq
p ∈ m(N).

(2) Nq
p + (N t

k +N1
1 ) = (Nq

p +N t
k) +N1

1 , ∀Nq
p , N

t
k ∈ m(N).

(3) N1
1 +Nq

p = Nq
p +N1

1 , ∀Nq
p ∈ m(N).

(4) (Nq
p +N1

1 ) +N t
k = (Nq

p +N t
k) +N1

1 ∀Nq
p , N

t
k ∈ m(N).

(5) The commutative law of addition: Nq
p +N t

k = N t
k +Nq

p ∀Nq
p , N

t
k ∈ m(N).

(6) The associative law of addition: (Nq
p +N t

k) +Nn
m = Nq

p + (N t
k +Nn

m),

∀Nq
p , N

t
k, N

n
m ∈ m(N).

(7) The cancellation law for addition: Nq
p +N t

k = Nq
p +Nn

m ⇒ Nq
p = N t

k,

∀Nq
p , N

t
k, N

n
m ∈ m(N).

Example 2.11. For two multi-natural number N6
5 and N4

3 , N6
5 +N4

3 = N6.4
5+3 = N24

8 .

Definition 2.12 ([8]). (Definition of multiplication)
There exists a unique function P : m(N) × m(N) → m(N) with the following

properties:
Axiom 1: P (Nq

p , N
1
1 ) = N1

1 ,
152
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Axiom 2: P (Nq
p , S(Nm

n )) = S(p)(P (Nq
p , N

m
n )),

Axiom 3: P (Nq
p ,M(Nm

n )) = M (p)(P (Nq
p , N

m
n )), Nq

p , N
m
n ∈ m(N)

which is called multiplication of two multi-natural numbers and it is given by
P (Nq

p , N
m
n ) = Nqm

pn , Nq
p , N

m
n ∈ m(N). P (Nq

p , N
m
n ) is also denoted by Nq

p ·Nm
n .

Proposition 2.13 ([8]). Properties of multiplication:
(1) P (N1

1 , N
q
p ) = Nq

p = P (Nq
p , N

1
1 ) ∀Nq

p ∈ m(N).
(2) The commutative law of multiplication: P (Nq

p , N
m
n ) = P (Nm

n , N
q
p ),

∀Nq
p , N

m
n ∈ m(N).

(3) The associative law of multiplication: P (P (Nq
p , N

t
k), Nn

m) = P (Nq
p , P (N t

k, N
n
m)),

∀Nq
p , N

t
k, N

n
m ∈ m(N).

(4) P does not obey distributive property over A, i.e., in general,

P (Nq
p , A(Nn

m, N
s
r )) 6= A(P (Nq

p , N
n
m), P (Nq

p , N
s
r )),

Nq
p , N

s
r , N

n
m ∈ m(N).

Example 2.14. For two multi-natural numbers N6
5 and N4

3 , N6
5 ·N4

3 = N6·4
5·3 = N24

15 .

Definition 2.15 ([8]). (Order on m(N))
For Nq

p , N
n
m ∈ m(N), Nq

p = Nn
m iff (p = m as well as q = n).

Also for Nq
p , N

n
m ∈ m(N), Nq

p is greater than Nn
m, i.e., Nq

p > Nn
m, if ∃Ns

r ∈ m(N)
such that Nq

p = Nn
m +Ns

r (= Nns
m+r), i.e., if (p > m as well as n|q).

Again, Nq
p is greater than or equal to Nn

m and we write Nq
p ≥ Nn

m, if Nq
p > Nn

m

or Nq
p = Nn

m, i.e., if (p > m as well as n|q) or if (p = m as well as n = q).
The relation ≥ on m(N) is a partial order relation which is not total.

Definition 2.16 ([8]). (Multi-number of elements in a multiset)
Let N be a single mset. Also, let x is the only element of N with CN (x) = n.

Then, we define Nn
1 as the multi-number of elements in N .

Next, we consider an mset M whose support N∗ = {x1, x2, ..., xn} is a finite set
and multiplicity of each of its elements is finite and is given by the count function
as CN (xi) = ti, i = 1, 2, ..., n. Then we define the multi-number of elements in M as
the sum of the multi-numbers of the elements in all its single whole submsets, i.e.,
N t1

1 +N t2
1 + ...+N tn

1 = N t1t2...tn
n .

Example 2.17. (1) The multi-number of elements in the multiset {a, a, a} is N3
1 .

(2) The multi-number of elements in the multiset {b, b} is N2
1 .

(3) The multi-number of elements in the multiset {a, a, a, b, b, c, c} is (N3
1 +N2

1 )+
N2

1 = N6
2 +N2

1 = N12
3 .

(4) The multi-number of elements in the multiset {a, a, a, a, a, a, a, a, a, a, a, a, b, c}
is (N12

1 +N1
1 ) +N1

1 = N12
2 +N1

1 = N12
3 .

(5) The multi-number of the roots of the equation (x−1)2(x−2)3 = 0 is N2
1 +N3

1 =
N6

2 .

3. The multi-integer system

Here we shall represent multi-integer system in terms of multi-natural numbers
that we have already constructed in a previous paper [8].
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First of all, we shall introduce the concept of Multi-Difference System together
with some binary operations and order relation.

Let us now introduce the following binary relation on m(N)×m(N):

Definition 3.1. For (N b
a, N

d
c ), (Nq

p , N
s
r ) ∈ m(N)×m(N), we say (N b

a, N
d
c ) is equiv-

alent to (Nq
p , N

s
r ) and we write (N b

a, N
d
c ) ∼ (Nq

p , N
s
r ) iff N b

a +Ns
r = Nd

c +Nq
p .

Theorem 3.2. The relation ∼ is an equivalence relation defined on m(N)×m(N).

Proof. Since ∀(N b
a, N

d
c ) ∈ m(N) ×m(N), we have N b

a + Nd
c = Nd

c + N b
a (by (5) of

Proposition 2.10). Then (N b
a, N

d
c ) ∼ (N b

a, N
d
c ). Thus ∼ is a reflexive relation on

m(N)×m(N).
Next, for (N b

a, N
d
c ), (Nq

p , N
s
r ) ∈ m(N)×m(N), let (N b

a, N
d
c ) ∼ (Nq

p , N
s
r ). Then

N b
a +Ns

r = Nd
c +Nq

p ⇒ Ns
r +N b

a = Nq
p +Nd

c (by (5) of Proposition 2.10)

⇒ Nq
p +Nd

c = Ns
r +N b

a

⇒ (Nq
p , N

s
r ) ∼ (N b

a, N
d
c ).

Thus ∼ is a symmetric relation on m(N)×m(N).
Finally, for (N b

a, N
d
c ), (Nq

p , N
s
r ), (Nv

u , N
x
w) ∈ m(N)×m(N), let (N b

a, N
d
c ) ∼ (Nq

p , N
s
r )

and (Nq
p , N

s
r ) ∼ (Nv

u , N
x
w). Then N b

a+Ns
r = Nd

c +Nq
p as well as Nq

p +Nx
w = Ns

r +Nv
u .

Thus (N b
a +Ns

r ) + (Nq
p +Nx

w) = (Nd
c +Nq

p ) + (Ns
r +Nv

u)

⇒ (N b
a +Nx

w) + (Ns
r +N b

a) = (Nd
c +Nv

u) + (Ns
r +N b

a)
(by (5) and (6) of Proposition 2.10)

⇒ N b
a +Nx

w = Nd
c +Nv

u (by (7) of Proposition 2.10)
⇒ (N b

a, N
d
c ) ∼ (Nv

u , N
x
w).

So ∼ is a transitive relation on m(N) ×m(N). Hence ∼ is an equivalence relation
on m(N)×m(N). �

Remark 3.3. Let us denote the set of all equivalence classes of m(N) × m(N)
by md(Z) and call it as multi-difference system. An element [(N b

a, N
d
c )] of md(Z)

will now be simply denoted by [N b
a, N

d
c ] and accordingly [N b

a, N
d
c ] = [Nq

p , N
s
r ] iff

N b
a +Ns

r = Nd
c +Nq

p . Now we have only produced the elements of md(Z). A bunch
of elements can hardly be a system. We still need to define appropriate binary
operations and order relations on it just as we did for m(N) [8]. Before we do so,
let us note the following fundamental relations between elements in md(Z).

Remark 3.4. For [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈ md(Z),

[N b
a, N

d
c ] = [Nq

p , N
s
r ]

⇔ N b
a +Ns

r = Nd
c +Nq

p

⇔ N bs
a+r = Ndq

c+p (by Definition 2.9)
⇔ a+ r = c+ p and bs = dq (by axiom 2 of Definition 2.7)
⇔ a− c = p− r and b

d = q
s .

Lemma 3.5. [N b
a, N

d
c ] = [N b

a + N t
k, N

d
c + N t

k] = [N t
k + N b

a, N
t
k + Nd

c ], ∀N b
a, N

d
c ∈

md(Z) and ∀N t
k ∈ md(Z).

Proof. [N b
a, N

d
c ] = [N b

a +N t
k, N

d
c +N t

k]
⇔ N b

a + (Nd
c +N t

k) = Nd
c + (N b

a +N t
k)

⇔ (N b
a +Nd

c ) +N t
k = (Nd

c +N b
a) +N t

k (by (6) of Proposition 2.10)
154
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⇔ (N b
a +Nd

c ) +N t
k = (N b

a +Nd
c ) +N t

k (by (5) of Proposition 2.10)
which is a tautology. Also a similar tautology can be established for the second part.
Then the result holds. �

Definition 3.6. (Addition on md(Z))
∃ a well defined binary operation ⊕ on md(Z) defined by:

[N b
a, N

d
c ]⊕ [Nq

p , N
s
r ] = [N b

a +Nq
p , N

d
c +Ns

r ], for [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈ md(Z).

To show that ⊕ is well-defined, we need to show that for any [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈

md(Z), there is one and only one image under ⊕: Let [N b
a, N

d
c ] = [Nq

p , N
s
r ] and

[Nf
e , N

h
g ] = [Nv

u , N
x
w]. Then [N b

a, N
d
c ] ⊕ [Nf

e , N
h
g ] = [N b

a + Nf
e , N

d
c + Nh

g ] and
[Nq

p , N
s
r ]⊕ [Nv

u , N
x
w] = [Nq

p +Nv
u , N

s
r +Nx

w]. On the other hand,

[N b
a, N

d
c ] = [Nq

p , N
s
r ] ⇒ N b

a +Ns
r = Nd

c +Nq
p

and
[Nf

e , N
h
g ] = [Nv

u , N
x
w] ⇒ Nf

e +Nx
w = Nh

g +Nv
u .

Thus (N b
a +Ns

r ) + (Nf
e +Nx

w) = (Nd
c +Nq

p ) + (Nh
g +Nv

u)

⇒ (N b
a +Nf

e ) + (Ns
r +Nx

w) = (Nd
c +Nh

g ) + (Nq
p +Nv

u)
(by (5) and (6) of Proposition 2.10)

⇒ [N b
a +Nf

e , N
d
c +Nh

g ] = [Nq
p +Nv

u , N
s
r +Nx

w]

⇒ [N b
a, N

d
c ]⊕ [Nf

e , N
h
g ] = [Nq

p , N
s
r ]⊕ [Nv

u , N
x
w].

So ⊕ is well-defined.

Proposition 3.7. (Properties of addition on md(Z)) Following properties of addi-
tion can be deduced:

(1) ⊕ is commutative on md(Z), since + is commutative on m(N),
(2) ⊕ is associative on md(Z), since + is associative on m(N),
(3) [N1

1 , N
1
1 ] is the identity element in md(Z) for ⊕,

(4) for each [N b
a, N

d
c ] ∈ md(Z), its ⊕ - inverse exists and is given by [Nd

c , N
b
a] ∈

md(Z) such that [N b
a, N

d
c ]⊕ [Nd

c , N
b
a] = [N1

1 , N
1
1 ].

Proof. The proofs of (1) and (2) are clear.
(3) ∀[N b

a, N
d
c ] ∈ md(Z), by Lemma 3.5,

[N b
a, N

d
c ]⊕ [N1

1 , N
1
1 ] = [N b

a +N1
1 , N

d
c +N1

1 ] = [N b
a, N

d
c ].

Similarly, using Lemma 3.5, it can be shown that [N1
1 , N

1
1 ]⊕ [N b

a, N
d
c ] = [N b

a, N
d
c ].

Hence the result holds.
(4) By Lemma 3.5,

[N b
a, N

d
c ]⊕ [Nd

c , N
b
a] = [N b

a +Nd
c , N

d
c +N b

a]
= [N b

a +Nd
c +N1

1 , N
d
c +N b

a +N1
1 ]

= [N1
1 , N

1
1 ].

Let us denote the ⊕ - inverse of [N b
a, N

d
c ] ∈ md(Z) as (−[N b

a, N
d
c ]). �

Remark 3.8. (md(Z),⊕) is a commutative group.

Remark 3.9. From Definition 3.6 and Definition 2.9, we can write

[N b
a, N

d
c ]⊕ [Nq

p , N
s
r ] = [N bq

a+p, N
ds
c+r], for [N b

a, N
d
c ], [Nq

p , N
s
r ] ∈ md(Z).
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Definition 3.10. (Multiplicationon md(Z))
∃ a well-defined binary operation � on md(Z) defined by:

[N b
a, N

d
c ]� [Nq

p , N
s
r ] = [N bq

ap+cr, N
ds
ar+cp], for [N b

a, N
d
c ], [Nq

p , N
s
r ] ∈ md(Z).

To show that � is well-defined, we need to show that for any [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈

md(Z), there is one and only one image under �: Let [N b
a, N

d
c ] = [N b′

a′ , N
d′

c′ ] and

[Nq
p , N

s
r ] = [Nq′

p′ , N
s′

r′ ]. Then

[N b
a, N

d
c ]� [Nq

p , N
s
r ] = [N bq

ap+cr, N
ds
ar+cp]

and

[N b′

a′ , N
d′

c′ ]� [Nq′

p′ , N
s′

r′ ] = [N b′q′

a′p′+c′r′ , N
d′s′

a′r′+c′p′ ].

On the other hand,
[N b

a, N
d
c ] = [N b′

a′ , N
d′

c′ ]

⇒ N b
a +Nd′

c′ = Nd
c +N b′

a′

⇒ N bd′

a+c′ = Ndb′

c+a′ (by Definition 2.9)
⇒ a+ c′ = c+ a′ and bd′ = db′ (by Axiom 2 of Definition 2.7).

Also,

[Nq
p , N

s
r ] = [Nq′

p′ , N
s′

r′ ]

⇒ Nq
p +Ns′

r′ = Ns
r +Nq′

p′

⇒ Nqs′

p+r′ = Nsq′

r+p′ (by Definition 2.9)

⇒ p+ r′ = r + p′ and qs′ = sq′ (by Axiom 2 of Definition 2.7).
Thus,

(a− c)(p− r) = (a′ − c′)(p′ − r′) and bqd′s′ = dsb′q′

⇒ ap+ cr + a′r′ + c′p′ = ar + cp+ a′p′ + c′r′ and bqd′s′ = dsb′q′

⇒ N bqd′s′

ap+cr+a′r′+c′p′ = Ndsb′q′

ar+cp+a′p′+c′r′ (by Axiom 2 of Definition 2.7)

⇒ N bq
ap+cr +Nd′s′

a′r′+c′p′ = Nds
ar+cp +N b′q′

a′p′+c′r′ (by Definition 2.9)

⇒ [N bq
ap+cr, N

ds
ar+cp] = [N b′q′

a′p′+c′r′ , N
d′s′

a′r′+c′p′ ]

⇒ [N b
a, N

d
c ]� [Nq

p , N
s
r ] = [N b′

a′ , N
d′

c′ ]� [Nq′

p′ , N
s′

r′ ].
So � is well-defined.

Proposition 3.11. Properties of multiplication on md(Z)
(1) � is commutative on md(Z).
(2) � is associative on md(Z).
(3) The identity element exist for � in md(Z) and is [N1

2 , N
1
1 ].

(4) [N1
a , N

1
b ]� ([Nq

p , N
s
r ]⊕ [Ny

x , N
t
z])

= ([N1
a , N

1
b ]� [Nq

p , N
s
r ])⊕ ([N1

a , N
1
b ]� [Ny

x , N
t
z]).

(5) (Remark on distributive property)
[N b

a, N
d
c ]� ([Nq

p , N
s
r ]⊕ [Ny

x , N
t
z])

6= ([N b
a, N

d
c ]� [Nq

p , N
s
r ])⊕ ([N b

a, N
d
c ]� [Ny

x , N
t
z]), in general.

Actually, [N b
a, N

d
c ]� ([Nq

p , N
s
r ]⊕ [Ny

x , N
t
z]) = [N b

a, N
d
c ]� [Nqy

p+x, N
st
r+z]

= [N bqy
ap+ax+cr+cz, N

dst
ar+az+cp+cx].

But, ([N b
a, N

d
c ]� [Nq

p , N
s
r ])⊕ ([N b

a, N
d
c ]� [Ny

x , N
t
z])

= [N bq
ap+cr, N

ds
ar+cp]⊕ [N by

ax+cz, N
dt
az+cx]
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= [N b2qy
ap+cr+ax+cz, N

d2st
ar+cp+az+cx]

= [N b
2 , N

d
1 ]� [N bqy

ap+cr+ax+cz, Nar+cp+az+cx], (by Lemma 3.5).
(5) (Multi-distributive property)
∀[N b

a, N
d
c ], [Nq

p , N
s
r ], [Ny

x , N
t
z] ∈ md(Z),

[N b
2 , N

d
1 ]� ([N b

a, N
d
c ]� ([Nq

p , N
s
r ]⊕ [Ny

x , N
t
z]))

= ([N b
a, N

d
c ]� [Nq

p , N
s
r ])⊕ ([N b

a, N
d
c ]� [Ny

x , N
t
z]).

Let us define the above property to be the multi-distributive property of � over ⊕ on
md(Z).

Proof. The proofs of (1) and (2) are obvious.
(3) ∀[N b

a, N
d
c ] ∈ md(Z), by Lemma 3.5,

[N b
a, N

d
c ]� [N1

2 , N
1
1 ] = [N b

2a+c, N
d
a+2c]

= [N b
a +N1

a+c, N
d
c +N1

a+c]

= [N b
a, N

d
c ].

(5) The proof is omitted. �

Remark 3.12. (Order on md(Z)): After defining two binary operations on md(Z),
the next natural thing is to order the elements of md(Z). Our aim is to define
an order that will make md(Z) a partially ordered multi-integral domain. In this
connection, we shall first define a subset of md(Z) that serves as the set of multi-
natural numbers. Intuitively, this set should turn out eventually to resemble m(N).
So, we are representing the following notation:

Definition 3.13. We define the subset md(NZ) of md(Z) by:

md(NZ) = {[Nm
n +N1

1 , N
1
1 ] ∈ md(Z) : Nm

n ∈ m(N)}.

The following theorem tells us that md(NZ) appears to be indeed a very good
model of m(N).

Proposition 3.14. [Nv
u , N

x
w] ∈ md(NZ)⇔ u− v ∈ N and x|v.

Proof. Suppose [Nv
u , N

x
w] ∈ md(NZ). Then ∃Nβ

α ∈ m(N) such that [Nv
u , N

x
w] =

[Nβ
α+N1

1 , N
1
1 ]. Thus Nv

u+N1
1 = Nx

w+(Nβ
α+N1

1 ). By (6) and (7) of Proposition 2.10,

Nv
u = Nx

w +Nβ
α . So Nv

u = Nxβ
w+α. Hence u = w+ α and v = xβ;u, v, w, x, α, β ∈ N .

Therefore u− w ∈ N and x|v.
The converse is immediate. �

Theorem 3.15. For the set md(NZ) the following hold:
(1) (md(NZ),⊕) is a sub semigroup of (md(Z),⊕),
(2) (md(NZ),�) is a sub semigroup of (md(Z),�),
(3) (md(NZ),⊕) is isomorphic to (m(N),+) and (md(NZ),�) is isomorphic to

(m(N), ·) as semi group under the same isomorphism,
(4) for every x ∈ md(Z), ∃y, z ∈ md(NZ) such that x = y ⊕ (−z).

Proof. Clearly, md(NZ) is a subset of md(Z).
(1) Let [Nm

n +N1
1 , N

1
1 ], [Nq

p +N1
1 , N

1
1 ] ∈ md(NZ). Then

[Nm
n +N1

1 , N
1
1 ]⊕ [Nq

p +N1
1 , N

1
1 ]

= [Nm
n +Nq

p +N1
1 +N1

1 , N
1
1 +N1

1 ] (by Definition 3.6)
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= [(Nm
n +Nq

p ) +N1
1 , N

1
1 ] ∈ md(NZ) (by Lemma 3.5).

Thus, md(NZ) is closed under ⊕. So (md(NZ),⊕) is a sub semigroup of (md(Z),⊕).
(2) Let [Nm

n +N1
1 , N

1
1 ], [Nq

p +N1
1 , N

1
1 ] ∈ md(NZ). Then

[Nm
n +N1

1 , N
1
1 ]� [Nq

p +N1
1 , N

1
1 ]

= [Nm
n+1, N

1
1 ]� [Nq

p+1, N
1
1 ]

= [Nmq
(n+1)(p+1)+1, N

1
(n+1)+(p+1)] = [Nmq

np+(n+p+1+1), N
1
n+p+1+1]

= [(Nmq
np +N1

1 ) +N1
n+p+1, N

1
1 +N1

n+p+1]

= [Nmq
np +N1

1 , N
1
1 ] ∈ md(NZ) (by Lemma 3.5).

Thus md(NZ) is closed under �. So (md(NZ),�) is a sub semigroup of (md(Z),�).
(3) Define φ : md(NZ)→ m(N) by:

φ([Nm
n +N1

1 , N
1
1 ]) = Nm

n , N
m
n ∈ m(N).

We first show that φ is a well-defined: Let, [Nq
p +N1

1 , N
1
1 ] = [Nm

n +N1
1 , N

1
1 ]. Then

(Nq
p +N1

1 ) +N1
1 = N1

1 + (Nm
n +N1

1 )

⇔ Nq
p = Nm

n , i.e., [Nq
p +N1

1 , N
1
1 ] = [Nm

n +N1
1 , N

1
1 ]

⇔ φ([Nq
p +N1

1 , N
1
1 ]) = φ([Nm

n +N1
1 , N

1
1 ]).

Thus φ is well-defined.
Suppose φ([Nq

p + N1
1 , N

1
1 ]) = φ([Nm

n + N1
1 , N

1
1 ]). Then Nq

p = Nm
n . Thus [Nq

p +

N1
1 , N

1
1 ] = [Nm

n +N1
1 , N

1
1 ]. So φ is one to one.

On the other hand, for any Nm
n ∈ m(N), consider [Nm

n + N1
1 , N

1
1 ] ∈ md(NZ) so

that φ([Nm
n +N1

1 , N
1
1 ]) = Nm

n . Then φ is onto.
Now take any [Nq

p +N1
1 , N

1
1 ] ∈ md(NZ). Then

φ([Nq
p +N1

1 , N
1
1 ]⊕ [Nm

n +N1
1 , N

1
1 ])

= φ([Nq
p +N1

1 +Nm
n +N1

1 , N
1
1 +N1

1 ])

= φ([Nq
p +Nm

n +N1
1 , N

1
1 ])

= φ([Nqm
p+n +N1

1 , N
1
1 ])

= Nqm
p+n = Nq

p +Nm
n

= φ([Nq
p +N1

1 , N
1
1 ]) + φ([Nm

n +N1
1 , N

1
1 ]).

Thus (md(NZ),⊕) is isomorphic to (m(N),+).
Similarly, we can show that

φ([Nq
p +N1

1 , N
1
1 ]� [Nm

n +N1
1 , N

1
1 ]) = φ([Nq

p +N1
1 , N

1
1 ]) · φ([Nm

n +N1
1 , N

1
1 ]).

So (md(NZ),�) is isomorphic to (m(N), ·).
(4) For any x = [N b

a, N
d
c ] ∈ md(Z), take y = [N b

a + N1
1 , N

1
1 ] and z = [Nd

c +
N1

1 , N
1
1 ] ∈ md(NZ) such that y + (−z) = [N b

a + N1
1 , N

1
1 ] ⊕ (−[Nd

c + N1
1 , N

1
1 ]) =

[N b
a + N1

1 , N
1
1 ]⊕ [N1

1 , N
d
c + N1

1 ] = [N b
a + N1

1 + N1
1 , N

1
1 + Nd

c + N1
1 ] = [N b

a, N
d
c ] = x

(by Proposition 3.6 and Definition 3.5). �

Definition 3.16. Let us define each member of md(Z) as a multi-integer. Let us
also define each member of md(NZ) as a positive multi-integer.

Remark 3.17. From Theorem 3.15, it is clear that md(NZ) is embedded in m(N)
as a structure. So, one can call each member of m(N) as the positive multi-integer.

Definition 3.18. We now define the set of negative multi-integers as follows:
Let us define the subset (−md(NZ)) of md(Z) by:

(−md(NZ)) = {[Nd
c , N

b
a] : [N b

a, N
d
c ] ∈ md(NZ)}.
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Let us also define every member of (−md(NZ)) as negative multi-integer.

Definition 3.19. (Positive multi-integer, Negative multi-integer, Zero, Special multi-
integer, and Multi-zero)
Define md(ZS) = md(Z)− (md(NZ) ∪ (−md(NZ)) ∪ {[N1

1 , N
1
1 ]}).

We have defined every member of md(NZ) as a positive multi-integer, every member
of (−md(NZ)) as a negative multi-integer, let us now define [N1

1 , N
1
1 ] as zero and

every member of md(ZS) as special multi-integer. Also we define any multi-integer
of the form [Np

a , N
q
a ] as multi-zero which is obviously either a special multi-integer

or zero.

Theorem 3.20. If the product of two multi-integers be zero, then at least one of
them must be a multi-zero.

Proof. For [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈ md(Z),

[N b
a, N

d
c ]� [Nq

p , N
s
r ] = [N1

1 , N
1
1 ](by Remark 3.4)

⇒ [N bq
ap+cr, N

ds
ar+cp] = [N1

1 , N
1
1 ]

⇒ N bq
ap+cr +N1

1 = Nds
ar+cp +N1

1

⇒ N bq
ap+cr = Nds

ar+cp ⇒ ap+ cr = ar + cp and bq = ds (by Remark 3.4)
⇒ (a− c)(p− r) = 0 and bq = ds
⇒ (either a = c or p = r) and bq = ds
⇒ atleast one of [N b

a, N
d
c ] or [Nq

p , N
s
r ] is a multi-zero. �

Definition 3.21. (Order on md(Z)) Let [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈ md(Z). We define

[N b
a, N

d
c ] > [Nq

p , N
s
r ], if [N b

a, N
d
c ]⊕ (−[Nq

p , N
s
r ]) ∈ md(NZ), i.e.,

∃[Nm
n +N1

1 , N
1
1 ] ∈ md(NZ) such that

[N b
a, N

d
c ]⊕ (−[Nq

p , N
s
r ]) = [Nm

n +N1
1 , N

1
1 ] or[N b

a, N
d
c ] = [Nq

p , N
s
r ]⊕ [Nm

n +N1
1 , N

1
1 ].

Also, we define [N b
a, N

d
c ] ≥ [Nq

p , N
s
r ] if [N b

a, N
d
c ] > [Nq

p , N
s
r ] or [N b

a, N
d
c ] = [Nq

p , N
s
r ].

Remark 3.22. Let us denote [N b
a, N

d
c ]⊕ (−[Nq

p , N
s
r ]) as [N b

a, N
d
c ]− [Nq

p , N
s
r ].

Theorem 3.23. (Partial order relation) ≥ defined on md(Z) is a partial order
relation.

Proof. Immediately, ≥ is a reflexive relation on md(Z).
For x = [N b

a, N
d
c ], y = [Nq

p , N
s
r ] ∈ md(Z), let [N b

a, N
d
c ] ≥ [Nq

p , N
s
r ] as well as

[Nq
p , N

s
r ] ≥ [N b

a, N
d
c ]. If possible, let [N b

a, N
d
c ] 6= [Nq

p , N
s
r ]. Then x > y also y > x.

Thus (x − y) and (y − x) = −(x − y) both ∈ md(Z) which is impossible, since
(md(NZ),⊕) is isomorphic to (m(N),+) and (m(N),+) is a monoid but not a
group. So our assumption is wrong. Hence x = y. Therefore ≥ is an antisymmetric
relation on md(Z).

Finally, for x = [N b
a, N

d
c ], y = [Nq

p , N
s
r ], z = [Nn

m, N
v
u ] ∈ md(Z), let x ≥ y as well

as y ≥ z. If either x = y or y = z, then immediately, x ≥ y. Consider the case when
x > y and y > z. Then (x−y), (y−z) ∈ md(NZ). Thus (x−y)⊕ (y−z) ∈ md(NZ).
Again, (x − z) = (x − y) ⊕ (y − z). So (x − z) ∈ md(NZ). Accordingly, x ≥ z.
Hence ≥ is a transitive relation on md(Z). Therefore ≥ is a partial order relation
on md(Z). �
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Proposition 3.24. For [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈ md(Z), [N b

a, N
d
c ] > [Nq

p , N
s
r ] if and

only if a− c > p− r and dq|bs.

Proof. For [N b
a, N

d
c ], [Nq

p , N
s
r ] ∈ md(Z), let [N b

a, N
d
c ] > [Nq

p , N
s
r ]. Then

∃[Nm
n +N1

1 , N
1
1 ] ∈ md(NZ) such that

[N b
a, N

d
c ] = [Nq

p , N
s
r ]⊕ [Nm

n +N1
1 , N

1
1 ]

= [Nq
p +Nm

n +N1
1 , N

s
r +N1

1 ]
= [Nq

p +Nm
n , N

s
r ] (by Remark 3.5)

= [Nqm
p+n, N

s
r ].

Thus a− c = p+ n− r and b
d = qm

s (by Remark 3.4). So a− c > p− r and dq|bs.
The converse can be immediately be obtained by reversing the arguement. �

Remark 3.25. (md(Z),≥) is a poset but not a chain. Immediately, (md(Z),≥) do
not obey the Law of Trichotomy, e.g., [N3

2 + N1
1 , N

1
1 ] and [N2

2 + N1
1 , N

1
1 ] are two

incomparable elements of (md(Z),≥).

Proposition 3.26. ∀[N b
a, N

d
c ] ∈ md(Z), [N b

a, N
d
c ] ≯ [N b

a, N
d
c ].

Proof. Since a − c ≯ a − c, ∀a, c ∈ N with a 6= c, from Proposition 3.24, the above
proposition immediately follows. �

Proposition 3.27. For [N b
a, N

d
c ], [Nf

e , N
h
g ] ∈ md(Z), [N b

a, N
d
c ] > [Nf

e , N
h
g ] if and

only if [N b
a, N

d
c ]⊕ [Nv

u , N
x
w] > [Nf

e , N
h
g ]⊕ [Nv

u , N
x
w], ∀[Nv

u , N
x
w] ∈ md(Z).

Proof. For [N b
a, N

d
c ], [Nf

e , N
h
g ] ∈ md(Z), let [N b

a, N
d
c ] > [Nf

e , N
h
g ]. Then from Propo-

sition 3.24, a− c > e− g and df |bh. Thus

(a+ u)− (c+ w) > (e+ u)− (g + w),∀u,w ∈ N
and

(dx)(fv)|(bv)(hx),∀v, x ∈ N.
So [N bv

a+u, N
dx
c+w] > [Nfv

e+u, N
hx
g+w], i.e., [N b

a, N
d
c ] ⊕ [Nv

u , N
x
w] > [Nf

e , N
h
g ] ⊕ [Nv

u , N
x
w],

∀[Nv
u , N

x
w] ∈ md(Z).

The converse can be immediately be obtain by reversing the arguement. �

Proposition 3.28. For [N b
a, N

d
c ], [Nf

e , N
h
g ], [Nv

u , N
x
w], [Nq

p , N
s
r ] ∈ md(Z), if [N b

a, N
d
c ] >

[Nf
e , N

h
g ] and [Nv

u , N
x
w] > [Nq

p , N
s
r ], then [N b

a, N
d
c ]⊕ [Nv

u , N
x
w] > [Nf

e , N
h
g ]⊕ [Nq

p , N
s
r ].

Proof. Since ∀a, c, e, g, u, w, p, r ∈ N , a − c > e − g and u − w > p − r ⇔ (a +
u) − (c + w) > (e + p) − (g + r). Also since ∀b, d, f, h, v, s, q, x ∈ N , df |bh and
xq|vs ⇔ (dx)(fq)|(bv)(hs). Then the result immediately follows from Proposition
3.24. �

Proposition 3.29. For [N b
a, N

d
c ], [Nf

e , N
h
g ] ∈ md(Z), if [N b

a, N
d
c ] ≥ [Nf

e , N
h
g ], then

[N b
a, N

d
c ]⊕ [N1

2 , N
1
1 ] > [Nf

e , N
h
g ].

Proposition 3.30. ∀[N b
a, N

d
c ] ∈ md(Z), [N b

a, N
d
c ]⊕[Nf

e , N
h
g ] > [N b

a, N
d
c ], ∀[Nf

e , N
h
g ] ∈

md(NZ).

Proposition 3.31. For [N b
a, N

d
c ], [Nf

e , N
h
g ], [Nv

u , N
x
w], [Nq

p , N
s
r ] ∈ md(Z), [N b

a, N
d
c ]⊕

[Nv
u , N

x
w] = [Nf

e , N
h
g ]⊕ [Nq

p , N
s
r ] if and only if [N b

a, N
d
c ] = [Nf

e , N
h
g ].
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Proposition 3.32. For [N b
a, N

d
c ], [Nf

e , N
h
g ] ∈ md(Z), [N b

a, N
d
c ] > [Nf

e , N
h
g ] if and

only if [N b
a, N

d
c ]� [Nv

u , N
x
w] > [Nf

e , N
h
g ]� [Nv

u , N
x
w], ∀[Nv

u , N
x
w] ∈ md(NZ).

Proof. Since [Nv
u , N

x
w] ∈ md(NZ), from Proposition 3.14, u− w ∈ N and x|v. Then

a − c > e − g ⇔ (a − c)(u − w) > (e − g)(u − w), i.e., (au + cw) − (aw + cu) >
(eu+ gw)− (ew + gu). Also, df |bh⇔ (dx)(fv)|(bv)(hx). Thus

[N b
a, N

d
c ] > [Nf

e , N
h
g ]

⇔ [N b
a, N

d
c ]� [Nv

u , N
x
w] > [Nf

e , N
h
g ]� [Nv

u , N
x
w] (by Proposition 3.24). �

Definition 3.33. (General multiset, Real multiset and Natural multiset)
(i) Let X be a nonempty set. A general mset M drawn from X is characterized

by a relation ρM between X and R (R being the set of all real numbers).
If (x, r) ∈ ρM , for some x ∈ X and r ∈ R − {0}, then we represent it by writing

Xr
x ∈M .
(ii) Let X be a nonempty set. A real mset M drawn from X is characterized by

a function CountM or CM : X → R.
If CM (x) = r, for some x ∈ X and r ∈ R − {0}, then we represent it by writing

Xr
x ∈M . Also, we shall denote a real msetM drawn fromX as {Xk1

x1
, Xk2

x2
, ..., Xkn

xn
, ...},

where CM (xi) = ki, xi ∈ X and ki ∈ R− {0}.
(iii) Let X be a nonempty set. A natural mset M drawn from X is characterized

by a function CountM or CM : X → N ∪ {0}.
If CM (x) = r, for some x ∈ X and r ∈ N − {0}, then we represent it by

writing Xr
x ∈ M . Also, we shall denote a simple mset M drawn from X as

{Xk1
x1
, Xk2

x2
, ..., Xkn

xn
, ...}, where CM (xi) = ki, xi ∈ X and ki ∈ R− {0}. ki ∈ R− {0}

is called the multiplicity of the element xi ∈ X in M .

Example 3.34. Consider the set X = {a, b, c}. Consider the relation ρM between

X and R where ρM = {(a, 14 ), (b, 3), (b,
√

2)}. Then ρM represents a general mset

M drawn from X which is given by M = {X
1
4
a , X3

b , X
√
2

b }.
Next, consider the function CM : X → R defined by CM (a) = 1

4 , CM (b) = 3 and
CM (c) = 0. Then CM represents a real mset M drawn from X which is given by

M = {X
1
4
a , X3

b }.
Finally, consider the function CM : X → N ∪{0} defined by CM (a) = 1, CM (b) =

3 and CM (c) = 0. Then CM represents a natural mset M drawn from X which is
given by M = {X1

a , X
3
b }. Also, m(N) is a general mset drawn from N .

Remark 3.35. (1) Clearly, general mset is a generalization of real mset. Also, real
mset is a generalization of natural mset.

(2) Let A′ and B′ be two general msets drawn from the sets A and B respectively.
If for a ∈ A ∩ B and r ∈ R − {0}, Ara ∈ A′ and Bra ∈ B′, then we shall consider
Ara = Bra.

(3) We note that for all i, j ∈ N , Zji and N j
i both are immediately identical, i.e.,

Zji = N j
i ,∀i, j ∈ N .

Theorem 3.36. (Isomorphism theorem) Let us consider the general mset m(Ẑ)
which is the universal relation between Z and Q+ (Q+ is the set of all positive

rational numbers). i.e, Zqp ∈ m(Ẑ) iff p ∈ Z and q ∈ Q+.

Then (md(Z),⊕,�,≥) and (m(Ẑ), ⊕̂, �̂, ≥̂) are isomorphic.
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Proof. Let us define two binary operations ⊕̂ and �̂ on m(Ẑ) as follows:

For Zqp , Z
s
r ∈ m(Ẑ), Zqp⊕̂Zsr = Zqsp+r and Zqp�̂Zsr = Zqspr .

Also, define >̂ on m(Ẑ) as follows: For Zqp , Z
s
r ∈ m(Ẑ), Zqp>̂Z

s
r iff ∃Zba ∈ m(Ẑ) with

a, b ∈ N such that Zqp = Zsr ⊕̂Zba.

For Zqp , Z
s
r ∈ m(Ẑ), we define Zqp = Zsr iff p = r and q = s.

Also, for Zqp , Z
s
r ∈ m(Ẑ), we define Zqp≥̂Zsr iff Zqp>̂Z

s
r or Zqp = Zsr .

Let us now define a function τ : md(Z)→ m(Ẑ) as follows:

τ([N b
a, N

d
c ]) = Z

b
d
a−c, [N b

a, N
d
c ] ∈ md(Z).

Then for [N b
a, N

d
c ], [N b′

a′ , N
d′

c′ ] ∈ md(Z),

[N b
a, N

d
c ] = [N b′

a′ , N
d′

c′ ]

⇔ a− c = a′ − c′ and b
d = b′

d′ (by Remark 3.4.)

⇔ Z
b
d
a−c = Z

b′
d′
a′−c′

⇔ τ([N b
a, N

d
c ]) = τ([N b′

a′ , N
d′

c′ ]).

Thus τ is well-defined and one-one. Next let Zqp ∈ m(Ẑ). Then p ∈ Z and q ∈ Q+.

Thus ∃a, c; b, d ∈ N such that p = a − c and q = b
d . So [N b

a, N
d
c ] ∈ md(Z). Also,

τ([N b
a, N

d
c ]) = Z

b
d
a−c = Zqp . Hence τ is onto. Therefore, τ is a bijection.

Now let, [N b
a, N

d
c ], [N b′

a′ , N
d′

c′ ] ∈ md(Z). Then

τ([N b
a, N

d
c ]⊕ [N b′

a′ , N
d′

c′ ])

= τ([N b
a +N b′

a′ , N
d
c +Nd′

c′ ])

= τ([N bb′

a+a′ , N
dd′

c+c′ ])

= Z
bb′
dd′
(a+a′)−(c+c′)

= Z
b
d
a−c⊕̂Z

b′
d′
a′−c′

= τ([N b
a, N

d
c ])⊕̂τ([N b′

a′ , N
d′

c′ ]).

Also, τ([N b
a, N

d
c ]� [N b′

a′ , N
d′

c′ ]) = τ([N bb′

aa′+cc′ , N
dd′

ac′+ca′ ]) = Z
bb′
dd′
(aa′+cc′)−(ac′+ca′).

Furthermore,
τ([N b

a, N
d
c ])�̂τ([N b′

a′ , N
d′

c′ ])

= Z
b
d
a−c�̂Z

b′
d′
a′−c′

= Z
bb′
dd′
(a−c)(a′−c′)

= Z
bb′
dd′
(aa′+cc′)−(ac′+ca′).

Thus τ([N b
a, N

d
c ]� [N b′

a′ , N
d′

c′ ]) = τ([N b
a, N

d
c ])�̂τ([N b′

a′ , N
d′

c′ ]).
Next, for [N b

a, N
d
c ], [Nq

p , N
s
r ] ∈ md(Z), let [N b

a, N
d
c ] > [Nq

p , N
s
r ]. Then ∃[Nn

m +

N1
1 , N

1
1 ] ∈ md(NZ) such that [N b

a, N
d
c ] = [Nq

p , N
s
r ] ⊕ [Nn

m + N1
1 , N

1
1 ] or [N b

a, N
d
c ] =

[Nq
p +Nn

m +N1
1 , N

s
r +N1

1 ] = [Nq
p +Nn

m, N
s
r ] = [Nqn

p+m, N
s
r ]. Thus

a− c = p+m− r and b
d = qn

s

⇒ Z
b
d
a−c = Z

q
sn
p−r+m

⇒ Z
b
d
a−c = Z

q
s
p−r⊕̂Znm

162



Debjyoti Chatterjee et al. /Ann. Fuzzy Math. Inform. 15 (2018), No. 2, 149–167

⇒ Z
b
d
a−c>̂Z

q
s
p−r (since m,n ∈ N)

⇒ τ([N b
a, N

d
c ])>̂τ([Nq

p , N
s
r ].

So (md(Z),⊕,�,≥) and (m(Ẑ), ⊕̂, �̂, ≥̂) are isomorphic. �

Remark 3.37. (Properties of (m(Ẑ), ⊕̂, �̂, ≥̂)

Since (md(Z),⊕,�,≥) and (m(Ẑ), ⊕̂, �̂, ≥̂) are isomorphic, (m(Ẑ), ⊕̂) is a commu-

tative group, (m(Ẑ), �̂) is a commutative monoid and �̂ obey multi-distributive

property over ⊕̂. Also, (m(Ẑ), ≥̂) is a poset. Moreover, ≥̂ defined on m(Ẑ) is an
extension of ≥ defined on m(N).

Remark 3.38. (m(Ẑ), ⊕̂) is a commutative group and (m(Ẑ), �̂) is a commuta-

tive monoid but (m(Ẑ), ⊕̂, �̂) is not a ring, since �̂ can not be distributed over
⊕̂. But �̂ obeys multi-distributive property over ⊕̂. Let us now introduce a new
concept of multi-ring replacing distributive property by multi-distributive property

and (m(Ẑ), ⊕̂, �̂) to be such a multi-ring.

Definition 3.39. (General mset drawn from a ring) Let (X,+, ·) be ring. Let M
be a general mset drawn from X. Consider two functions ⊕ : M ×M → X ×R and
� : M ×M → X ×R defined as follows: For Xr

a , X
s
b ∈M ,

Xr
a ⊕Xs

b = Xrs
a+b and Xr

a �Xs
b = Xrs

a·b.

Let us call ⊕ and � respectively as m-addition and m-multiplication defined on M
induced by the ring (X,+, ·). Also let M be closed under both the operations ⊕
and �. Then immediately ⊕ obey commutative and associative property on M .
So, (M,⊕) is then commutative semi groups. Also, immediately � obey associative
property on M . So, (M,�) is a semi group. We define M to be a general mset
drawn from the ring (X,+, ·).

Theorem 3.40. Let M be a general mset drawn from a ring (X,+, ·). Then � obey
multi-distributive property over ⊕.

Definition 3.41. (Multi-ring) Let M be a general mset drawn from a ring (X,+, ·).
⊕ and � are m-addition and m-multiplication defined on M induced by the ring
(X,+, ·). If the structure (M,⊕,�) satisfies the following:

(i) (M,⊕) is an abelian group,
(ii) (M, ·) is a semigroup,
(ii) � is multi-distributive over ⊕,

then we define (M,⊕,�) to be a multi-ring induced by the ring (X,+, ·) on M ,

e.g., (m(Ẑ), ⊕̂, �̂) is a multi-ring induced by the ring (Z,+, ·).

Remark 3.42. Let (M,⊕,�) be the multi-ring induced by the ring (X,+, ·) on the
general mset M drawn from X. Let θ be the zero element in (X,+, ·). Then X1

θ

must be the zero element in (M,⊕,�). Let us also define any element in M of the
form Xr

θ for some r ∈ R − {0} to be the multi-zero elements of M such that the
product of any element of the multi-ring with a multi-zero element of the same is
again a multi-zero of the multi-ring. Clearly, the zero element in a multi-ring is a
multi-zero element.
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Remark 3.43. In the multi-ring (m(Ẑ), ⊕̂, �̂), the non-zero multi-zeros are the only
divisors of zero.

Theorem 3.44. In a multi-ring, the non-zero multi-zero elements are divisors of
zero.

Definition 3.45. A multi-ring is said to have no non-multi-zero divisors of zero if
its non-zero multi-zero elements are the only divisors of zero.

Remark 3.46. The multi-ring (m(Ẑ), ⊕̂, �̂) induced by the ring (Z,+, ·) has no
non-multi-zero divisors of zero.

Definition 3.47. (Multi-integral domain) Let M be a general mset drawn from an
integral domain (X,+, ·). If the structure (M,⊕,�) satisfies the following:

(i) (M,⊕) is an commutative group,
(ii) (M,�) is a commutative monoid,
(iii) � is multi-distributive over ⊕,
(iv) M has no non-multi-zero divisors of zero,

then we define it to be a multi-integral domain induced by the integral domain

(X,+, ·) on M , e.g., (m(Ẑ), ⊕̂, �̂) is a multi-integral domain induced by the integral
domain (Z,+, ·).

It is worth noting that if M be a general mset drawn from an integral domain
(X,+, ·), then immediately (M,⊕,�) has no non-multi-zero divisors of zero.

Theorem 3.48. (m(Ẑ), ⊕̂, �̂, ≥̂) is a partially ordered multi-integral domain drawn
from the integral domain (Z,+, ·).

Definition 3.49. (Definition of Multi-integer system) A partially ordered multi-
integral domain (M,⊕,�,≥) is called a multi-integer system, if ∃ a subset NM of
M such that

(i) both (NM ,⊕) and (NM ,�) are semigroups and under the same isomorphism
φ : NM → N , we have (NM ,⊕) ∼= (m(N),+) and (NM ,�) ∼= (m(N), ·) as semi-
group. Furthermore, for every x, y ∈ NM , we have x > y ⇒ φ(x) > φ(y).

(ii) for every x ∈M , ∃y, z ∈ NM such that x = y ⊕ (−z).

Theorem 3.50. (Existence and uniqueness of multi-integer system) Multi-integer
system exists and any two multi-integer systems are isomorphic.

Proof. We have previously shown that the system (m(Ẑ), ⊕̂, �̂, ≥̂) is a partially
ordered multi-integral domain drawn from the integral domain (Z,+, ·).

Consider the subset m(NẐ) = {Zba : a, b ∈ N} of m(Ẑ). Again, a, b ∈ N implies

Zba = N b
a. Then m(NẐ) = m(N).

Also consider the restrictions of ⊕̂ and �̂ defined on m(NẐ). Then immediately,
they are + and · defined on m(N).

Thus both (m(NẐ), ⊕̂) and (m(NẐ), �̂) are sub semigroups of (m(Ẑ), ⊕̂) and (m(Ẑ), �̂),
respectively and they are isomorphic to (m(N),+) and (m(N), ·), respectively under
the same isomorphism φ : m(NẐ)→ m(N) defined by φ(Zqp) = Nq

p , Z
q
p ∈ m(NẐ).

Now let Zqp , Z
n
m ∈ m(NẐ) such that Zqp>̂Z

n
m. Since p,m; q, n ∈ N , Zqp = Nq

p and
Znm = Nn

m.
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Now Zqp>̂Z
n
m ⇒ ∃Zba ∈ m(Ẑ) with a, b ∈ N such that Zqp = Znm⊕̂Zba. Again

a, b ∈ N implies Zba = N b
a. Then Nq

p = Nn
m⊕̂N b

a. Thus Nq
p = Nn

m + N b
a, i.e.,

Nq
p > Nn

m, i.e., φ(Zqp) > φ(Znm). So ∀Zqp , Znm ∈ m(NẐ), Zqp>̂Z
n
m ⇒ φ(Zqp) > φ(Znm).

Finally let, x = Zra ∈ m(Ẑ). Then a ∈ Z and b ∈ Q+. Thus ∃b, c; p, q ∈ N such

that a = b− c and r = p
q . So x = Zra = Z

p
q

b−c = Zpb ⊕Z
1
q

−c = Zpb ⊕ (−Zqc ) = y⊕ (−z),
say, where y = Zpb , z = Zqc ∈ m(NẐ), since b, c; p, q ∈ N . Hence, (m(Ẑ), ⊕̂, �̂, ≥̂) is
a multi-integer system and so multi-integer system exists.

Next let (m(Z),⊕,�,≥) and (m(Z ′),⊕′,�′,≥′) be any two multi-integer systems
(m(Z) and m(Z ′) being two general msets). Then by transitivity of isomorphism
φ : m(NZ)→ m(NZ′) such that
∀y, z ∈ m(NZ), φ(y ⊕ z) = φ(y)⊕′ φ(z) and φ(y � z) = φ(y)�′ φ(z),

y > z ⇒ φ(y) >′ φ(z).
Also, for any x ∈ m(Z), ∃yx, zx ∈ m(NZ) such that x = yx ⊕ (−zx).
Define ψ : m(Z)→ m(Z ′) by ψ(x) = φ(yx)⊕′ (−φ(zx)). Then we can show that

ψ is well defined. Also, we can show that ψ is bijective. Again, for any u, v ∈ m(Z),
ψ(u⊕ v) = ψ[(yu ⊕ (−zu))⊕ (yv ⊕ (−zv))]

= ψ[(yu ⊕ yv)⊕ (−(zu ⊕ zv))]
= φ(yu ⊕ yv)⊕′ (−φ(zu ⊕ zv))
= (φ(yu)⊕′ φ(yv))⊕′ (−φ(zu)⊕′ (−φ(zv)))
= (φ(yu)⊕′ (−φ(zu)))⊕′ (φ(zv)⊕′ (−φ(zv)))
= ψ(u)⊕′ ψ(v).

Similarly, we can show that ψ(u� v) = ψ(u)�′ ψ(v).
Again, for any u, v ∈ m(Z),

u > v ⇒ yu ⊕ (−zu) > yv ⊕ (−zv)
⇒ yu ⊕ zv > yv ⊕ zu
⇒ φ(yu ⊕ zv) >′ φ(yv ⊕ zu)
⇒ φ(yu)⊕′ φ(zv) >

′ φ(yv)⊕′ φ(zu)
⇒ φ(yu)⊕′ (−φ(zu)) >′ φ(yv)⊕′ (−φ(zv))
⇒ ψ(u) >′ ψ(v).

Thus ψ is an isomorphism from (m(Z),⊕,�,≥) to (m(Z ′),⊕′,�′,≥′).
So (m(Z),⊕,�,≥) ∼= (m(Z ′),⊕′,�′,≥′). Hence the uniqueness of the multi-integer
system. �

Remark 3.51. Therefore, (m(Ẑ), ⊕̂, �̂, ≥̂) is a multi-integer system. Also, multi-
integer system is unique. So, from now on we shall abandon our multi-difference

system and consider instead the multi-integer system (m(Ẑ), ⊕̂, �̂, ≥̂). From now
we will denote any multi-integer system by (m(Z),⊕,�,≥). The copy of the multi-
natural numbers embedded in m(Z) will still denoted by m(N) and it has all the
properties that we have proven in paper [8], if we consider it in isolation.

Example 3.52. Consider three multi-integers Z3
5 , Z4

3 and Z
3
5
−3.

Then Z7
3 ⊕ Z6

5 = Z7·6
3+5 = Z42

8 and Z
3
5
−3 � Z3

5 = Z
3
5 ·3
(−3)·5 = Z

9
5
−15.
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4. Conclusion

In this paper, we have defined and studied multi-integer system as an extension
of multi-natural number system. There is a huge scope of future research works in
the field of multiset. Especially further study can be carried out in the following
directions:

To study extension of multi-integer system towards multi-rational number system,
multi-real number system etc.

To study throughly the properties of algebraic operations and order relations
defined on them.

Also, to study the properties of general mset and multi-integral domain.
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