Annals of Fuzzy Mathematics and Informatics
Volume 15, No. 3, (June 2018) pp. 207-226
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2018.15.3.207
@IMII
(C) Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Intuitionistic hyperspaces

J. Kim, P. K. Lim, J. G. Lee, K. Hur

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 15, No. 3, June 2018

Annals of Fuzzy Mathematics and Informatics Volume 15, No. 3, (June 2018) pp. 207-226
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2018.15.3.207

OLNM \mathbb{H}
(c) Research Institute for Basic

Science, Wonkwang University
http://ribs.wonkwang.ac.kr

Intuitionistic hyperspaces

J. Kim, P. K. Lim, J. G. Lee, K. Hur

Received 6 December 2017; Revised 27 December 2017; Accepted 25 January 2018

Abstract

For an ITS (X, τ), we introduce an intuitionistic hyperspace $\left(2^{(X, \tau)}, \tau_{v}\right)$ [resp. $\left(2^{\left(X, \tau_{I}\right)}, \tau_{I, v}\right)$ and $\left.\left(2^{\left(X, \tau_{I V}\right)}, \tau_{I V, v}\right)\right]$ of τ-type [resp. $\tau_{I^{-}}$ type and $\tau_{I V}$-type]. And we give some examples of each hyperspace and obtain some properties of the hyperspace $\left(2^{(X, \tau)}, \tau_{v}\right)$. Next, we find some relationships between openess in an ITS (X, τ) and its hyperspace $2^{(X, \tau)}$. Finally, we introduce an intuitionistic set-valued mapping and study its some continuities.

2010 AMS Classification: $54 \mathrm{~A} 40,54 \mathrm{~B} 20$
Keywords: Intuitionistic topological space, Intuitionistic locally compact space, Intuitionistic connected space, $\mathrm{T}_{3}(i)$-space, Intuitionistic hyperspace, Intuitionistic set-valued mapping.

Corresponding Author: J. Kim (junhikim@wku.ac.kr)

1. Introduction

In 1983, Atanassove [1] introdued the concept of intuitionstic fuzzy sets as a generalization of a fuzzy set proposed by Zadeh [20]. In 1996, Coker [5] introduced the concept of an intuitionistic set (called an intuitionistic crisp set by Salama et al.[17]) as the generalzation of an ordinary set and the specialization of an intuitionistic fuzzy set. After that time, many researchers $[3,4,6,7,8,15,16,18,19]$ applied the notion to topology. Recently, Kim et al. [10] studied the category ISet composed of intuitionistic sets and morphisms between them in the sense of a topological universe. Also, Kim et al. [11] studied some additional properties and give some examples related to intuitionistic closures and intuitionistic interiors in intuitionistic topological spaces. Lee et al. [14] introduced some types of continuities, open and closed mappings, and intuitionistic subspaces. In particular, Bavithra et al. [2] studied intuitionistic Fell topological spaces.

In this paper, first of all, we list some concepts related to intuitionistic sets and some results obtained by $[5,6,7,10,11]$. Second, for an ITS (X, τ), we introduce
an intuitionistic hyperspace $\left(2^{(X, \tau)}, \tau_{v}\right)$ [resp. $\left(2^{\left(X, \tau_{I}\right)}, \tau_{I, v}\right)$ and $\left.\left(2^{\left(X, \tau_{I V}\right)}, \tau_{I V, v}\right)\right]$ of τ-type [resp. τ_{I}-type and $\tau_{I V}$-type]. And we give some examples of each hyperspace and obtain some properties of the hyperspace $\left(2^{(X, \tau)}, \tau_{v}\right)$. Third, we find some relationships between openess in an ITS (X, τ) and its hyperspace $2^{(X, \tau)}$. Finally, we introduce an intuitionistic set-valued mapping and study its some continuities.

2. Preliminaries

In this section, we list some concepts related to intuitionistic sets and some results obtained by $[5,6,7,10,11]$.

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic set (in short, IS) of X, if it is an object having the form

$$
A=\left(A_{T}, A_{F}\right)
$$

such that $A_{T} \cap A_{F}=\phi$, where A_{T} [resp. A_{F}] is called the set of members [resp. nonmembers] of A.

In fact, A_{T} [resp. A_{F}] is a subset of X agreeing or approving [resp. refusing or opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by $\phi_{I}\left[\right.$ resp. $\left.X_{I}\right]$, is defined by $\phi_{I}=(\phi, X)\left[\right.$ resp. $\left.X_{I}=(X, \phi)\right]$.

In general, $A_{T} \cup A_{F} \neq X$.
We will denote the set of all ISs of X as $I S(X)$.
Definition 2.2 ([5]). Let $A, B \in I S(X)$ and let $\left(A_{j}\right)_{j \in J} \subset I S(X)$.
(i) We say that A is contained in B, denoted by $A \subset B$, if $A_{T} \subset B_{T}$ and $A_{F} \supset B_{F}$.
(ii) We say that A equals to B, denoted by $A=B$, if $A \subset B$ and $B \subset A$.
(iii) The complement of A denoted by A^{c}, is an IS of X defined as:

$$
A^{c}=\left(A_{F}, A_{T}\right)
$$

(iv) The union of A and B, denoted by $A \cup B$, is an IS of X defined as:

$$
A \cup B=\left(A_{T} \cup B_{T}, A_{F} \cap B_{F}\right)
$$

(v) The union of $\left(A_{j}\right)_{j \in J}$, denoted by $\bigcup_{j \in J} A_{j}$ (in short, $\bigcup A_{j}$), is an IS of X defined as:

$$
\bigcup_{j \in J} A_{j}=\left(\bigcup_{j \in J} A_{j, T}, \bigcap_{j \in J} A_{j, F}\right)
$$

(vi) The intersection of A and B, denoted by $A \cap B$, is an IS of X defined as:

$$
A \cap B=\left(A_{T} \cap B_{T}, A_{F} \cup B_{F}\right)
$$

(vii) The intersection of $\left(A_{j}\right)_{j \in J}$, denoted by $\bigcap_{j \in J} A_{j}$ (in short, $\bigcap A_{j}$), is an IS of X defined as:

$$
\bigcap_{j \in J} A_{j}=\left(\bigcap_{j \in J} A_{j, T}, \bigcup_{j \in J} A_{j, F}\right)
$$

(viii) $A-B=A \cap B^{c}$.
(ix) [] $A=\left(A_{T}, A_{T}{ }^{c}\right),<>A=\left(A_{F}{ }^{c}, A_{F}\right)$.

Result 2.3 ([10], Proposition 3.6). Let $A, B, C \in I S(X)$. Then
(1) (Idempotent laws): $A \cup A=A, A \cap A=A$,
(2) (Commutative laws): $A \cup B=B \cup A, A \cap B=B \cap A$,
(3) (Associative laws): $A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C$,
(4) (Distributive laws): $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

(5) (Absorption laws): $A \cup(A \cap B)=A, A \cap(A \cup B)=A$,
(6) (DeMorgan's laws): $(A \cup B)^{c}=A^{c} \cap B^{c},(A \cap B)^{c}=A^{c} \cup B^{c}$,
(7) $\left(A^{c}\right)^{c}=A$,
(8) (8a) $A \cup \phi_{I}=A, A \cap \phi_{I}=\phi_{I}$,
(8b) $A \cup X_{I}=X_{I}, A \cap X_{I}=A$,
(8c) $X_{I}^{c}=\phi_{I}, \phi_{I}^{c}=X_{I}$,
(8d) in general, $A \cup A^{c} \neq X_{I}, A \cap A^{c} \neq \phi_{I}$.
We will denote the family of all ISs A in X such that $A_{T} \cup A_{F}=X$ as $I S_{*}(X)$, i.e.,

$$
I S_{*}(X)=\left\{A \in I S(X): A_{T} \cup A_{F}=X\right\}
$$

In this case, it is obvious that $A \cap A^{c}=\phi_{I}$ and $A \cup A^{c}=X_{I}$ and thus

$$
\left(I S_{*}(X), \subset, \phi_{I}, X_{I}\right)
$$

is a Boolean algebra. In fact, there is a one-to-one correspondence between $P(X)$ and $I S_{*}(X)$, where $P(X)$ denotes the power set of X. Moreover, for any $A, B \in I S_{*}(X)$,

$$
A=A_{I}=[] A=<>A \text { and } A \cup B, A \cap B, A-B \in I S_{*}(X)
$$

Definition 2.4 ([5]). Let X be a non-empty set, $a \in X$ and let $A \in I S(X)$.
(i) The form $\left(\{a\},\{a\}^{c}\right)$ [resp. $\left.\left(\phi,\{a\}^{c}\right)\right]$ is called an intuitionistic point [resp. vanishing point] of X and denoted by a_{I} [resp. $a_{I V}$].
(ii) We say that a_{I} [resp. $a_{I V}$] is contained in A, denoted by $a_{I} \in A$ [resp. $\left.a_{I V} \in A\right]$, if $a \in A_{T}\left[\right.$ resp. $\left.a \notin A_{F}\right]$.

We will denote the set of all intuitionistic points or intuitionistic vanishing points in X as $I P(X)$.

Definition 2.5 ([6]). Let X be a non-empty set and let $\tau \subset I S(X)$. Then τ is called an intuitionistic topology (in short IT) on X, if it satisfies the following axioms:
(i) $\phi_{I}, X_{I} \in \tau$,
(ii) $A \cap B \in \tau$, for any $A, B \in \tau$,
(iii) $\bigcup_{j \in J} A_{j} \in \tau$, for each $\left(A_{j}\right)_{j \in J} \subset \tau$.

In this case, the pair (X, τ) is called an intuitionistic topological space (in short, ITS) and each member O of τ is called an intuitionistic open set (in short, IOS) in X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if $F^{c} \in \tau$.

It is obvious that $\left\{\phi_{I}, X_{I}\right\}$ is the smallest IT on X and will be called the intuitionistic indiscreet topology and denoted by $\tau_{I, 0}$. Also $I S(X)$ is the greatest IT on X and will be called the intuitionistic discreet topology and denoted by $\tau_{I, 1}$. The pair $\left(X, \tau_{I, 0}\right)$ [resp. $\left.\left(X, \tau_{I, 1}\right)\right]$ will be called the intuitionistic indiscreet [resp. discreet] space.

We will denote the set of all ITs on X as $I T(X)$. For an ITS X, we will denote the set of all IOSs [resp. ICSs] on X as $I O(X)$ [resp. $I C(X)]$.

Example 2.6. (1) ([6], Example 3.2) For any ordinary topological space (X, τ_{o}), let $\tau=\left\{\left(A, A^{c}\right): A \in \tau_{o}\right\}$. Then clearly, (X, τ) is an ITS.
(2) ([6], Example 3.4) Let (X, τ) be an ordinary topological space such that τ is not indiscrete, where $\tau=\{\phi, X\} \cup\left\{G_{j}: j \in J\right\}$. Then there exist two ITs on X as follows: $\tau^{1}=\left\{\phi_{I}, X_{I}\right\} \cup\left\{\left(G_{j}, \phi\right): j \in J\right\}$ and $\tau^{2}=\left\{\phi_{I}, X_{I}\right\} \cup\left\{\left(\phi, G_{j}^{c}\right): j \in J\right\}$.
(3) ([11], Example $3.2(4))$ Let X be a set and let $A \in I S(X)$. Then A is said to be finite, if A_{T} is finite. Consider the family $\tau=\left\{U \in I S(X): U=\phi_{I}\right.$ or U^{c} is finite $\}$. Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cofinite topology on X and denoted by $\operatorname{ICof}(X)$.
(4) ([11], Example 3.2 (5)) Let X be a set and let $A \in I S(X)$. Then A is said to be countable, if A_{T} is countable. Consider the family $\tau=\{U \in I S(X): U=$ ϕ_{I} or U^{c} is countable $\}$. Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cocountable topology on X and denoted by $\operatorname{ICoc}(X)$.
Result 2.7 ([6], Proposition 3.5). Let (X, τ) be an ITS. Then the following two ITs on X can be defined by:

$$
\tau_{0,1}=\{[] U: U \in \tau\}, \tau_{0,2}=\{<>U: U \in \tau\}
$$

Furthermore, the following two ordinary topologies on X can be defined by (See [3]):

$$
\tau_{1}=\left\{U_{T}: U \in \tau\right\}, \tau_{2}=\left\{U_{F}^{c}: U \in \tau\right\}
$$

Remark 2.8 ([11], Remark 3.4). (1) Let (X, τ) be an ITS such that $\tau \subset I S_{*}(X)$. Then it is obvious that $\tau=\tau_{0,1}=\tau_{0,2}$.
(2) For an IT τ on a set X, we will denote two ITs $\tau_{0,1}$ and $\tau_{0,2}$ defined in Result 2.7 as $\tau_{0,1}=[] \tau$ and $\tau_{0,2}=<>\tau$, respectively.
(3) For an IT τ on a set X, let τ_{1} and τ_{2} be ordinary topologies on X defined in Result 2.7. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is a bitopological space by Kelly [9] (Also see Proposition 3.1 in [4]).

Definition 2.9 ([6]). Let (X, τ) be an ITS.
(i) A subfamily β of τ is called an intuitionistic base (in short, IB) for τ, if for each $A \in \tau, A=\phi_{I}$ or there exists $\beta^{\prime} \subset \beta$ such that $A=\bigcup \beta^{\prime}$.
(ii) A subfamily σ of τ is called an intuitionistic subbase (in short, ISB) for τ, if the family $\beta=\left\{\bigcap \sigma^{\prime}: \sigma^{\prime}\right.$ is a finite subset of $\left.\sigma\right\}$ is a base for τ.

In this case, the IT τ is said to be generated by σ. In fact, $\tau=\left\{\phi_{I}\right\} \cup\left\{\bigcup \beta^{\prime}\right.$: $\left.\beta^{\prime} \subset \beta\right\}$.

Definition 2.10 ([7]). Let X be an ITS, $p \in X$ and let $N \in I S(X)$. Then
(i) N is called a neighborhood of p_{I}, if there exists an IOS G in X such that

$$
p_{I} \in G \subset N \text {, i.e., } p \in G_{T} \subset N_{T} \text { and } G_{F} \supset N_{F}
$$

(ii) N is called a neighborhood of $p_{I V}$, if there exists an IOS G in X such that

$$
p_{I V} \in G \subset N \text {, i.e., } G_{T} \subset N_{T} \text { and } p \notin G_{F} \supset N_{F}
$$

We will denote the set of all neighborhoods of $p_{I}\left[\right.$ resp. $\left.p_{I V}\right]$ by $N\left(p_{I}\right)[$ resp. $\left.N\left(p_{I V}\right)\right]$.
Result 2.11 ([7], Proposition 3.4). Let (X, τ) be an ITS. We define the families

$$
\tau_{I}=\left\{G: G \in N\left(p_{I}\right), \text { for each } p_{I} \in G\right\}
$$

and

$$
\tau_{I V}=\left\{G: G \in N\left(p_{I V}\right), \text { for each } p_{I V} \in G\right\}
$$

Then $\tau_{I}, \tau_{I V} \in I T(X)$.
In fact, from Remark 4.5 in [11], we can see that for an IT τ on a set X and each $U \in \tau$,

$$
\tau_{I}=\tau \cup\left\{\left(U_{T}, S_{U}\right): S_{U} \subset U_{F}\right\} \cup\{(\phi, S): S \subset X\}
$$

and

$$
\tau_{I V}=\tau \cup\left\{\left(S_{U}, U_{F}\right): S_{U} \supset U_{T} \text { and } S_{U} \cap U_{F}=\phi\right\}
$$

Result 2.12 ([7], Proposition 3.5). Let (X, τ) be an ITS. Then $\tau \subset \tau_{I}$ and $\tau \subset \tau_{I V}$.
Result 2.13 ([11], Corollary 4.8). Let (X, τ) be an ITS and let $I C_{\tau}$ [resp. $I C_{\tau_{I}}$ and $\left.I C_{\tau_{I V}}\right]$ be the set of all ICSs w.r.t. $\tau\left[\right.$ resp. τ_{I} and $\left.\tau_{I V}\right]$. Then

$$
I C_{\tau}(X) \subset I C_{\tau_{I}}(X) \text { and } I C_{\tau}(X) \subset I C_{\tau_{I V}}(X)
$$

Result 2.14 ([7], Proposition 3.9). Let (X, τ) be an ITS. Then $\tau=\tau_{I} \cap \tau_{I V}$.
Result 2.15 ([11], Corollary 4.13). Let (X, τ) be an ITS and let $\left.I C_{\tau}\right]$. Then

$$
I C_{\tau}(X)=I C_{\tau_{I}}(X) \cap I C_{\tau_{I V}}(X)
$$

Definition 2.16 ([6]). Let (X, τ) be an ITS and let $A \in I S(X)$.
(i) The intuitionistic closure of A w.r.t. τ, denoted by $\operatorname{Icl}(A)$, is an IS of X defined as:

$$
\operatorname{Icl}(A)=\bigcap\left\{K: K^{c} \in \tau \text { and } A \subset K\right\}
$$

(ii) The intuitionistic interior of A w.r.t. τ, denoted by $\operatorname{Iint}(A)$, is an IS of X defined as:

$$
\operatorname{Iint}(A)=\bigcup\{G: G \in \tau \text { and } G \subset A\}
$$

Result 2.17 ([6], Proposition 3.15). Let (X, τ) be an ITS and let $A \in I S(X)$. Then

$$
\operatorname{Iint}\left(A^{c}\right)=(\operatorname{Icl}(A))^{c} \text { and } \operatorname{Icl}\left(A^{c}\right)=(\operatorname{Iint}(A))^{c}
$$

3. Intuitionistic hyperspaces

In this section, for an $\operatorname{ITS}(X, \tau)$, we introduce an intuitionistic hyperspace $\left(2^{(X, \tau)}, \tau_{v}\right)$ [resp. $\left(2^{\left(X, \tau_{I}\right)}, \tau_{I, v}\right)$ and $\left.\left(2^{\left(X, \tau_{I V}\right)}, \tau_{I V, v}\right)\right]$ of τ-type [resp. τ_{I}-type and $\tau_{I V}$-type]. And we give some examples of each hyperspace and obtain some properties of the hyperspace $\left(2^{(X, \tau)}, \tau_{v}\right)$.
Notation 3.1. Let (X, τ) be an ITS. Then
(1) $2^{(X, \tau)}=\left\{E \in I S(X): \phi_{I} \neq E \in I C_{\tau}(X)\right\}$,
(2) $2^{\left(X, \tau_{I}\right)}=\left\{E \in I S(X): \phi_{I} \neq E \in I C_{\tau_{I}}(X)\right\}$,
(3) $2^{\left(X, \tau_{I V}\right)}=\left\{E \in I S(X): \phi_{I} \neq E \in I C_{\tau_{I V}}(X)\right\}$,
(4) $\mathfrak{F}_{2^{(X, \tau)}, n}(X)=\left\{E \in 2^{(X, \tau)}: E_{T}\right.$ has at most n elements $\}$,
(5) $\mathfrak{F}_{2(X, \tau)}(X)=\left\{E \in 2^{(X, \tau)}: E_{T}\right.$ is finite $\}$,
(6) $\mathfrak{K}_{2(X, \tau)}(X)=\left\{E \in 2^{(X, \tau)}: E\right.$ is compact $\}$,
(7) $\mathfrak{C}_{2(X, \tau)}(X)=\left\{E \in 2^{(X, \tau)}: E\right.$ is connected $\}$,
(8) $\mathfrak{C}_{2^{(X, \tau)}, K}(X)=\mathfrak{K}_{2^{(X, \tau)}}(X) \cap \mathfrak{C}\left(_{2^{(X, \tau)}}(X)\right.$.

The following is the immediate result of Notation 3.1, and Results 2.12 and 2.14.
Proposition 3.2. Let (X, τ) be an ITS. Then

$$
2^{(X, \tau)} \subset 2^{\left(X, \tau_{I}\right)} \text { and } 2^{(X, \tau)} \subset 2^{\left(X, \tau_{I V}\right)}
$$

Moreover, $2^{(X, \tau)}=2^{\left(X, \tau_{I}\right)} \cap 2^{\left(X, \tau_{I V}\right)}$.
Example 3.3. Let $X=\{a, b, c\}$ and let τ be the IT on X given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}\right\}
$$

where $A_{1}=(\{a\},\{b\}), A_{2}=(\{b\},\{c\}), A_{3}=(\{a, b\}, \phi), A_{4}=(\phi,\{b, c\})$.
Then $\tau_{I}=\tau \cup\left\{A_{5}, A_{6}, A_{7}, A_{8}, A_{9}\right\}$ and $\tau_{I}=\tau \cup\left\{A_{10}, A_{11}, A_{12}\right\}$,
where $A_{5}=(\phi,\{a\}), A_{6}=(\phi,\{b\}), A_{7}=(\phi,\{c\}), A_{8}=(\phi,\{a, b\})$,

$$
A_{9}=(\phi,\{a, c\}), A_{10}=(\{a, c\},\{b\}), A_{11}=(\{a, b\},\{c\}), A_{12}=(\{a\},\{b, c\})
$$

Thus $I C_{\tau}(X)=\left\{\phi_{I}, X_{I}, F_{1}, F_{2}, F_{3}, F_{4}\right\}$,

$$
I C_{\tau_{I}}(X)=I C_{\tau}(X) \cup\left\{F_{5}, F_{6}, F_{7}, F_{8}, F_{9}\right\}
$$

and

$$
I C_{\tau_{I V}}(X)=I C_{\tau}(X) \cup\left\{F_{10}, F_{11}, F_{12}\right\}
$$

where $F_{1}=(\{b\},\{a\}), F_{2}=(\{c\},\{b\}), F_{3}=(\phi,\{a, b\}), F_{4}=(\{b, c\}, \phi)$,

$$
F_{5}=(\{a\}, \phi), F_{6}=(\{b\}, \phi), F_{7}=(\{c\}, \phi), F_{8}=(\{a, b\}, \phi),
$$

$$
F_{9}=(\{a, c\}, \phi), F_{10}=(\{b\},\{a, c\}), F_{11}=(\{c\},\{a, b\}), F_{12}=(\{b, c\},\{a\})
$$

So $\quad 2^{(X, \tau)}=\left\{X_{I}, F_{1}, F_{2}, F_{3}, F_{4}\right\}$,
$2^{\left(X, \tau_{I}\right)}=2^{(X, \tau)} \cup\left\{F_{5}, F_{6}, F_{7}, F_{8}, F_{9}\right\}$,
$2^{\left(X, \tau_{I V}\right)}=2^{(X, \tau)} \cup\left\{F_{10}, F_{11}, F_{12}\right\}$.
In fact, we can confirm that Proposition 3.2 holds.
Proposition 3.4. Let (X, τ) be an ITS and let

$$
\begin{aligned}
\beta_{\tau, v} & =\left\{<U_{1}, U_{2}, \ldots, U_{n}>_{\tau, v}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\} \\
\beta_{\tau_{I}, v} & =\left\{<U_{1}, U_{2}, \ldots, U_{n}>_{\tau_{I}, v}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\} \\
\beta_{\tau_{I V}, v} & =\left\{<U_{1}, U_{2}, \ldots, U_{n}>_{\tau_{I V}, v}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\}
\end{aligned}
$$

where $<U_{1}, U_{2}, \ldots, U_{n}>_{\tau, v}$

$$
=\left\{E \in 2^{(X, \tau)}: E \subset \bigcup_{j=1}^{n} U_{j} \text { and } E \cap U_{j} \neq \phi_{I} \text { for } j=1, \ldots, n\right\}
$$

$$
<U_{1}, U_{2}, \ldots, U_{n}>_{\tau_{I}, v}
$$

$$
=\left\{E \in 2^{\left(X, \tau_{I}\right)}: E \subset \bigcup_{j=1}^{n} U_{j} \text { and } E \cap U_{j} \neq \phi_{I} \text { for } j=1, \ldots, n\right\}
$$

$$
<U_{1}, U_{2}, \ldots, U_{n}>_{\tau_{I V}, v}
$$

$$
=\left\{E \in 2^{\left(X, \tau_{I V}\right)}: E \subset \bigcup_{j=1}^{n} U_{j} \text { and } E \cap U_{j} \neq \phi_{I} \text { for } j=1, \ldots, n\right\}
$$

Then there exists a unique topology τ_{v} [resp. $\tau_{I, v}$ and $\left.\tau_{I V, v}\right]$ on $2^{(X, \tau)}$ [resp. $2^{\left(X, \tau_{I}\right)}$ and $\left.2^{\left(X, \tau_{I V}\right)}\right]$ such that $\beta_{\tau, v}$ [resp. $\beta_{\tau_{I}, v}$ and $\left.\beta_{\tau_{I V}, v}\right]$ is a base for τ_{v} [resp. $\tau_{I, v}$ and $\left.\tau_{I V, v}\right]$.

Proof. Clearly, $X_{I} \in \tau$ and $<X_{I}>_{\tau, v} \in \beta_{\tau, v}$. Then $\bigcup \beta_{\tau, v}=<X_{I}>_{\tau, v}=2^{(X, \tau)}$.
Let $<U_{1}, U_{2}, \ldots, U_{n}>_{\tau, v},<V_{1}, V_{2}, \ldots, V_{m}>_{\tau, v} \in \beta_{\tau, v}$ and let $U=\bigcup_{i=1}^{n} U_{i}, V=$ $\bigcup_{j=1}^{m} V_{j}$. Let $\mathbf{B}_{\tau, \mathbf{v}}=<U_{1} \cap V, U_{2} \cap V, \ldots, U_{n} \cap V, U \cap V_{1}, U \cap V_{2}, \ldots, U \cap V_{m}>_{\tau, v}$. Let $E \in \mathbf{B}_{\tau, \mathbf{v}}$. Then $E \subset \bigcup_{i=1}^{n}\left[\left(U_{i} \cap V\right)\right] \cup \bigcup_{j=1}^{m}\left[\left(U \cap V_{j}\right)\right]$, $E \cap U_{i} \cap V \neq \phi_{I}$, for $i=1, \ldots, n$ and $E \cap U \cap V_{j} \neq \phi_{I}$, for $j=1, \ldots, m$. Thus

$$
F \in \mathbf{B}_{\tau, \mathbf{v}}=<U_{1}, U_{2}, \ldots, U_{n}>_{\tau, v} \cap<V_{1}, V_{2}, \ldots, V_{m}>_{\tau, v}
$$

So $\beta_{\tau, v}$ generates the unique topology τ_{v} on $2^{(X, \tau)}$ such that $\beta_{\tau, v}$ is a base for τ_{v}.
Similarly, we can show that $\beta_{\tau_{I}, v}$ and $\beta_{\tau_{I V}, v}$ generate the unique topologies $\tau_{\tau_{I}, v}$ and $\tau_{\tau_{I V}, v}$ on $2^{\left(X, \tau_{I}\right)}$ and $2^{\left(X, \tau_{I V}\right)}$ such that $\beta_{\tau_{I}, v}$ and $\beta_{\tau_{I V}, v}$ are bases for $\tau_{\tau_{I}, v}$ and $\tau_{\tau_{I V}, v}$, respectively.

In the above Proposition, the topology τ_{v} [resp. $\tau_{I, v}$ and $\left.\tau_{I V, v}\right]$ on $2^{(X, \tau)}$ [resp. $2^{\left(X, \tau_{I}\right)}$ and $\left.2^{\left(X, \tau_{I V}\right)}\right]$ induced by $\beta_{\tau, v}$ [resp. $\beta_{\tau_{I}, v}$ and $\left.\beta_{\tau_{I V}, v}\right]$ will be called the intuitionistic Vietories topology (in short, IVT) on $2^{(X, \tau)}\left[\mathrm{resp} .2^{\left(X, \tau_{I}\right)}\right.$ and $\left.2^{\left(X, \tau_{I V}\right)}\right]$. The pair $\left(2^{(X, \tau)}, \tau_{v}\right)$ resp. $\left(2^{\left(X, \tau_{I}\right)}, \tau_{I, v}\right)$ and $\left.\left(2^{\left(X, \tau_{I V}\right)}, \tau_{I V, v}\right)\right]$ will be called an intuitionistic hyperspace of τ-type [resp. τ_{I}-type and $\tau_{I V}$-type].

The following is the immediate result of Proposition 3.4, and Results 2.12 and 2.14.

Proposition 3.5. Let (X, τ) be an ITS. Then $\tau_{v} \subset \tau_{I, v}$ and $\tau_{v} \subset \tau_{I V, v}$. Moreover,

$$
\tau_{v}=\tau_{I, v} \cap \tau_{I V, v}
$$

Example 3.6. Let (X, τ) be the ITS in Example 3.3. Then we can easily check the followings:

$$
\begin{aligned}
& \tau_{v}=\left\{\phi,\left\{F_{1}\right\},\left\{F_{3}\right\},\left\{F_{1}, F_{3}\right\},\left\{F_{2}, F_{4}, X_{I}\right\},\left\{F_{1}, F_{2}, F_{4}, X_{I}\right\},\left\{F_{2}, F_{3}, F_{4}, X_{I}\right\}, 2^{(X, \tau)}\right\}, \\
& \tau_{I, v}=\left\{\phi,\left\{F_{1}\right\},\left\{F_{3}\right\},\left\{F_{5}\right\},\left\{F_{1}, F_{3}\right\},\left\{F_{1}, F_{5}\right\},\left\{F_{1}, F_{6}\right\},\left\{F_{3}, F_{5}\right\},\left\{F_{5}, F_{8}\right\},\right. \\
&\left\{F_{1}, F_{3}, F_{5}\right\},\left\{F_{1}, F_{3}, F_{6}\right\},\left\{F_{1}, F_{5}, F_{8}\right\},\left\{F_{5}, F_{6}, F_{8}\right\},\left\{F_{1}, F_{5}, F_{6}, F_{8}\right\}, \\
&\left\{F_{1}, F_{3}, F_{5}, F_{6}\right\},\left\{F_{1}, F_{3}, F_{5}, F_{8}\right\},\left\{F_{3}, F_{5}, F_{6}, F_{8}\right\},\left\{F_{1}, F_{3}, F_{5}, F_{6}, F_{8}\right\}, \\
&\left.\left\{F_{2}, F_{4}, X_{I}\right\},\left\{F_{1}, F_{2}, F_{4}, X_{I}\right\},\left\{F_{2}, F_{3}, F_{4}, X_{I}\right\}, 2^{(X, \tau)}\right\}, \\
&\left\{F_{1}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}, F_{9}, X_{I}\right\},\left\{F_{1}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}, F_{9}, X_{I}\right\}, \\
&\left.\left\{F_{1}, F_{2}, F_{4}, F_{5}, F_{6}, F_{7}, F_{8}, F_{9}, X_{I}\right\} 2^{\left(X, \tau_{I}\right)}\right\}, \\
& \tau_{I V, v}=\left\{\phi,\left\{F_{1}\right\},\left\{F_{2}\right\},\left\{F_{3}\right\},\left\{F_{10}\right\},\left\{F_{1}, F_{2}\right\},\left\{F_{1}, F_{3}\right\},\left\{F_{1}, F_{10}\right\},\left\{F_{2}, F_{3}\right\},\left\{F_{2}, F_{10}\right\},\right. \\
&\left\{F_{3}, F_{10}\right\},\left\{F_{1}, F_{2}, F_{3}\right\},\left\{F_{1}, F_{3}, F_{10}\right\},\left\{F_{2}, F_{3}, F_{10}\right\},\left\{F_{1}, F_{2}, F_{3}, F_{10}\right\}, \\
&\left.\left\{F_{2}, F_{4}, X_{I}\right\},\left\{F_{1}, F_{2}, F_{4}, X_{I}\right\},\left\{F_{2}, F_{3}, F_{4}, X_{I}\right\}, 2^{(X, \tau)}\right\}, \\
&\left\{F_{1}, F_{2}, F_{4}, F_{10}, F_{12}, X_{I}\right\},\left\{F_{1}, F_{2}, F_{2}, F_{3}, F_{11}, F_{12}, X_{I}\right\}, 2^{\left.\left(X, \tau_{I V}\right)\right\} .}
\end{aligned}
$$

In fact, we can confirm that Proposition 3.5 holds.
Proposition 3.7. Let (X, τ) be an ITS. Then the following two subfamilies $\beta_{\tau_{0,1}}$ and $\beta_{\tau_{0,2}}$ of $2^{(X, \tau)}$, respectively can be defined by:

$$
{\stackrel{\beta}{\tau_{0,1}}}=\left\{<[] U_{1}, \cdots,[] U_{n}>_{\tau_{0,1}}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\}
$$

and

$$
\beta_{\tau_{0,2}}=\left\{\ll>U_{1}, \cdots,<>U_{n}>_{\tau_{0,2}}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\}
$$

where $<[] U_{1}, \cdots,[] U_{n}>_{\tau_{0,1}}$

$$
=\left\{[] E \in 2^{\left(X, \tau_{0,1}\right)}:[] E \subset \bigcup_{j=1}^{n}[] U_{j},[] E \cap[] U_{j} \neq \phi_{I}, \text { for } j=1, \ldots, n,\right.
$$

$$
\left.E^{c} \in \tau\right\}
$$

and

$$
\begin{aligned}
& \quad \lll U_{1}, \cdots,<>U_{n}>_{\tau_{0,2}} \\
& =\left\{<>E \in 2^{\left(X, \tau_{0.2}\right)}:<>E \subset \bigcup_{j=1}^{n}<>U_{j},<>E \cap<>U_{j} \neq \phi_{I},\right. \\
& \left.\quad \text { for } j=1, \ldots, n, E^{c} \in \tau\right\} . \\
& \text { Furthermore, } \beta_{\tau_{0,1}} \text { and } \beta_{\tau_{0,2}} \text { generate unique topologies }\left(\tau_{0,1}\right)_{v} \text { and }\left(\tau_{0,2}\right)_{v} \text { on }
\end{aligned}
$$ $2^{(X, \tau)}$.

In this case, the pair $\left(2^{(X, \tau)},\left(\tau_{0,1}\right)_{v}\right)$ [resp. $\left.\left(2^{(X, \tau)},\left(\tau_{0,2}\right)_{v}\right)\right]$ will be called an intuitionistic hyperspace of $\tau_{0,1}$-type [resp. $\tau_{0,2}$-type] and simply, will be denoted $2^{\left(X, \tau_{0,1}\right)}\left[\right.$ resp. $\left.2^{\left(X, \tau_{0,2}\right)}\right]$.

Proof. The proofs are easy.
Example 3.8. Let (X, τ) be the ITS in Example 3.3. Then

$$
[] A_{1}=(\{a\},\{b, c\}),[] A_{2}=(\{b\},\{a, c\}),[] A_{3}=(\{a, b\},\{c\})
$$

and

$$
<>A_{1}=(\{a, c\},\{b\}),<>A_{2}=(\{a, b\},\{c\}),<>A_{3}=(\{a\},\{b, c\})
$$

Thus

$$
I C_{\tau_{0,1}}(X)=\left\{\phi_{I}, X_{I},[] F_{1},[] F_{2},[] F_{4}\right\}
$$

and

$$
I C_{\tau_{0,2}}(X)=\left\{\phi_{I}, X_{I},<>F_{1},<>F_{2},<>F_{3}\right\}
$$

where []$F_{1}=(\{b\},\{a, c\}),[] F_{2}=(\{c\},\{a, b\}),[] F_{4}=(\{b, c\},\{a\})$
and

$$
<>F_{1}=(\{b, c\},\{a\}),<>F_{2}=(\{a, c\},\{b\}),<>F_{3}=(\{c\},\{a, b\})
$$

So $\quad\left(\tau_{0,1}\right)_{v}=\left\{\phi,\left\{X_{I}\right\},\left\{[] F_{1},[] F_{4}, X_{I}\right\}, 2^{\left(X, \tau_{0,1}\right.}\right\}$
and

$$
\begin{aligned}
\left(\tau_{0,2}\right)_{v}= & \left\{\phi,\left\{<>F_{2}\right\},\left\{<>F_{2},<>F_{3}\right\},\left\{<>F_{2}, X_{I}\right\},\right. \\
& \left\{<>F_{1},<>F_{2}, X_{I}\right\},\left\{<>F_{2},<>F_{3}, X_{I}\right\}, 2^{\left(X, \tau_{0,2}\right\} .}
\end{aligned}
$$

Proposition 3.9. Let (X, τ) be an ITS. Then the following two ordinary subfamilies $\beta_{\tau_{1}}$ and $\beta_{\tau_{2}}$ of $2^{(X, \tau)}$, respectively can be defined by:

$$
\beta_{\tau_{1}}=\left\{<U_{1, T}, \cdots, U_{n, T}>_{\tau_{1}}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\}
$$

and

$$
\beta_{\tau_{2}}=\left\{<U_{1, F}^{c}, \cdots, U_{n, F}^{c}>_{\tau_{2}}: U_{j} \in \tau \text { for } j=1, \ldots, n\right\},
$$

where $<U_{1, T}, \cdots, U_{n, T}>_{\tau_{1}}$

$$
=\left\{E \in 2^{\left(X, \tau_{1}\right)}: E \subset \bigcup_{j=1}^{n} U_{j, T} \text { and } E \cap U_{j, T} \neq \phi \text { for } j=1, \ldots, n\right\}
$$

and

$$
\begin{aligned}
& <U_{1, F}^{c}, \cdots, U_{n, F}^{c}>_{\tau_{2}} \\
= & \left\{E \in 2^{\left(X, \tau_{2}\right)}: E \subset \bigcup_{j=1}^{n} U_{j, F}^{c} \text { and } E \cap U_{j, F}^{c} \neq \phi \text { for } j=1, \ldots, n\right\} .
\end{aligned}
$$

Furthermore, $\beta_{\tau_{1}}$ and $\beta_{\tau_{2}}$ generate unique ordinary Vietories topologies $\tau_{1, v}$ and $\tau_{2, v}$ on 2^{X}.

In this case, the pair $\left.\left(2^{(X, \tau)}, \tau_{1, v}\right)\right)$ [resp. $\left.\left.\left(2^{(X, \tau)}, \tau_{2, v}\right)\right)\right]$ will be called an ordinary hyperspace of τ_{1}-type [resp. τ_{2}-type] and simply, will be denoted $2^{\left(X, \tau_{1}\right)}$ [resp.
$\left.2^{\left(X, \tau_{2}\right)}\right]$, and the triple $\left(2^{(X, \tau)}, \tau_{1, v}, \tau_{2, v}\right)$ will be called an ordinary bihyperspace induced by (X, τ).

Proof. The proofs are easy.
Example 3.10. Let $X=\{a, b, c\}$ and let τ be the IT on X given by:

$$
\tau=\left\{\phi_{I}, X_{I}, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}
$$

where $A_{1}=(\{a, b\},\{c\}), A_{2}=(\{b, c\},\{a\}), A_{3}=(\{a\},\{c\})$

$$
A_{4}=(\{b\},\{a, c\}), A_{5}=(\phi,\{a, c\})
$$

Then

$$
\tau_{1}=\{\phi, X,\{a\},\{b\},\{a, b\},\{b, c\}\}
$$

and

$$
\tau_{2}=\{\phi, X,\{b\},\{a, b\},\{b, c\}\}
$$

Thus $\tau_{1}^{c}=\{\phi, X,\{a\},\{c\},\{b, c\},\{a, c\}\}$ and $\tau_{2}^{c}=\{\phi, X,\{a\},\{c\},\{a, c\}\}$.
where τ_{1}^{c} and τ_{2}^{c} denote the families of closed sets in $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$, respectively.
So $\tau_{1, v}=\left\{\{\phi\},\{\{a\}\},\{\{c\}\},\{\{b, c\}\},\{\{a, c\}\},\{\{b, c\},\{a, c\}\}, 2^{\left(X, \tau_{1}\right)}\right\}$
and
$\tau_{2, v}=\left\{\{\phi\},\{\{a\}\},\{\{c\}\},\{\{a, c\}\}, 2^{\left(X, \tau_{2}\right)}\right\}$.
Proposition 3.11. Let X be an ITS, $A, B \in I S(X)$ and let $\left(A_{\alpha}\right)_{\alpha \in \Gamma} \subset I S(X)$. Then $2^{A \cap B}=2^{A} \cap 2^{B}$ and generally, $2^{\cap} \bigcap_{\alpha \in \Gamma} A_{\alpha}=\bigcap_{\alpha \in \Gamma} A_{\alpha}$,
where $2^{A}=\left\{E \in 2^{(X, \tau)}: E \subset A\right\}$.
Proof. $E \in 2^{A \cap B} \Leftrightarrow E \in 2^{(X, \tau)}$ such that $E \subset A \cap B$

$$
\begin{aligned}
& \Leftrightarrow E \in 2^{(X, \tau)} \text { such that } E \subset A \text { and } E \subset B \\
& \Leftrightarrow E \in 2^{A} \text { and } E \in 2^{B} \text {, i.e., } E \in 2^{A} \cap 2^{B} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
E \in 2^{\bigcap_{\alpha \in \Gamma} A_{\alpha}} & \Leftrightarrow E \in 2^{X_{I}} \text { such that } E \subset \bigcap_{\alpha \in \Gamma} A_{\alpha} \\
& \Leftrightarrow E \in 2^{X_{I}} \text { such that } E \subset A_{\alpha}, \text { for each } \alpha \in \Gamma \\
& \Leftrightarrow E \in 2^{X_{I}}, \text { for each } \alpha \in \Gamma \\
& \Leftrightarrow E \in \bigcap_{\alpha \in \Gamma} 2^{A_{\alpha}} .
\end{aligned}
$$

Definition 3.12 ([3]). An ITS X is said to be a:
(i) $\mathrm{T}_{1}(i)$-space, if for any $x \neq y \in X$, there exist $U, V \in I O(X)$ such that

$$
x_{I} \in U, y_{I} \notin U \text { and } x_{I} \notin V, y_{I} \in V
$$

(ii) T_{1} (ii)-space, if for any $x \neq y \in X$, there exist $U, V \in I O(X)$ such that

$$
x_{I V} \in U, y_{I V} \notin U \text { and } x_{I V} \notin V, y_{I V} \in V,
$$

(iii) T_{1} (iii)-space, if for any $x \neq y \in X$, there exist $U, V \in I O(X)$ such that

$$
x_{I} \in U \subset y_{I}^{c} \text { and } y_{I} \in V \subset x_{I}^{c}
$$

(iv) $\mathrm{T}_{1}(i v)$-space, if for any $x \neq y \in X$, there exist $U, V \in I O(X)$ such that

$$
x_{I V} \in U \subset y_{I V}^{c} \text { and } y_{I V} \in V \subset x_{I V}^{c}
$$

(v) $\mathrm{T}_{1}(v)$-space, if for any $x \neq y \in X$, there exist $U, V \in I O(X)$ such that

$$
y_{I} \notin U \text { and } x_{I} \notin V
$$

(vi) $\mathrm{T}_{1}(v i)$-space, if for any $x \neq y \in X$, there exist $U, V \in I O(X)$ such that $y_{I V} \notin U$ and $x_{I V} \notin V$,
(vii) T_{1} (vii)-space, if for each $x \in X, x_{I} \in I C(X)$,
(viii) T_{1} (viii)-space, if for each $x \in X, x_{I V} \in I C(X)$.

Result 3.13 ([3], Theorem 3.2). Let (X, τ) be an ITS. Then the following implications are true:

Result 3.14 ([3], Proposition 3.11). Let (X, τ) be an ITS. Then
(1) (X, τ) is $T_{1}(i)$ if and only if $\left(X, \tau_{1}\right)$ is T_{1},
(2) (X, τ) is $T_{1}(i i)$ if and only if $\left(X, \tau_{2}\right)$ is T_{1},
(3) (X, τ) is $T_{1}(i)$ if and only if $\left(X, \tau_{0,1}\right)$ is $T_{1}(i)$,
(4) (X, τ) is $T_{1}(i i)$ if and only if $\left(X, \tau_{0,2}\right)$ is $T_{1}(i i)$.

Proposition 3.15. Let (X, τ) be an ITS such that $\tau \subset I S_{*}(X)$. Then
(1) (X, τ) is T_{1} (vii) if and only if $\left(X, \tau_{0,1}\right)$ is $T_{1}(v i i)$,
(2) (X, τ) is $T_{1}(v i i i)$ if and only if $\left(X, \tau_{0,1}\right)$ is $T_{1}(v i i i)$.

Proof. For any $A \in I S_{*}(X)$, we can easily see that []$A^{c}=([] A)^{c}$. Then from this fact and Definition 2.16 (i), we can prove that (1) and (2) hold.

Proposition 3.16. Let (X, τ) be an ITS.
(1) If (X, τ) is $T_{1}(v i i)$, then $\left(X, \tau_{1}\right)$ is T_{1}, i.e., $\{x\}$ is closed in $\left(X, \tau_{1}\right)$, for each $x \in X$.
(2) If (X, τ) is $T_{1}(v i i i)$, then $\left(X, \tau_{2}\right)$ is T_{1}, i.e., $\{x\}$ is closed in $\left(X, \tau_{2}\right)$, for each $x \in X$.

Proof. (1) Suppose (X, τ) is $\mathrm{T}_{1}(v i i)$ and let $x \neq y \in X$. Then clearly, $x_{I}, y_{I} \in$ $I C(X)$. Thus $x_{I}^{c}, y_{I}^{c} \in \tau$. Moreover, $x_{I} \notin x_{I}^{c}, x_{I} \in y_{I}^{c}$ and $y_{I} \in x_{I}^{c}, y_{I} \notin y_{I}^{c}$. So (X, τ) is $\mathrm{T}_{1}(i)$. Hence by Result $3.14(1),\left(X, \tau_{1}\right)$ is T_{1}.
(2) The proof is similar.

Theorem 3.17. Let X be $T_{1}($ iiii $)$ [resp. $\left.T_{1}(v i i i)\right]$. Then $A \subset B$ if and only if $2^{A} \subset 2^{B}$ and thus $A=B$ if and only if $2^{A}=2^{B}$.

Proof. (\Rightarrow) : It is obvious.
(\Leftarrow) : Suppose $2^{A} \subset 2^{B}$ and let $p_{I} \in A$. Since X is $\mathrm{T}_{1}(i i i)$, by Result 3.13 , it is $\mathrm{T}_{1}\left(\right.$ vii). Then $p_{I} \in I C(X)$ and $p_{I} \subset A$. Thus $p_{I} \in 2^{A}$. By the hypothesis, $p_{I} \in 2^{B}$, i.e., $p_{I} \subset B$. So $p_{I} \in B$. Hence $A \subset B$.

Now let $p_{I V} \in A$. Since X is $\mathrm{T}_{1}(v i i i)$, by Definition 3.12, $p_{I V} \in I C(X)$. Then $p_{I V} \in 2^{A}$. Thus by the hypothesis, $p_{I} \in 2^{B}$, i.e., $p_{I} \subset B$. So $p_{I} \in B$. Hence $A \subset B$. This completes the proof.

Proposition 3.18. Let (X, τ) be an ITS. Then

$$
\begin{aligned}
&\left(2^{A^{c}}\right)^{c}=2^{X_{I}}-2^{A^{c}}=\left\{E \in 2^{(X, \tau)}: E \cap A \neq \phi_{I}\right\} . \\
& \text { Proof. } E \in\left(2^{A^{c}}\right)^{c} \Leftrightarrow E \notin 2^{A^{c}} \Leftrightarrow E \not \subset A^{c} \Leftrightarrow E_{T} \not \subset A_{F} \text { or } E_{F} \not \supset A_{T} \\
& \Leftrightarrow E_{T} \cap A_{T} \not \subset A_{F} \cap A_{T}=\phi \text { or } E_{F} \cup A_{T} \not \supset A_{T} \cup A_{T}=A_{T} \\
& \Leftrightarrow E \cap A \neq \phi_{I} .
\end{aligned}
$$

Theorem 3.19. Let (X, τ) be a $T_{1}(i i i)$-space and let $A \in I S(X)$. Then

$$
2^{I c l(A)}=\operatorname{cl}\left(2^{A}\right)
$$

where $\operatorname{cl}\left(2^{A}\right)$ denotes the closure of 2^{A} in $2^{(X, \tau)}$.
Proof. It is clear that $A \subset \operatorname{Icl}(A)$. Then $2^{A} \subset 2^{\operatorname{Icl}(A)}$.
Let $E \in 2^{\operatorname{Icl(A)}}$, i.e., $E \subset \operatorname{Icl}(A)$. Let $<U_{1}, \ldots, U_{n}>_{\tau_{v}}$ containing E. Then $E \subset \bigcup_{j=1}^{n} U_{j}$ and $E \cap U_{j} \neq \phi_{I}$, for $j=0,1,2, \ldots, n$. Since $E \subset \operatorname{Icl}(A)$, there exists $p_{j, I} \in A \cap U_{j}$, for $j=1,2, \ldots, n$. Let $F=\bigcup\left\{p_{1, I}, \ldots, p_{n, I}\right\}$. Since (X, τ) is a $T_{1}(i i i)$ space, by Definition 3.12 and Result $3.13, p_{j, I} \in I C(X)$, for $j=1,2, \ldots, n$. Thus $F \in I C(X)$. So $F \in 2^{A} \cap<U_{1}, \ldots, U_{n}>_{\tau_{v}}$. Hence $E \in \operatorname{cl}\left(2^{A}\right)$, i.e., $2^{A} \subset 2^{I c l(A)} \subset$ $c l\left(2^{A}\right)$. Therefore $2^{I c l(A)}=\operatorname{cl}\left(2^{A}\right)$.

The following is the immediate result of Theorem 3.19.
Corollary 3.20. Let (X, τ) be a $T_{1}(i i i)$-space and let $A \in I C(X)$. Then 2^{A} is closed in $2^{(X, \tau)}$.

Proof. Since $A \in I C(X), \operatorname{Icl}(A)=A$. Then by 3.19, $\operatorname{cl}\left(2^{A}\right)=2^{I c l(A)}=2^{A}$. Thus 2^{A} is closed in $2^{(X, \tau)}$.

Theorem 3.21. Let (X, τ) be a $T_{1}(i i i)$-space and let $A \in I S(X)$. Then

$$
2^{\operatorname{Iint}(A)}=\operatorname{int}\left(2^{A}\right)
$$

where $\operatorname{int}\left(2^{A}\right)$ denotes the interior of 2^{A} in $2^{(X, \tau)}$.
Proof. It is clear that $\operatorname{Iint}(A) \subset A$. Then $2^{\operatorname{Iint}(A)} \subset 2^{A}$.
Assume that $E \notin 2^{\operatorname{Iint}(A)}$. Then $E \not \subset \operatorname{Iint}(A)$. Thus there exists $a \in X$ such that $a_{I} \in E$ but $a_{I} \notin \operatorname{Iint}(A)$. Let $E \in<U_{1}, \ldots, U_{n}>_{\tau_{v}}$. Then $E \subset \bigcup_{j=1}^{n} U_{j}$ and $E \cap U_{j} \neq \phi_{I}$, for $j=1,2, \ldots, n$. Since $a_{I} \in U_{j} \in \tau$, for some j and $a_{I} \notin \operatorname{Iint}(A)$, $U_{j} \not \subset \operatorname{Iint}(A)$. Thus there exists $b_{j} \in X$ such that $b_{j, I} \in U_{j}$ but $b_{j, I} \notin A$. Since (X, τ) is a $\mathrm{T}_{1}(i i i)$-space, $b_{j, I} \in I C(X)$. Let $F=E \cup b_{j, I}$. Then clearly, $F \not \subset A$. Furthermore, $F \subset \bigcup_{j=1}^{n} U_{j}$ and $F \cap U_{j} \neq \phi_{I}$, for $j=1,2, \ldots, n$. Thus $F \in<$ $U_{1}, \ldots, U_{n}>_{\tau_{v}}$. So each neighbourhood of E in $2^{(X, \tau)}$ contains an F such that $F \not \subset A$, i.e., $F \in\left(2^{A}\right)^{c}$. Hence $F \in \operatorname{cl}\left(\left(2^{A}\right)^{c}\right)$, i.e., $F \notin \operatorname{int}\left(2^{A}\right)$, i.e., $\operatorname{int}\left(2^{A}\right) \subset 2^{\operatorname{Iint}(A)}$. Therefore $2^{\operatorname{Iint}(A)}=\operatorname{int}\left(2^{A}\right)$.

The following is the immediate result of Result 2.17 and Theorems 3.21.
Corollary 3.22. Let (X, τ) be a $T_{1}(i i i)$-space and let $A \in I C(X)$. Then $\left(2^{A^{c}}\right)^{c}$ is closed in $2^{(X, \tau)}$.

Proof. $\quad \operatorname{cl}\left(\left(2^{A^{c}}\right)^{c}\right)=\left[\operatorname{int}\left(2^{A^{c}}\right)\right]^{c}$ $=\left(2^{\text {Iint } A^{c}}\right)^{c}$ [By Theorem 3.21]
$=\left[\left(2^{\left(\text {IIcl }(A)^{c}\right.}\right]^{c}\right.$ c By Result 2.17]
$=\left(2^{A^{c}}\right)^{c}$. [Since $\left.A \in I C(X)\right]$
Then $\left(2^{A^{c}}\right)^{c}$ is closed in $2^{(X, \tau)}$.
Theorem 3.23. Let (X, τ) be $T_{1}(i i i)$ [resp. $\left.T_{1}(v i i i)\right]$.
(1) $<U_{1}, \cdots, U_{n}>\subset<V_{1}, \cdots, V_{m}>$ if and only if $\bigcup_{i=1}^{n} U_{i} \subset \bigcup_{j=1}^{m} V_{j}$ and there is U_{i} such that $U_{i} \subset V_{j}$, for each V_{j}.
(2) $\left.\operatorname{cl}\left(<U_{1}, \cdots, U_{n}\right\rangle\right)=<\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>$, where $\tau \subset I S_{*}(X)$.

Proof. (1) $\mathfrak{U}=<U_{1}, \cdots, U_{n}>$ and $\mathfrak{V}=<V_{1}, \cdots, V_{m}>$. Suppose $\mathfrak{U} \subset \mathfrak{V}$ and assume that $\bigcup_{i=1}^{n} U_{i} \not \subset \bigcup_{j=1}^{m} V_{j}$, say $x_{n+1, I} \in \bigcup_{i=1}^{n} U_{i}$ but $x_{n+1, I} \notin \bigcup_{j=1}^{m} V_{j}$. Let $x_{i, I} \in U_{i}$, for each $i=1, \cdots, n$ and let $E=\cup\left\{x_{i, I}: i=1, \cdots, n+1\right\}$. Since (X, τ) is $\mathrm{T}_{1}(i i i)$, by Result 3.13, $x_{i, I} \in I C(X)$, for each $i=1, \cdots, n+1$. Then $E \in I C(X)$. Thus $E \in \mathfrak{U}-\mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. So $\bigcup_{i=1}^{n} U_{i} \subset \bigcup_{j=1}^{m} V_{j}$. Now assume that there is V_{j} such that $U_{i}-V_{j} \neq \phi$, for all $i=1, \cdots, n$ and let $x_{i, I} \in U_{i}-V_{j}$. Let $F=\cup\left\{x_{i, I}: i=1, \cdots, n\right\}$. Then by 3.13, $x_{i, I} \in I C(X)$, for each $i=1, \cdots, n$. Thus $F \in I C(X)$. So $F \in \mathfrak{U}-\mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. Hence there is U_{i} such that $U_{i} \subset V_{j}$, for each V_{j}.

Suppose $\mathfrak{U} \subset \mathfrak{V}$ and assume that $\bigcup_{i=1}^{n} U_{i} \not \subset \bigcup_{j=1}^{m} V_{j}$, say $x_{n+1, I V} \in \bigcup_{i=1}^{n} U_{i}$ but $x_{n+1, I V} \notin \bigcup_{j=1}^{m} V_{j}$. Let $x_{i, I V} \in U_{i}$, for each $i=1, \cdots, n$ and let $E=\cup\left\{x_{i, I V}: i=\right.$ $1, \cdots, n+1\}$. Since (X, τ) is $\mathrm{T}_{1}($ viii) $)$, by Definition $3.12, x_{i, I V} \in I C(X)$, for each $i=1, \cdots, n+1$. Then $E \in I C(X)$. Thus $E \in \mathfrak{U}-\mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. So $\bigcup_{i=1}^{n} U_{i} \subset \bigcup_{j=1}^{m} V_{j}$. Now assume that there is V_{j} such that $U_{i}-V_{j} \neq \phi$, for all $i=1, \cdots, n$ and let $x_{i, I V} \in U_{i}-V_{j}$. Let $F=\cup\left\{x_{i, I V}: i=1, \cdots, n\right\}$. Then by Definition 3.12, $x_{i, I V} \in I C(X)$, for each $i=1, \cdots, n$. Thus $F \in I C(X)$. So $F \in \mathfrak{U}-\mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. Hence there is U_{i} such that $U_{i} \subset V_{j}$, for each V_{j}.

Conversely, suppose the necessary conditions hold, and let $E \in 2^{(X, \tau)}$ and let $E \in \mathfrak{U}$. Then clearly, $E \subset \bigcup_{i=1}^{n} U_{i}$. Thus by the hypothesis, $E \subset \bigcup_{j=1}^{m} V_{j}$. Now let U_{i} be such that $U_{i} \subset V_{j}$. Since $E \cap U_{i} \neq \phi_{I}$ and $E \cap V_{j} \neq \phi_{I}, E \cap V_{j} \neq \phi_{I}$, for each j. So $E \in \mathfrak{V}$. Hence $\mathfrak{U} \subset \mathfrak{V}$.
(2) Let $E \in<\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>$, let $\mathfrak{V}=<V_{1}, \cdots, V_{m}>\in N_{\tau_{v}}(E)$, and let $U=\bigcup_{i=1}^{n} U_{i}$ and $V=\bigcup_{j=1}^{m} V_{i}$. Since $\mathfrak{V} \in N_{\tau_{v}}(E), E \in \mathfrak{V}$, i.e., $E \subset V$. Thus $E \subset \operatorname{Icl}(V)$. Moreover, $E \cap \operatorname{Icl}\left(U_{i}\right) \neq \phi_{I}$, for $i=1, \cdots, n$ and $E \cap V_{i} \neq \phi_{I}$, for $j=1, \cdots, m$. So $V \cap \operatorname{Icl}\left(U_{i}\right) \neq \phi_{I} \neq V_{j} \cap \operatorname{Icl}(U)$ imply that $V \cap U_{i} \neq \phi_{I} \neq V_{j} \cap U$, for $i=1, \cdots, n$ and $j=1, \cdots, m$. Choose $x_{i, I} \in V \cap U_{i}\left[\right.$ resp. $\left.x_{i, I V} \in V \cap U_{i}\right]$, for $i=1, \cdots, n$ and $y_{j, I} \in V_{j} \cap U$ [resp. $\left.y_{j, I V} \in V_{j} \cap U\right]$, for $j=1, \cdots, m$ and let $F=\left[\bigcup_{i=1}^{n} x_{i, I}\right] \cup\left[\bigcup_{j=1}^{m} y_{j, I}\right]\left[\right.$ resp. $\left.F=\left[\bigcup_{i=1}^{n} x_{i, I V}\right] \cup\left[\bigcup_{j=1}^{m} y_{j, I V}\right]\right]$. Since (X, τ) be both $\mathrm{T}_{1}(i i i)$ and $\mathrm{T}_{1}(v i i i)$, by Result 3.13 [resp. Definition 3.12], $F \in I C(X)$. Moreover, $F \in \mathfrak{U} \cap \mathfrak{V} \neq \phi$. So E is a limit point of \mathfrak{U}, i.e., $E \in \operatorname{cl}(\mathfrak{U})$. Hence $\left.<\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>\subset c l<U_{1}, \cdots, U_{n}\right\rangle$.

On the other hand, we can easily that

$$
<\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>=\left(\bigcap_{i=1}^{n}\left\{E \in 2^{(X, \tau)}: E \cap \operatorname{Icl}\left(U_{i}\right) \neq \phi_{I}\right\}\right) \cap<\operatorname{Icl}(U)>.
$$

Then by Corollary 3.22, $\left\{E \in 2^{(X, \tau)}: E \cap \operatorname{Icl}\left(U_{i}\right) \neq \phi_{I}\right\}$ is closed in $2^{(X, \tau)}$. Thus $\left(\bigcap_{i=1}^{n}\left\{E \in 2^{(X, \tau)}: E \cap \operatorname{Icl}\left(U_{i}\right) \neq \phi_{I}\right\}\right) \cap<\operatorname{Icl}(U)>$ is closed in $2^{(X, \tau)}$. So $<$ $\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>$ is closed in $2^{(X, \tau)}$ and $\mathfrak{V} \subset<\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>$. Hence $\operatorname{cl}(\mathfrak{U}) \subset<\operatorname{Icl}\left(U_{1}\right), \cdots, \operatorname{Icl}\left(U_{n}\right)>$. This completes the proof.
4. The relationships between openess in ITS (X, τ) and its hyperspace $2^{(X, \tau)}$

In this section, we find some relationships between openess in an $\operatorname{ITS}(X, \tau)$ and its hyperspace $2^{(X, \tau)}$.
Result 4.1 ([11], Proposition 3.16). Let (X, τ) be a ITS such that $\tau \subset I S_{*}(X)$ and let $A \in I S_{*}(X)$.
(1) If there is $U \in \tau$ such that $a_{I} \in U \subset A$, for each $a_{I} \in A$, then $A \in \tau$.
(2) If there is $U \in \tau$ such that $a_{I V} \in U \subset A$, for each $a_{I V} \in A$, then $A \in \tau$.

Proposition 4.2. Let (X, τ) be $T_{1}(i i i)$ [resp. $\left.T_{1}(v i i i)\right]$.
(1) If $\left\{U_{j}\right\}_{j \in J}$ is a neighborhood base at x_{I} [resp. $\left.x_{I V}\right]$, then $\left\{<U_{j}>\right\}_{j \in J}$ is a neighborhood base at $\left\{x_{I}\right\}$ [resp. $\left\{x_{I V}\right\}$] in $2^{(X, \tau)}$.
(2) If \mathfrak{O} is open in $2^{(X, \tau)}$, then $\cup \mathfrak{O} \in \tau$, where $\tau \subset I S_{*}(X)$.
(3) If $U \in \tau$, then $2^{U}=<U>$ is open in $2^{(X, \tau)}$, where $\tau \subset I S_{*}(X)$.

Proof. (1) It is clear that $\left\{x_{I}\right\} \in 2^{(X, \tau)}$ [resp. $\left.\left\{x_{I V}\right\} \in 2^{(X, \tau)}\right]$. Let \mathfrak{U}, $\mathfrak{V} \in\{<$ $\left.U_{j}>\right\}_{j \in J}$ such that $\left\{x_{I}\right\} \in \mathfrak{U} \cap \mathfrak{V}$ [resp. $\left.\left\{x_{I V}\right\} \in \mathfrak{U} \cap \mathfrak{V}\right]$. Then there are $i, j \in J$ such that $\mathfrak{U}=<U_{i}>, \mathfrak{V}=<V_{j}>$. Since $\left\{x_{I}\right\} \in \mathfrak{U} \cap \mathfrak{V}$ [resp. $\left.x_{I V} \in \mathfrak{U} \cap \mathfrak{V}\right]$, $\left\{x_{I}\right\} \in<U_{i}>$ and $\left\{x_{I}\right\} \in<U_{j}>$ [resp. $x_{I V} \in<U_{i}>$ and $x_{I V} \in<U_{j}>$]. Thus $\left\{x_{I}\right\} \subset U_{i}$ and $\left\{x_{I}\right\} \subset U_{j}$ [resp. $\left\{x_{I V}\right\} \subset U_{i}$ and $\left.\left\{x_{I V}\right\} \subset U_{j}\right]$, i.e., $x_{I} \in U_{i}$ and $x_{I} \in U_{j}$ [resp. $x_{I V} \in U_{i}$ and $x_{I V} \in U_{j}$]. So by the hypothesis, there is $k \in J$ such that $x_{I} \in U_{k} \subset U_{i} \cap U_{j}$ [resp. $\left.x_{I V} \in U_{k} \subset U_{i} \cap U_{j}\right]$. Hence $\left\{x_{I}\right\} \in<U_{k}>\subset<U_{i}>$ $\cap<U_{j}>$ [resp. $\left\{x_{I V}\right\} \in<U_{k}>\subset<U_{i}>\cap<U_{j}>$]. This completes the proof.
(2) It is sufficient to show that for each base element $\mathfrak{U}=<U_{1}, \cdots, U_{n}>, \bigcup \mathfrak{U} \in \tau$. Let $U=\bigcup \mathfrak{U}$ and let $x_{I} \in U$ [resp. $\left.x_{I V} \in U\right]$. Let $O \in \tau$ such that $x_{I} \in O \subset \bigcup_{i=1}^{n} U_{i}$ $\left[\mathrm{resp} . x_{I V} \in O \subset \bigcup_{i=1}^{n} U_{i}\right]$ and let $y_{I} \in O$ [resp. $y_{I V} \in O$]. Choose $x_{i, I} \in U_{i}$ $\left[\right.$ resp. $\left.x_{i, I V} \in U_{i}\right]$, for for $i=1, \cdots, n$ and let $E=\bigcup\left\{x_{1, I}, \cdots, x_{n, I}, y_{I}\right\}$ [resp. $\left.E=\bigcup\left\{x_{1, V}, \cdots, x_{n, I V}, y_{I V}\right\}\right]$. Since (X, τ) is $\mathrm{T}_{1}(i i i)$ [resp. $\mathrm{T}_{1}($ viii)], by Result 3.13 [resp. Definition 3.12], $E \in I C(X)$. Moreover, $E \subset \bigcup_{i=1}^{n} U_{i}$ and $E \cap U_{i} \neq \phi_{I}$. Then $y_{I} \in E \in \mathfrak{U}\left[\right.$ resp. $\left.y_{I V} \in E \in \mathfrak{U}\right]$. So $y_{I} \in U$. Hence $O \subset U$, i.e., $x_{I} \in O \subset U$ [resp. $\left.x_{I V} \in O \subset U\right]$. Therefore by Result 4.1, $U=\bigcup \mathfrak{U} \in \tau$.
(3) By Theorem 3.21, $2^{U}=2^{\operatorname{Iint}(U)}=\operatorname{int}\left(2^{U}\right)$. Then 2^{U} is open in $2^{(X, \tau)}$.

The followings are immediate results of Propositions 3.15 and 4.2.
Corollary 4.3. Let (X, τ) be $T_{1}\left(\right.$ iii) [resp. $\left.T_{1}(v i i i)\right]$ such that $\tau \subset I S_{*}(X)$.
(1) If $\left\{U_{j}\right\}_{j \in J}$ is a neighborhood base at x_{I} [resp. $\left.x_{I V}\right]$, then $\left\{<[] U_{j}>\right\}_{j \in J}$ [resp. $\left\{\ll>U_{j}>\right\}_{j \in J}$ is a neighborhood base at $\left\{x_{I}\right\}$ [resp. $\left\{x_{I V}\right\}$] in $2^{\left(X, \tau_{0,1}\right)}$ [resp. $\left.2^{\left(X, \tau_{0,2}\right)}\right]$.
(2) If \mathfrak{O} is open in $2^{\left(X, \tau_{0,1}\right)}$ [resp. $\left.2^{\left(X, \tau_{0,2}\right)}\right]$, then $\cup \mathfrak{O} \in \tau_{0,1}$ [resp. $\cup \mathfrak{O} \in \tau_{0,2}$].
(3) If $U \in \tau_{0,1}$ [resp. $U \in \tau_{0,2}$], then $2^{U}=<U>$ is open in $2^{\left(X, \tau_{0,1}\right)}$ [resp. $\left.2^{\left(X, \tau_{0,2}\right)}\right]$.

The followings are immediate results of Proposition 4.2 and Result 3.14.
Corollary 4.4. Let (X, τ) be T_{1} (iii) [resp. $\left.T_{1}(v i i i)\right]$.
(1) If $\left\{U_{j}\right\}_{j \in J}$ is a neighborhood base at x_{I} [resp. $x_{I V}$], then $\left\{\left\langle U_{j, T}>\right\}_{j \in J}\right.$ [resp. $\left\{<U_{j, F}^{c}>\right\}_{j \in J}$ is a neighborhood base at $\{x\}$ in $2^{\left(X, \tau_{1}\right)}$ [resp. $\left.2^{\left(X, \tau_{2}\right)}\right]$.
(2) If \mathfrak{O} is open in $2^{\left(X, \tau_{1}\right)}$ [resp. $2^{\left(X, \tau_{2}\right)}$], then $\cup \mathfrak{O} \in \tau_{1} \quad$ resp. $\cup \mathfrak{O} \in \tau_{2}$].
(3) If $U \in \tau_{1}$ [resp. $U \in \tau_{2}$], then $2^{U}=<U>$ is open in $2^{\left(X, \tau_{1}\right)}$ [resp. $\left.2^{\left(X, \tau_{2}\right)}\right]$.

Definition $4.5([6])$. Let (X, τ) be an ITS and let $A \in I S(X)$.
(i) $\mathfrak{A} \subset I S(X)$ is called a cover of A, if $A \subset \bigcup_{A \in \mathfrak{A}} A$.
(ii) The cover \mathfrak{A} of A is called an open cover, if $A \in \tau$, for each $A \in \mathfrak{A}$.

In particular, \mathfrak{A} is called an open cover of X, if $\mathfrak{A} \subset \tau$ and $A \subset \bigcup \mathfrak{A}$.
(iii) A is called an intuitionistic compact subset of X, if every open cover of A has a finite subcover.
(iv) (X, τ) is said to be compact, if every open cover of X has a finite subcover.
(v) A family $\mathfrak{A} \subset I S(X)$ satisfies the finite intersection property (in short, FIP), if for each finite subfamily $\mathfrak{A}^{\prime}, \bigcap \mathfrak{A}^{\prime} \neq \phi_{I}$.

Result 4.6 ([6], Proposition 5.4). Let (X, τ) be an ITS. Then (X, τ) is compact if and only if $\left(X, \tau_{0,1}\right)$ is compact. In fact, (X, τ) is compact if and only if $\left(X, \tau_{1}\right)$ is compact.

Proposition 4.7. Let (X, τ) be $T_{1}(i i i)$ such that $\tau \subset I S_{*}(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{K}_{2^{(X, \tau)}}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Proof. Without loss of generality, let $\mathfrak{U}=<U_{1}, \cdots, U_{n}>\cap \mathfrak{K}_{2(X, \tau)}(X)$ and let $U=\bigcup \mathfrak{U}=\{A: A \in \mathfrak{U}\}$. Let $x_{I} \in U$. Then there is j such that $x_{I} \in U_{j}$. Let us take $x_{i, I} \in U_{i}$, for each $i \neq j$. For each $y_{I} \in U_{i}$, let

$$
E_{y_{I}}=\bigcup\left\{x_{1, I}, \cdots, x_{i-1, I}, y_{I}, x_{i+1, I}, \cdots, x_{n, I}\right\}
$$

Then by Result $3.13, E_{y_{I}} \in \mathfrak{U}$. Thus $y_{I} \in E_{y_{I}} \subset U$. So $x_{I} \in U_{j} \subset U$. Hence by Result 4.1, $\bigcup \mathfrak{U} \in \tau$.

The followings are immediate results of Proposition 4.7 and Results 3.13 and 4.6.
Corollary 4.8. Let (X, τ) be $T_{1}(i i i)$.
(1) If \mathfrak{U} is open in the subspace $\mathfrak{K}_{2^{\left(X, \tau_{0,1}\right)}}(X)$, then $\bigcup \mathfrak{U} \in \tau_{0,1}$.
(2) If \mathfrak{U} is open in $\mathfrak{K}_{2^{\left(X, \tau_{1}\right)}}(X)$, then $\cup \mathfrak{U} \in \tau_{1}$.

Proposition 4.9. Let (X, τ) be $T_{1}\left(\right.$ iii) such that $\tau \subset I S_{*}(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{F}_{2^{(X, \tau)}, n}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Proof. Let $U=\bigcup \mathfrak{U}$ and let $x_{1, I} \in U$. Then there is $E \in \mathfrak{U}$ such that $x_{1, I} \in U \in$ \mathfrak{U}. Let $E=\bigcup\left\{x_{1, I}, \cdots, x_{m, I}\right\}, m \leq n$. Since \mathfrak{U} is open in $\mathfrak{F}_{2^{(X, \tau)}, n}(X)$, there is a basic open set $<U_{1}, \cdots, U_{k}>\cap \mathfrak{K}_{2^{(X, \tau)}, n}(X)$ such that $E \in<U_{1}, \cdots, U_{k}>$ $\cap \mathfrak{K}_{2^{(X, \tau)}, n}(X) \in \mathfrak{U}$. We may assume that $x_{i, I} \in U_{1}$. Let $\mathfrak{F}=\left\{U_{1}, \cdots, U_{k}\right\}$. For each $x_{i, I} \in E$, let $\mathfrak{F}_{i}=\left\{U_{j} \in \mathfrak{F}: x_{i, I} \in U_{j}\right\}$ and let $W_{i}=\bigcap \mathfrak{F}_{i}$. Then by Theorem 3.23 (1),

$$
\begin{gathered}
E \in<W_{1}, \cdots, W_{m}>\cap \mathfrak{F}_{2^{(X, \tau)}, n}(X) \subset<U_{1}, \cdots, U_{k}>\cap \mathfrak{F}_{2^{(X, \tau)}, n}(X) . \\
220
\end{gathered}
$$

Let $y_{1, I} \in W_{1}$. Then

$$
E_{y, I}=\left\{y_{1, I}, x_{2}, \cdots, x_{m}\right\} \in<W_{1}, \cdots, W_{m}>\cap \mathfrak{F}_{2^{(X, \tau)}, n}(X)
$$

Thus $E_{y, I} \in \mathfrak{U}$. So $E_{y, I} \subset U$. It follows that $x_{1, I}, y_{I} \in W_{1} \subset U$. Hence by Result 4.1, $\bigcup \mathfrak{U} \in \tau$.

The following is the immediate result of Proposition 4.9.
Corollary 4.10. Let (X, τ) be $T_{1}(i i i)$ such that $\tau \subset I S_{*}(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{F}_{2^{(X, \tau)}}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Definition 4.11 ([13]). An ITS X is said to be connected, if it cannot be expressed as the union of two non-empty, disjoint open sets in X.

Definition $4.12([13]) .(X, \tau)$ be an ITS and let $A, B \in I S(X)$.
(i) A and B are said to be separated in X, if $\operatorname{Icl}(A) \cap B=A \cap \operatorname{Icl}(B)=\phi_{I}$.
(ii) A and B are said to form a separation of X, if A and B are said to be separated in X and $A \cup B=X_{I}$.

Result 4.13 ([13], Theorem 3.4). (X, τ) be an ITS such that $\tau \subset I S_{*}(X)$. Then the followings are equivalent:
(1) (X, τ) is connected,
(2) $\left(X, \tau_{0,1}\right)$ is connected,
(3) $\left(X, \tau_{1}\right)$ is connected.

Definition 4.14 ([13]). Let (X, τ) be an ITS. Then X is said to be:
(i) locally connected at $p_{I} \in X_{I}$, if for each $U \in N\left(p_{I}\right)$, there is a connected $V \in N\left(p_{I}\right)$ such that $V \subset U$,
(ii) locally connected, if it is locally connected at each $p_{I} \in X_{I}$.

Definition 4.15 ([12]). (i) A $\mathrm{T}_{1}(i)$-space X is called a $\mathrm{T}_{3}(i)$-space, if the following conditions:
[the regular axiom (i)] for any $F \in I C(X)$ such that $x_{I} \in F^{c}$, there exist $U, V \in$ $I O(X)$ such that $F \subset U, x_{I} \in V$ and $U \cap V=\phi_{I}$.
(ii) $\mathrm{A}_{1}(i i)$-space X is called a $\mathrm{T}_{3}(i i)$-space, if the following conditions:
[the regular axiom (ii)] for any $F \in I C(X)$ such that $x_{I V} \in F^{c}$, there exist $U, V \in I O(X)$ such that $F \subset U, x_{I V} \in V$ and $U \cap V=\phi_{I}$.

Result 4.16 ([12], Theorem 4.4). Let (X, τ) be an ITS such that $\tau \subset I S_{*}(X)$. Then
(1) (X, τ) is $T_{3}(i)$ if and only if $\left(X, \tau_{1}\right)$ is T_{3},
(2) (X, τ) is $T_{3}(i i)$ if and only if $\left(X, \tau_{2}\right)$ is T_{3}.

Result 4.17 ([12], Theorem 4.7). Let (X, τ) be an ITS such that $\tau \subset I S_{*}(X)$. Then
(1) (X, τ) is $T_{3}(i)$ if and only $\left(X, \tau_{0,1}\right)$ is $T_{3}(i)$,
(2) (X, τ) is $T_{3}(i i)$ if and only $\left(X, \tau_{0,2}\right)$ is $T_{3}(i i)$.

Proposition 4.18. Let (X, τ) be locally connected both $T_{1}(i i i)$ and $T_{3}(i)$ such that $\tau \subset I S_{*}(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{C}_{2^{(X, \tau)}}(X)$, then $\bigcup \mathfrak{U} \in \tau$.
Proof. Let $x_{I} \in U=\bigcup \mathfrak{U}$. Without loss of generality, let

$$
\mathfrak{U}=<U_{1}, \cdots, U_{n}>\cap \mathfrak{C}_{2(X, \tau)}(X)
$$

Then there is $E \in \mathfrak{U}$ such that $x_{I} \in E$. Since $x_{I} \in U=\bigcup \mathfrak{U}$, there is i such that $x_{I} \in U_{i}$. Since (X, τ) is locally connected both $\mathrm{T}_{1}(i i i)$ and $\mathrm{T}_{3}(i)$, by Definitions 4.14 and 4.15 , there is a connected set $V \in \tau$ such that $x_{I} \in V \subset \operatorname{Icl}(V) \subset U_{i}$. Thus $E \cup \operatorname{Icl}(V) \in \mathfrak{U}$. So $V \subset E \cup \operatorname{Icl}(V) \subset U$. Hence by Result 4.1 (1), $\bigcup \mathfrak{U} \in \tau$.

The followings are immediate results of Proposition 4.18 and Result 4.17.
Corollary 4.19. Let (X, τ) be locally connected both $T_{1}(i i i)$ and $T_{3}(i)$ such that $\tau \subset I S_{*}(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{C}_{2^{\left(X, \tau_{0,1}\right)}}(X)$, then $\bigcup \mathfrak{U} \in \tau_{0,1}$.

5. Intuitionistic continuous set-valued mappings

In this section, we introduce an intuitionistic set-valued mapping and study its some continuities.
Definition 5.1 ([5]). Let $f: X \rightarrow Y$ be a mapping, and let $A \in I S(X)$ and $B \in I S(Y)$. Then
(i) the image of A under f, denoted by $f(A)$, is an IS in Y defined as:

$$
f(A)=\left(f(A)_{T}, f(A)_{F}\right)
$$

where $f(A)_{T}=f\left(A_{T}\right)$ and $f(A)_{F}=\left(f\left(A_{F}^{c}\right)\right)^{c}$.
(ii) the preimage of B, denoted by $f^{-1}(B)$, is an IS in X defined as:

$$
f^{-1}(B)=\left(f^{-1}(B)_{T}, f^{-1}(B)_{F}\right)
$$

where $f^{-1}(B)_{T}=f^{-1}\left(B_{T}\right)$ and $f^{-1}(B)_{F}=f^{-1}\left(B_{F}\right)$.
Result 5.2. (See [5], Corollary 2.11) Let $f: X \rightarrow Y$ be a mapping and let $A, B, C \in$ $I S(X),\left(A_{j}\right)_{j \in J} \subset I S(X)$ and $D, E, F \in I S(Y),\left(D_{k}\right)_{k \in K} \subset I S(Y)$. Then the followings hold:
(1) if $B \subset C$, then $f(B) \subset f(C)$ and if $E \subset F$, then $f^{-1}(E) \subset f^{-1}(F)$.
(2) $\left.A \subset f^{-1} f(A)\right)$ and if f is injective, then $\left.A=f^{-1} f(A)\right)$,
(3) $f\left(f^{-1}(D)\right) \subset D$ and if f is surjective, then $f\left(f^{-1}(D)\right)=D$,
(4) $f^{-1}\left(\bigcup D_{k}\right)=\bigcup f^{-1}\left(D_{k}\right), f^{-1}\left(\bigcap D_{k}\right)=\bigcap f^{-1}\left(D_{k}\right)$,
(5) $f\left(\bigcup A_{j}\right)=\bigcup f\left(A_{j}\right), f\left(\bigcap A_{j}\right) \subset \bigcap f\left(A_{j}\right)$,
(6) $f(A)=\phi_{N}$ if and only if $A=\phi_{N}$ and hence $f\left(\phi_{N}\right)=\phi_{N}$, in particular if f is surjective, then $f\left(X_{N}\right)=Y_{N}$,
(7) $f^{-1}\left(Y_{N}\right)=Y_{N}, f^{-1}\left(\phi_{N}\right)=\phi$.
(8) if f is surjective, then $f(A)^{c} \subset f\left(A^{c}\right)$ and furthermore, if f is injective, then $f(A)^{c}=f\left(A^{c}\right)$,
(9) $f^{-1}\left(D^{c}\right)=\left(f^{-1}(D)\right)^{c}$.

Definition 5.3. Let X, Y be non-empty sets. Then a mapping $F: Y \rightarrow I S(X)$ is called an intuitionistic set-valued mapping.

Example 5.4. (1) Let $X=\{a, b, c\}, Y=\{1,2\}$ and let $F: Y \rightarrow I S X$ be given by $F(1)=(\{a, b\},\{c\})$ and $F(2)=(\{a\},\{b\})$. Then F is an intuitionistic crisp set-valued mapping. In particular, if $A=(\{a, b\},\{c\})$, then

$$
2^{A}=\left\{\phi_{I},(\{a\},\{c\}),(\{a\},\{b, c\}),(\{b\},\{c\}),(\{b\},\{a, c\})\right.
$$

$$
(\phi,\{c\}),(\phi,\{b, c\}),(\phi,\{a, c\})\}
$$

(2) (See Definition 5.1) Let X, Y be non-empty sets, let $f: X \rightarrow Y$ be a mapping. We define two mappings $f_{*}: I S(X) \rightarrow I S(Y)$ and $f_{*}^{-1}: 2^{Y_{I}} \rightarrow 2^{X_{I}}$ as follows:
(i) for each $A \in I S(X), f_{*}(A)=f(A)=\left(f\left(A_{T}\right),\left(f\left(A_{F}^{c}\right)\right)^{c}\right)$,
(ii) for each $B \in I S(Y), f_{*}^{-1}(B)=f^{-1}(B)=\left(f^{-1}\left(B_{T}\right), f^{-1}\left(B_{F}\right)\right)$.

Then f_{*} and f_{*}^{-1} are intuitionistic set-valued mappings.
Definition 5.5. Let X, Y be non-empty sets, let $F, G: Y \rightarrow I S(X)$ be intuitionistic crisp set-valued mappings and let $\left\{F_{\alpha}\right)_{\alpha \in \Gamma}$, where $F_{\alpha}: Y \rightarrow I S(X)$ is an intuitionistic crisp set-valued mappings, for each $\alpha \in \Gamma$.
(i) $F \subset G$ if and only if $F(y) \subset G(y)$, for each $y \in Y$,
(ii) $(F \cup G)(y)=F(y) \cup G(y)$, for each $y \in Y$,
(iii) $(F \cap G)(y)=F(y) \cap G(y)$, for each $y \in Y$,
(iv) $\left(\bigcup_{\alpha \in \Gamma} F_{\alpha}\right)(y)=\bigcup_{\alpha \in \Gamma} F_{\alpha}$, for each $y \in Y$,
(v) $\left(\bigcap_{\alpha \in \Gamma} F_{\alpha}\right)(y)=\bigcap_{\alpha \in \Gamma} F_{\alpha}$, for each $y \in Y$.

Proposition 5.6. Let $F, G: Y \rightarrow I S(X)$ be intuitionistic set-valued mappings and let $\left\{F_{\alpha}\right)_{\alpha \in \Gamma}$, where $F_{\alpha}: Y \rightarrow I S(X)$ is an intuitionistic set-valued mappings, for each $\alpha \in \Gamma$ and let $2_{*}^{A}=\{B \in I S(X): B \subset A\}$, for each $A \in I S(X)$.
(1) If $F \subset G$, then $G^{-1}\left(2_{*}^{A}\right) \subset F^{-1}\left(2_{*}^{A}\right)$.
(2) $(F \cup G)^{-1}\left(2_{*}^{A}\right)=F^{-1}\left(2_{*}^{A}\right) \cap G^{-1}\left(2_{*}^{A}\right)$,
in general, $\left(\bigcup_{\alpha \in \Gamma} F_{\alpha}\right)^{-1}\left(2_{*}^{A}\right)=\bigcap_{\alpha \in \Gamma} F_{\alpha}^{-1}\left(2_{*}^{A}\right)$.
(3) $F^{-1}\left(2_{*}^{A}\right) \cup G^{-1}\left(2_{*}^{A}\right) \subset(F \cap G)^{-1}\left(2_{*}^{A}\right)$,
in general, $\bigcup_{\alpha \in \Gamma}^{*} F_{\alpha}^{-1}\left(2_{*}^{A}\right) \subset\left(\bigcap_{\alpha \in \Gamma} F_{\alpha}\right)^{-1}\left(2_{*}^{A}\right)$.
Proof. (1) Let $y \in G^{-1}\left(2_{*}^{A}\right)$. Then $G(y) \in 2_{*}^{A}$. Thus $G(y) \subset A$. Since $F \subset G$, $F(y) \subset G(y)$. So $F(y) \subset A$, i.e., $F(y) \in 2_{*}^{A}$. Hence $y \in F^{-1}\left(2_{*}^{A}\right)$. Therefore $G^{-1}\left(2^{A}\right) \subset F^{-1}\left(2_{*}^{A}\right)$.
(2) Let $y \in(F \cup G)^{-1}\left(2_{*}^{A}\right)=F^{-1}\left(2_{*}^{A}\right) \cap G^{-1}\left(2_{*}^{A}\right)$. Then $(F \cup G)(y)=F(y) \cup G(y) \in$ 2_{*}^{A}, i.e., $F(y) \cup G(y)=\left(F(y)_{T} \cup G(y)_{T}, F(y)_{F} \cap G(y)_{F}\right) \subset A$. Thus $F(y)_{T} \cup G(y)_{T} \subset$ A_{T} and $F(y)_{F} \cap G(y)_{F} \supset A_{F}$. So $F(y)_{T} \subset A_{T}, G(y)_{T} \subset A_{T}$ and $F(y)_{F} \supset A_{F}$, $G(y)_{F} \supset A_{F}$, i.e., $F(y) \subset A$ and $G(y) \subset A$, i.e., $F(y) \in 2_{*}^{A}$ and $G(y) \in 2_{*}^{A}$. Hence $y \in F^{-1}\left(2_{*}^{A}\right)$ and $y \in G^{-1}\left(2_{*}^{A}\right)$, i.e., $y \in F^{-1}\left(2_{*}^{A}\right) \cap G^{-1}\left(2_{*}^{A}\right)$. The converse inclusion is proved similarly.

The proof of the second part is similar.
(3) Let $y \in F^{-1}\left(2_{*}^{A}\right) \cup G^{-1}\left(2_{*}^{A}\right)$. Then $y \in F^{-1}\left(2_{*}^{A}\right)$ or $y \in G^{-1}\left(2_{*}^{A}\right)$, i.e., $F(y) \subset A$ or $G(y) \subset A$. Then $F(y) \cap G(y) \subset A$. Thus $(F \cap G)(y) \subset A$, i.e., $(F \cap G)(y) \in 2_{*}^{A}$. So $y \in(F \cap G)^{-1}\left(2_{*}^{A}\right)$. Hence the result holds.

The proof of the second part is similar.
Theorem 5.7. Let (X, τ) be an ITS and let (Y, σ) be an ordinary topological space and let $F:(Y, \sigma) \rightarrow 2^{(X, \tau)}$ be an intuitionistic set-valued mapping. Then F is continuous if and only if the set

$$
\begin{equation*}
F^{-1}\left(2^{A}\right)=\left\{y \in Y: F(y) \in 2^{A}\right\}=\{y \in Y: F(y) \subset A\} \tag{5.5.1}
\end{equation*}
$$

is open in Y, whenever $A \in \tau$, and is closed in Y, whenever $A \in I C(X)$.
Equivalently, for each $A \in I C(X)$ [resp. $A \in \tau$], the set

$$
\begin{equation*}
Y-F^{-1}\left(A^{c}\right)=\left\{y \in Y: F(y) \cap A \neq \phi_{I}\right\} \tag{5.5.2}
\end{equation*}
$$

is open [resp. closed] in Y.

More precisely, F is continuous at $y \in Y$ if and only if both implication hold:

$$
\begin{equation*}
y \in F^{-1}\left(2^{G}\right) \Rightarrow y \in \operatorname{int}\left(F^{-1}\left(2^{G}\right)\right), \text { whenever } G \in \tau \tag{5.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
y \in \operatorname{cl}\left(F^{-1}\left(2^{K}\right)\right) \Rightarrow y \in F^{-1}\left(2^{K}\right), \text { whenever } K \in I C(X) \tag{5.5.4}
\end{equation*}
$$

Proof. Suppose F is continuous at $y_{0} \in Y$. Let G be open in $2^{(X, \tau)}$ and suppose $y \in F^{-1}(G)$. Then $F(y) \in G$. Since G is open in $2^{(X, \tau)}, G$ is a neighbourhood of $F\left(y_{0}\right)$. Thus there exists $U \in \tau_{v}$ such that $F\left(y_{0}\right) \in F(U) \subset G$. So $y_{0} \in U \subset F^{-1}(G)$. Hence $y_{0} \in \operatorname{int}\left(F^{-1}(G)\right)$.

Now let K be closed in $2^{(X, \tau)}$ and suppose $y_{0} \in c l\left(F^{-1}(K)\right)$. By result 5.2 (9),

$$
c l\left(F^{-1}(K)\right)=\operatorname{cl}\left(F^{-1}\left(\left(K^{c}\right)^{c}\right)=\operatorname{cl}\left(F^{-1}\left(K^{c}\right)\right)^{c}=\left(\operatorname{int}\left(F^{-1}\left(K^{c}\right)\right)\right)^{c}\right.
$$

Then $y_{0} \in\left(\operatorname{int}\left(F^{-1}\left(K^{c}\right)\right)\right)^{c}$. Thus $y_{0} \notin \operatorname{int}\left(F^{-1}\left(K^{c}\right)\right)=\operatorname{int}\left(\left(F^{-1}(K)\right)^{c}\right)$. Since $\operatorname{int}\left(\left(F^{-1}(K)^{c}\right) \subset\left(F^{-1}(K)\right)^{c}, y_{0} \notin\left(F^{-1}(K)\right)^{c}\right.$. So $y_{0} \in F^{-1}(K)$. Hence the following implications:

$$
\begin{equation*}
y_{0} \in F^{-1}(G) \Rightarrow y_{0} \in \operatorname{int}\left(F^{-1}(G)\right), \text { whenever } G \text { is open in } 2^{(X, \tau)} \tag{5.5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{0} \in \operatorname{cl}\left(F^{-1}(K)\right) \Rightarrow y_{0} \in F^{-1}(K), \text { whenever } K \text { is closed in } 2^{(X, \tau)} \tag{5.5.6}
\end{equation*}
$$

Therefore by replacing G by 2^{G} for $G \in \tau$, and K by 2^{K} for $K \in I C(X)$, we can obtain two implications (5.5.3) and (5.5.4).

Conversely, suppose the implication (5.5.5) holds. Then we can easily see that F is continuous at $y_{0} \in Y$. If the implication (5.5.6) holds, then we can easily see that F is continuous at $y_{0} \in Y$. Moreover, since the range of G can be restricted to a subbase of $2^{(X, \tau)}$, we may assume that $G=2^{A}$ or $G=\left(2^{A^{c}}\right)^{c}$ with $A \in \tau$. In the first case, (5.5.5) follows directly from (5.5.3). In the second case, (5.5.6) can be deduced from (5.5.4).
Definition 5.8 ([6]). Let X, Y be an ITSs. Then a mapping $f: X \rightarrow Y$ is said to be continuous, if $f^{-1}(V) \in I O(X)$, for each $V \in I O(Y)$.
Definition 5.9. Let X, Y be ITSs. Then a mapping $f: X \rightarrow Y$ is said to be:
(i) open [6], if $f(A) \in I O(Y)$, for each $A \in I O(X)$,
(ii) closed [15], if $f(F) \in I C(Y)$, for each $F \in I C(X)$.

Theorem 5.10. Let $(X, \tau),(Y, \sigma)$ be $T_{1}\left(\right.$ iiii)-spaces such that $\tau \subset I S_{*}(X)$ and $\sigma \subset$ $I S_{*}(Y)$, and let $f: X \rightarrow Y$ be intuitionistic continuous. Then the mapping $f_{*}^{-1}:$ $2^{(Y, \sigma)} \rightarrow 2^{(X, \tau)}$ is continuous if and only if f is both intuitionistic open and closed.

Proof. Suppose $f_{*}^{-1}: 2^{Y_{I}} \rightarrow 2^{X_{I}}$ is continuous and let $G \in \tau$. Since X is a $T_{1}(i i i)-$ space, by Proposition $4.2(3), 2^{G}$ is open in $2^{(X, \tau)}$. Then by the hypothesis and (5.5.1), $\left(f_{*}^{-1}\right)^{-1}\left(2^{G}\right)=\left(f^{-1}\right)^{-1}\left(2^{G}\right)=f\left(2^{G}\right)$ is open in $2^{(Y, \sigma)}$. Thus

$$
f\left(2^{G}\right)=\left\{f(A) \in I S(Y): A \in 2^{G}\right\}=\{f(A) \in I S(Y): A \subset G\}=2^{f(G)}
$$

is open in $2^{(Y, \sigma)}$. So by Theorem 3.21, $f(G) \in \sigma$, i.e., f is intuitionistic open.
Now let $F \in I C(X)$. Then by Corollary $3.20,2^{F}$ is closed in $2^{(X, \tau)}$. Since f_{*}^{-1} is continuous, $\left(f_{*}^{-1}\right)^{-1}\left(2^{F}\right)=\left(f^{-1}\right)^{-1}\left(2^{F}\right)=f\left(2^{F}\right)=2^{f(F)}$ is closed in $2^{(Y, \sigma)}$. Thus
by Theorem 3.19, $f(F) \in I C(Y)$. So f is intuitionistic closed. Hence f is both intuitionistic closed. Therefore f is both intuitionistic open and closed.

The converse can be easily proved.
The following is the immediate result of Proposition 5.6 (2) and Theorem 5.7.
Proposition 5.11. Let (X, τ) be an ITS and (Y, σ) be an ordinary topological space and let $F, G:(Y, \sigma) \rightarrow 2^{(X, \tau)}$ be intuitionistic set-valued mappings. If F and G are continuous, then $F \cup G$ is continuous.

6. Conclusions

We introduced three types intuitionistic hyperspaces and obtained their some properties. In the future, we expect that we will find some relationships between separation axioms $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ and T_{4} in ITSs and intuitionistic hyperspaces. Also we will deal with separability and axioms of countability between an ITS and its hyperspace.

References

[1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (September, 1983) (in Bugaria).
[2] C. Bavithra, M. K. Uma and E. Roja, Feeble compactness of intuitionistic fell topological space, Ann. Fuzzy Math. Inform. 11 (3) (1016) 485-494.
[3] Sadik Bayhan and D. Coker, On separation axioms in intuitionistic topological spaces, IJMMS 27 (10) (2001) 621-630.
[4] Sadik Bayhan and D. Coker, Pairwise separation axioms in intuitionistic topological spaces, Hacettepe Journal of Mathematics and Statistics 34 S (2005) 101-114.
[5] D. Coker A note on intuitionistic sets and intuitionistic points, Tr. J. of Mathematics 20 (1996) 343-351.
[6] D. Coker An introduction to intuitionistic topological spaces, BUSEFAL 81 (2000) 51-56.
[7] E. Coskun and D. Coker On neighborhood structures in intuitionistic topological spaces, Math. Balkanica (N. S.) 12 (3-4) (1998) 283-909.
[8] Taha H. Jassim Completely normal and weak completely normal in intuitionistic topological spaces, International Journal of Scientific and Engineering Research 4 (10) (2013) 438-442.
[9] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-0-89.
[10] J. Kim, P. K. Lim, J. G. Lee, K. Hur, The category of intuitionistic sets, Ann. Fuzzy Math. Inform. 14 (6) (2017) 549-562.
[11] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Intuitionistic topological spaces, Ann. Fuzzy Math. Inform. 15 (1) (2018) 29-46.
[12] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Separation axioms in intuitionistic topological spaces, To be submitted.
[13] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Connectedness in intuitionistic topological spaces, To be submitted.
[14] J. G. Lee, P. K. Lim, J. Kim, K. Hur, Intuitionistic continuous, closed and open mappings, Ann. Fuzzy Math. Inform. 15 (2) (2018) 101-122.
[15] S. J. Lee and J. M. Chu, Categorical properties of intuitinistic topological spaces, Commun. Korean Math. Soc. 24 (4) (2009) 595-603.
[16] Ahmet Z. Ozcelik and Serkan Narli, On submaximality in intuitionistic topological spaces, International Scholarly and Scientific Research and Innovation 1 (1) (2007) 64-66.
[17] A. A. Salama, Mohamed Abdelfattah and S. A. Alblowi, Some Intuitionistic Topological Notions of Intuitionistic Region, Possible Application to GIS Topological Rules, International Journal of Enhanced Research in Management and Computer Applications 3 (5) (2014) 4-9.
[18] S. Selvanayaki and Gnanambal Ilango, IGPR-continuity and compactness intuitionistic topological spaces, British Journal of Mathematics and Computer Science 11 (2) (2015) 1-8.
[19] S. Selvanayaki and Gnanambal Ilango, Homeomorphism on intuitionistic topological spaces, Ann. Fuzzy Math. Inform. 11 (6) (2016) 957-966.
[20] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
J. KIM (junhikim@wku.ac.kr)

Department of Mathematics Education, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
P. K. Lim (pklim@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
J. G. LEE (jukolee@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
K. HUR (kulhur@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

