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1. Introduction

Metric, norm and inner product structures are the main tools in functional
analysis. So fuzzy metric, fuzzy norm and fuzzy inner product play the crucial role
to develop fuzzy functional analysis. Several authors studied fuzzy metric space as
well as fuzzy normed linear space and a large number of papers have been published.
We refer some of them which are related to our work (please see [1, 2, 3, 6])

Study on fuzzy inner product spaces are relatively recent. Many authors intro-
duced the concept of fuzzy inner product in different approaches (for reference please
see [4, 5, 7, 8, 9, 11, 12, 14, 15]).

In this paper, following the definition of fuzzy inner product given by Hasankhani
et.al [9], an idea of fuzzy Hilbert adjoint operator is introduced and existence theorem
for such operator is established.

It is to be noted that Hasankhani et.al [9] considered the fuzzy real number in the
sense of Kaleva et. al [10] to define fuzzy inner product whose induced fuzzy norm
is Felbin’s type [6] fuzzy norm. In this paper we consider Xiao and Zhu [16] type
fuzzy real number and the induced fuzzy norm is Bag and Samanta [3] type fuzzy
norm. In [3], it is shown that all the result which are valid in Felbin’s fuzzy norm
[6] are also valid in Bag and Samanta [3] type fuzzy norm.

The organization of the paper is as follows:
Section 2, provides some preliminary results which are used in this paper. Definition
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of fuzzy Hilbert adjoint operator is given and its existence theorem is established in
Section 3. In Section 4, some properties of fuzzy Hilbert adjoint operator and fuzzy
Hilbert self-adjoint operator are studied.

2. Preliminaries

In this section, some definitions and preliminary results are given which will be
used in this paper.

According to Mizumoto and Tanaka [13], a fuzzy real number is a mapping

x : R→ [0 , 1]

over the set R of all reals.
x is called convex, if x(t) ≥ min (x(s) , x(r)), where s ≤ t ≤ r.
If there exists t0 ∈ R such that x(t0) = 1, then x is called normal.
For 0 < α ≤ 1, α-level set of an upper semicontinuous convex normal fuzzy set of

R ( denoted by [η]α) is a closed interval [aα , bα], where aα = −∞ and bα = +∞
are admissible. When aα = −∞, for instance, then [aα , bα] means the interval
(−∞ , bα]. Similar is the case when bα = +∞.
x is called non-negative, if x(t) = 0, ∀t < 0.
For any real number r, r̄ is defined by r̄(t) = 1 if t = r and r̄(t) = 0 if t 6= r.

Kaleva and Seikkala [10] (Felbin [6]) denoted the set of all convex, normal, upper
semicontinuous fuzzy real numbers by E (R(I)) and the set of all non-negative,
convex, normal, upper semicontinuous fuzzy real numbers by G(R∗(I)). A partial
ordering ” � ” in E is defined by η � δ if and only if a1α ≤ a2α and b1α ≤ b2α, for all
α ∈ (0 , 1], where [η]α = [a1α , b

1
α] and [δ]α = [a2α , b

2
α]. The strict inequality in

E is defined by η ≺ δ if and only if a1α < a2α and b1α < b2α, for each α ∈ (0 , 1].
According to Mizumoto and Tanaka [13], the arithmetic operations ⊕, 	, �, �

on E × E are defined by:
(x⊕ y)(t) = Sups∈R min {x(s) , y(t− s)}, t ∈ R,
(x	 y)(t) = Sups∈R min {x(s) , y(s− t)}, t ∈ R,
(x� y)(t) = Sups∈R,s 6=0 min {x(s) , y( ts )}, t ∈ R,
(η � δ)(t) = Sups∈R min {η(st) , δ(s)}, t ∈ R.

Definition 2.1 ([6]). The absolute value |η| of η ∈ F (R) is defined by:

|η|(t) =

{
max(η(t), η(-t)) if t ≥ 0
0 if t < 0.

Lemma 2.2 ([10]). Let η, γ ∈ F (R) and [η]α = [η−α , η
+
α ], [γ]α = [γ−α , γ

+
α ] ∀ α ∈

( 0, 1].Then
(1) [η ⊕ γ]α = [η−α + γ−α , η

+
α + γ+α ],

(2) [η 	 γ]α = [η−α − γ+α , η+α − γ−α ],
(3) [η � γ]α = [η−α γ

−
α , η

+
α γ

+
α ], for η, γ ∈ F+(R),

(4) [1̄� η]α = [ 1
η+α
, 1
η−α

], if η−α > 0,

(5) [|η|]α = [max( 0, η1α, −η2α),max( |η1α|, |η2α|)].

Definition 2.3 ([6]). Let X be a vector space over R. Let || || : X → R∗(I) and
the mappings L,U : [0 , 1]× [0 , 1]→ [0 , 1] be symmetric, nondecreasing in both
arguments and satisfying L(0 , 0) = 0 and U(1 , 1) = 1.
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Write [||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X,
x 6= 0, there exists α0 ∈ (0 , 1] independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞,
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is

a fuzzy norm, if
(i) ||x|| = 0̄ if and only if x = 0 (the null vector),
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R,
(iii) for all x, y ∈ X,

(a) whenever s ≤ ||x||11, t ≤ ||y||11, s+ t ≤ ||x+ y||11 and
||x+ y||(s+ t) ≥ L(||x||(s) , ||y||(t)).

(b) whenever s ≥ ||x||11, t ≥ ||y||11, s+ t ≥ ||x+ y||11 and
||x+ y||(s+ t) ≤ U(||x||(s) , ||y||(t)).

Note 2.4 ([6]). For the case when U =
∨

(max) and L =
∧

(min), then the
condition (iii) is equivalent to ||x + y|| � ||x|| ⊕ ||y|| and || ||iα : i = 1, 2 are crisp
norms on X and (X , || ||, L , U) is simply denoted as (X , || ||).

Definition 2.5 ([16]). A mapping η : R→ [0, 1] is called a fuzzy real number,
whose α level set is denoted by [η]α = {t : η(t) ≥ α}, 0 < α ≤ 1, if it satisfies two
axioms:

(N1) there exists t0 ∈ R such that η(t0) = 1,
(N2) for each α ∈ (0, 1]; [η]α = [η−α , η

+
α ], where −∞, ηα ≤ +∞.

The set of all fuzzy real numbers is denoted by F .
Since to each r ∈ R, one can consider r ∈ F defined by r(t) = 1 if t = r and

r(t) = 0 if t 6= r, R can be embedded in F .

Lemma 2.6 ([16]). η ∈ F if and only if η : R→ [0, 1] satisfies:
(1) η normal, convex and upper semicontinuous,
(2) limt→∞η(t) = 0.

Definition 2.7 ([16]). Let η ∈ F . Then η is called a positive fuzzy real number, if
η(t) = 0 ∀t < 0. The set of all positive fuzzy real numbers is denoted by F+.

Definition 2.8 ([3]). Let X be a linear space over R. Let || || : X → F+ be a
mapping satisfying:

(i) ||x|| = 0̄ if and only if x = 0 (the null vector),
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R,
(iii) for all x, y ∈ X, ||x+ y|| � ||x|| ⊕ ||y|| and
(A′): x 6= 0⇒ ||x||(t) = 0, ∀t ≤ 0.

Then (X, || ||) is called a fuzzy normed linear space and || || is called a fuzzy norm
on X.

Corollary 2.9 ([2]). Let (X, || ||) be a fuzzy normed linear space. If for x ∈ X,

[||x||]α = [||x||1α, ||x||2α], 0 < α ≤ 1,

then
(1) ||x||1α = Supβ<α||x||1β,

(2) ||x||2α = Infβ<α||x||2β.
299
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Definition 2.10 ([9]). Let X be a vector space over R. A fuzzy inner product on
X is a mapping < ., . >: X ×X → F (R) (set of fuzzy real numbers) such that for
all vectors x, y, z ∈ X and all r ∈ R,

(IP1)
〈
x+ y, z

〉
=
〈
x, z

〉
⊕
〈
y, z

〉
,

(IP2)
〈
rx, y

〉
= r̄ �

〈
x, y

〉
,

(IP3)
〈
x, y

〉
=
〈
y, x

〉
,

(IP4)
〈
x, x

〉
� 0̄

(IP5) inf
α∈(0 , 1]

〈
x, x

〉−
α
> 0, if x 6= 0,

(IP6)
〈
x, x

〉
= 0̄ if and only if x = 0.

The vector space X equipped with a fuzzy inner product is called a fuzzy inner
product space.

A fuzzy inner product on X defines a fuzzy number

||x|| =
√〈

x, x
〉
, ∀x ∈ X.

This is a well defined fuzzy norm.
A fuzzy Hilbert space is a complete fuzzy inner product space.

Theorem 2.11 ([7]). Let X be a vector space over R and < ., . >: X ×X → F (R)
be a fuzzy inner product (Hasankhani type). Let

[< x, y >]α = [< x, y >1
α, < x, y >2

α], ∀ α ∈ ( 0, 1].

Then {< ., . >1
α: α ∈ ( 0, 1]} and {< ., . >2

α: α ∈ ( 0, 1]} are families of crisp
inner products from X ×X → R.

Definition 2.12 ([3]). Let (X, || ||) and (Y, || ||∗) be two fuzzy normed linear spaces
and T : X → Y be a linear operator. T is said to be strongly fuzzy bounded, if
there exists a real number k > 0 such that ||Tx||∗ � ||x|| � k̄ ∀x(6= 0) ∈ X.

Note 2.13. In this paper, we use fuzzy bounded operator T instead of strongly
fuzzy bounded.

Proposition 2.14 ([3]). Let T : (X, || ||1) → (Y, || ||2) be a strongly fuzzy bounded
linear operator and {[||T ||∗1α , ||T ||∗2α ];α ∈ (0, 1]} be a family of nested bounded closed
intervals of real numbers. Define a function ||T ||∗ : R→ [0, 1] by:

||T ||∗(t) = ∨{α ∈ (0, 1] : t ∈ [||T ||∗1α , ||T ||∗2α ]}.

Then ||T ||∗ is a fuzzy real number (fuzzy interval) and it is the fuzzy norm of T .

Theorem 2.15 ([3]). The set B(X,Y ) of all strongly fuzzy bounded linear operators
from a fuzzy normed linear space (X, || ||) to a fuzzy normed linear space (Y || ||) is
a linear space with respect to usual linear operations.

Definition 2.16 ([7]). Let X and Y be vector spaces over the field R. Then a fuzzy
sesquilinear form h on X × Y is a mapping h : X × Y → F (R) such that for all
x, x1, x2 ∈ X and y, y1, y2 ∈ Y and all scalars α, β the following conditions hold:

(i) h(x1 + x2, y) = h(x1, y)⊕ h(x2, y),
(ii) h(x, y1 + y2) = h(x, y1)⊕ h(x, y2),
(iii) h(αx, y) = ᾱ� h(x, y),
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(iv) h(x, βy) = β̄ � h(x, y).
ᾱ denotes the fuzzy real number corresponding to α.

Definition 2.17 ([7]). Let h be a fuzzy sesquilinear form on X × Y , where X and
Y are real fuzzy normed linear spaces. h is said to be bounded, if ∃ a real number
k such that

|h(x, y)| � (||x|| � ||y||) � k̄, ∀ (x, y) ∈ X × Y − {(0, 0)}.
Here [|h(x, y)|]α = [ max {0, h1α(x, y),−h2α(x, y)}, max {|h1α(x, y)|, |h2α(x, y)|}],
∀ α ∈ (0, 1].

Let h be a bounded sesquilinear form on X × Y. Then ∃ k ∈ R such that

|h(x, y)| � (||x|| � ||y||) � k̄, ∀ (x, y) ∈ X × Y − {(0, 0)}.
Let A = max {0, h1α(x, y),−h2α(x, y)} and B = max {|h1α(x, y)|, |h2α(x, y)|}. Then

A

||x||2α||y||2α
≤ k and

B

||x||1α||y||1α
≤ k, ∀ α ∈ (0, 1].

Define ||h||∗1α =
∨

(x, y)∈X×Y−{(0,0)}
A

||x||2α||y||2α
and

||h||∗2α =
∨

(x, y)∈X×Y−{(0,0)}
B

||x||1α||y||1α
.

Note 2.18 ([7]). {||h||∗1α ;α ∈ (0, 1]} is an ascending family of norms and {||h||∗2α :
α ∈ (0, 1]} is a descending family of norms and moreover {[||h||∗1α , ||h||∗2α ] : α ∈ (0, 1]}
is a family of nested bounded closed intervals of real numbers.

If a function ||h||∗ : R→ [0, 1] given by:

||h||∗(t) = ∨{α ∈ (0, 1] : t ∈ [||h||∗1α , ||h||∗2α ]},
then ||h||∗ is fuzzy norm of h.

Theorem 2.19 ([7], Riesz). Let H1, H2 be two fuzzy Hilbert spaces and
h : H1 × H2 → F (R) be a bounded fuzzy sesquilinear form. Assume that for h 6=
ō, h1α(x, y).h2α(x, y) > 0 and {y ∈ H2;h(x, y) = 0, ∀x ∈ H1} is complete w.r.t.
|| ||1α ∀α ∈ (0, 1], where [||y||]α = [||y||1α, ||y||2α], and || || is the induced fuzzy norm
by the fuzzy inner product of H2. Then h can be represented as h(x, y) =< Sx, y >
where S : H1 → H2 is a bounded linear operator and uniquely determined by h and
has the norm ||h|| = ||S||.

3. Fuzzy Hilbert adjoint operator

As we consider fuzzy real numbers and H is a linear space over R, so H is a
real Hilbert space. Throughout this paper Hilbert spaces are taken as real Hilbert
spaces.

In this section fuzzy Hilbert adjoint operator is defined and thereafter its existence
theorem is established.

Definition 3.1. Let T : H1 → H2 be a fuzzy bounded linear operator where H1

and H2 are fuzzy Hilbert spaces. Then the fuzzy Hilbert adjoint operator T ∗ of T
is the operator T ∗ : H2 → H1 such that

< Tx, y >=< x, T ∗y >, ∀x ∈ H1 and y ∈ H2.
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Note 3.2. Let (H2, < ., . >0) be a Hilbert space.
Define

< x, y > (t) =

{
1 if t =< x, y >0

0 if t = 0.

Then < ., . > is a fuzzy real number,
where [< x, y >]α = [< x, y >0, < x, y >0], ∀α ∈ (0, 1] and < ., . > defines a
complete fuzzy inner product on H2

Now we prove the existence of Hilbert adjoint operator T ∗ : H2 → H1 for a given
fuzzy bounded linear operator T : H1 → H2.

Theorem 3.3. (Existence Theorem) Let T : H1 → H2 be a strongly fuzzy bounded
linear operator where H1 is a fuzzy Hilbert space and H2 is given in Note 3.2. Then
fuzzy adjoint operator T ∗ of T exists uniquely and ||T || = ||T ∗||, if we assume that
for h 6= ō, h1α(y, x).h2α(y, x) > 0 and {y ∈ H2;h(y, x) = 0̄, ∀x ∈ H1} is complete
w.r.t. || ||1α (left α-norm of H2), ∀α ∈ (0, 1], where h is given by h(y, x) =< y, Tx >.

Proof. Since the inner product is sesquilinear, h(y, x) =< y, Tx > defines a fuzzy
sesquilinear form on H2 × H1 and T is linear, where H1 and H2 are two Hilbert
Spaces. Also

h(y, αx1 + βx2) =< y, T (αx1 + βx2) >
=< y, αTx1 + βTx2 > [Since T is linear]
= ᾱ� < y, Tx1 > ⊕ β̄� < y, Tx2 >
= ᾱ� h(y, x1) ⊕ β̄ � h(y, x2) ∀α, β ∈ R.

Then h is linear. By the Schwarz inequality,
|h(y, x)| = | < y, Tx > | � ||y|| � ||Tx||

⇒ |h(y, x)| � (||x|| � ||y||) � (||y|| � ||Tx||)� (||x|| � ||y||), when x, y 6= θ

⇒ |h(y,x)|1α
||x||2α||y||2α

≤ ||y||1α
||y||2α

.
||Tx||1α
||x||2α

≤ 1.k = k, ∀α ∈ (0, 1].

[Since ||y||1α = ||y||2α in H2 space and since T is bounded

||Tx|| � ||x|| � k̄, for some k > 0]

Thus
|h(y,x)|1α
||x||2α||y||2α

≤ k, ∀α ∈ (0, 1] and x, y 6= θ.

Now
|h(y,x)|2α
||x||1α||y||1α

≤ ||y||
2
α

||y||1α
.
||Tx||2α
||x||1α

≤ 1.k = k, ∀α ∈ (0, 1]. So

|h(y, x)|
||x|| ||y||

� k̄, ∀x ∈ H1 − {θ}, y ∈ H2 − {θ}.

Hence h(y, x) is bounded.
Now by Riesz Theorem (Theorem 2.19), we have, h(y, x) =< T ∗y, x > (putting

T ∗ in place of the linear operator S), where T ∗ : H2 → H1 is a bounded linear
operator and ||h||∗ = ||T ∗|| and h(y, x) = h̄(y, x). On the other hand,

|h(y, x)|1α
||x||2α||y||2α

≤ ||Tx||
1
α

||x||2α
, ∀α ∈ (0, 1] and x, y 6= θ.

Taking supremum on both sides, we get,

⇒
∨

(y,x)∈H2×H1−{(θ,θ)}
|h(y, x)|1α
||x||2α||y||2α

≤
∨
x∈H1−{θ}

||Tx||1α
||x||2α

⇒ ||h||∗1α ≤ ||T ||1α. (3.3.1)
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Now h(Tx, x) =< Tx, Tx >= ||Tx||2 ⇒ h1α(Tx, x) = (||Tx||1α)2, ∀α ∈ (0, 1].
Since h1α(Tx, x) = h2α(Tx, x),

||Tx||1α = ||Tx||2α, ∀α ∈ (0, 1]
⇒ (||Tx||1α)2 = h1α(Tx, x) ≤ ||h||∗1α ||Tx||2α||x||2α = ||h||∗1α ||Tx||1α||x||2α
⇒ ||Tx||1α

||x||2α
≤ ||h||∗1α .

Taking supremum, we get,∨
x∈H1−{θ}

||Tx||1α
||x||2α

≤ ||h||∗1α
⇒ ||T ||1α ≤ ||h||∗1α
⇒ ||h||∗1α ≥ ||T ||1α. (3.3.2)

Then from (3.3.1) and (3.3.2), we get,
||h||∗1α = ||T ||1α, ∀α ∈ (0, 1]. (3.3.3)

Also
||h||∗2α =

∨
x∈H1−{θ}, y∈H2−{θ}

|<y,Tx>|2α
||y||1α||x||1α

≥
∨
x∈H1−{θ}, Tx∈H2−{θ}

|<Tx, Tx>|2α
||Tx||1α||x||1α

=
∨
x∈H1−{θ}, Tx∈H2−{θ}

||Tx||2α||Tx||
2
α

||Tx||1α||x||1α

≥
∨
x∈H1−{θ}, Tx∈H2−{θ}

||Tx||1α||Tx||
2
α

||Tx||1α||x||1α
= ||T ||2α.

Thus ||h||∗2α ≥ ||T ||2α, ∀α ∈ (0, 1]. (3.3.4)

For β < α, α, β ∈ (0, 1], we have,
||h||∗2α ≤ ||h||∗2β

=
∨

(y,x)∈H2×H1−{(θ,θ)}
h2
β(y, x)

||x||1β ||y||
1
β

=
∨

(y,x)∈H2×H1−{(θ,θ)}
h1
β(y,x)

||x||1β ||y||
1
β

[Since h(y, x) = h̄(y, x)].

=
∨
x∈H1−{θ}, y∈H2−{θ}

<y,Tx>1
β

||x||1β ||y||
1
β

≤
∨
x∈H1−{θ}, y∈H2−{θ}

||Tx||1β ||y||
1
β

||x||1β ||y||
1
β

=
∨
x∈H1−{θ}

||Tx||1β
||x||1β

≤
∨
x∈H1−{θ}

||Tx||2β
||x||1β

= ||T ||2β .

So ||h||∗2α ≤ ||T ||2β , ∀β < α.

By taking infimum, we have, ||h||∗2α ≤
∧
β< α ||T ||2β . From Corollary 2.9,

||h||∗2α ≤ ||T ||2α, ∀α ∈ (0, 1]. (3.3.5)

From (3.3.4) and (3.3.5),
||h||∗2α = ||T ||2α, ∀α ∈ (0, 1]. (3.3.6)

Hence by (3.3.3) and (3.3.6), ||h||∗ = ||T ||.
Also ||h||∗ = ||T ∗||. Therefore ||T || = ||T ∗||. �
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4. Properties of fuzzy Hilbert adjoint operator

In this section some basic properties of fuzzy Hilbert adjoint operator are studied.

Theorem 4.1. Let H1, H2 be two fuzzy Hilbert spaces and S : H1 → H2 and
T : H1 → H2 be two fuzzy bounded linear operators and α any scalar.Then

(1) < T ∗y, x >=< y, Tx >,
(2) (S + T )∗ = S∗ + T ∗,
(3)(αT )∗ = αT ∗(α is a real scalar),
(4) T ∗∗ = T ,
(5) (ST )∗ = T ∗S∗ (assuming H1 = H2 = H).
If we consider the fuzzy Hilbert space H2 as in Note 3.2 and H1 = H2 = H, then

following results hold:
(6) ||TT ∗||∗ = ||T ∗T ||∗ = (||T ||∗)2,
(7) T ∗T = 0 iff T = 0.

Proof. (1) It is obvious, since < ., . > is symmetric in both the arguments.
(2) < x, (S + T )∗y >=< (S + T )x, y >=< Sx+ Tx, y >

=< Sx, y > ⊕ < Tx, y >=< x, S∗y > ⊕ < x, T ∗y >
=< x, (S∗ + T ∗)y > .

Then < x, (S + T )∗y >1
α=< x, (S∗ + T ∗)y >1

α. Thus

< x, {(S + T )∗ − (S∗ + T ∗)}y >1
α= 0, ∀x ∈ H1 and ∀y ∈ H2.

Similarly, < x, {(S + T )∗ − (S∗ + T ∗)}y >2
α= 0. So (S + T )∗ = S∗ + T ∗, since

< . , . >1
α and < . , . >2

α are crisp inner products ∀α ∈ (0, 1]
(3) < (αT )∗y, x >=< y, (αT )x >=< y, α(Tx) >

= ᾱ� < y, Tx >= ᾱ� < T ∗y, x >
=< αT ∗y, x >, ∀x ∈ H1 and ∀y ∈ H2.

Then ∀α ∈ (0, 1], we have < (αT )∗y, x >1
α=< αT ∗y, x >1

α. Thus

< {(αT )− αT ∗}y, x >1
α= 0.

Similarly, < {(αT )− αT ∗}y, x >2
α= 0. So (αT )∗ = αT ∗.

(4) < Tx, y >=< x, T ∗y > [From definition]
=< T ∗y, x > [Since < ., . > is symmetric]
=< y, T ∗∗x >
=< T ∗∗x, y >

Then ∀α ∈ (0, 1] and ∀x ∈ X, y ∈ Y ,

< Tx, y >1
α=< T ∗∗x, y >1

α and < Tx, y >2
α=< T ∗∗x, y >2

α .

Since < ., . >1
α and < ., . >2

α are crisp inner products,

< (T − T ∗∗)x, y >1
α= 0, < (T − T ∗∗)x, y >2

α= 0, ∀α ∈ (0, 1].

Thus T − T ∗∗ = 0. So T ∗∗ = T .
(5) < x, (ST )∗y >=< (ST )x, y >=< S(Tx), y >

=< Tx, S∗y >=< x, T ∗(S∗y) >
=< x, (T ∗S∗)y >.

Then ∀α ∈ (0, 1] and ∀x, y ∈ H, we have < x, (ST )∗y >1
α=< x, (T ∗S∗)y >1

α.
Thus < x, {(ST )− (T ∗S∗)}y >1

α= 0.
Similarly, < x, {(ST )− (T ∗S∗)}y >2

α= 0. So (ST )∗ = T ∗S∗.
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(6)By Schwarz inequality, we have,
||Tx||2 =< Tx, Tx >=< x, T ∗Tx >

=< T ∗Tx, x >
� ||T ∗Tx|| � ||x||
� ||T ∗T || � ||x||2.

Then ||Tx||2 � ||T ∗T ||� ||x||2. Thus ||Tx||2�||x||2 � (||T ∗T ||� ||x||2)�||x||2, since
||x|| � 0̄, for x 6= θ.

Now ∀α ∈ (0, 1] and x 6= θ, since ||x||1α = ||x||2α,

(
||Tx||1α
||x||2α

)2 ≤ ||T ∗T ||1α(
||x||1α
||x||2α

)2 ≤ ||T ∗T ||1α.1.

Taking sup on x ∈ H − {θ}, we have,

(
∨

x∈H−{θ}

||Tx||1α
||x||2α

)2 ≤ ||T ∗T ||1α.

From Theorem 3.3,

(||T ||1α)2 ≤ ||T ∗T ||1α ≤ ||T ∗||1α||T ||1α = ||T ||1α||T ||1α.

So (||T ||1α)2 = ||T ∗T ||1α. (4.1.1)

Also (
||Tx||2α
||x||1α

)2 ≤ ||T ∗T ||2α(
||x||2α
||x||1α

)2 = ||T ∗T ||2α.1

Taking sup, we get, (
∨
x∈H−{θ}

||Tx||2α
||x||1α

)2 ≤ ||T ∗T ||2α. From Theorem 3.3,

(||T ||2α)2 ≤ ||T ∗T ||2α ≤ ||T ∗||2α||T ||2α = ||T ||2α||T ||2α.

Then we have (||T ||2α)2 ≤ ||T ∗T ||2α ≤ (||T ||2α)2. Thus
(||T ||2α)2 = ||T ∗T ||2α (4.1.2)

So from (4.1.1) and (4.1.2), ||T ∗T || = (||T ||)2.
Now replacing T by T ∗ we get ||T ∗∗T ∗|| = (||T ∗||)2. From Theorem 3.3, ||TT ∗|| =

(||T ||)2. Hence we have ||TT ∗|| = ||T ∗T || = (||T ||)2.
(7) Let T ∗T = 0. Then (||T ||)2 = ||T ∗T || = 0. Thus T = 0.
The converse is obvious. �

Definition 4.2. A fuzzy bounded linear operator T : H → H on a Hilbert space
H, is said to be self-adjoint, if T = T ∗, where < Tx, y >=< x, T ∗y >, ∀x, y ∈ H.

If T is self-adjoint operator, then < Tx, y >=< x, Ty >.

Theorem 4.3. The product of two fuzzy bounded self-adjoint linear operators S and
T on a fuzzy Hilbert space H is self-adjoint iff the operators commute, i.e., ST = TS.

Proof. Proof is straightforward. �

Theorem 4.4. Let (Tn)n∈N be a sequence of fuzzy bounded self-adjoint linear op-
erators Tn : H → H on a fuzzy Hilbert space H. Suppose that (Tn) converges, say
Tn → T , i.e., ||Tn − T || → 0̄ where ||.|| is the fuzzy norm on the space B(H, H).
Then the limit operator T is fuzzy bounded self-adjoint linear operator on H.
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Proof. It is clear that ||Tn − T || → 0̄. Then

||Tn − T ||1α → 0 and ||Tn − T ||2α → 0, ∀α ∈ (0, 1].

Now ||Tnx− Tx|| = ||(Tn − T )x|| � ||Tn − T || � ||x||
⇒ ||Tnx−Tx||1α ≤ ||Tn−T ||1α||x||1α and ||Tnx−Tx||2α ≤ ||Tn−T ||2α||x||2α, ∀α ∈ (0, 1]
⇒ limn→∞||Tnx− Tx||1α = 0, limn→∞||Tnx− Tx||2α = 0, ∀α ∈ (0, 1]
⇒ ||Tnx− Tx|| → 0̄
⇒ limn→∞Tnx = Tx.
Since each Tn is linear ∀n, T is linear and T is fuzzy bounded.

Now ||T ∗n−T ∗|| = ||(Tn−T )∗|| = ||Tn−T ||. From triangle inequality in B(H, H),
we have,
||T − T ∗|| � ||T − Tn|| ⊕ ||Tn − T ∗n || ⊕ ||T ∗n − T ∗||

= ||T − Tn|| ⊕ 0̄⊕ ||Tn − T ||
= 2̄||Tn − T || → 0̄ as n→∞

Thus ||T − T ∗|| = 0̄ and T = T ∗. �

5. Conclusion

In this paper, authors introduce the idea of fuzzy Hilbert adjoint operator. Exis-
tence theorem of fuzzy adjoint operator has been established.
Operator theory in fuzzy functional analysis is a recent development. So results of
this paper will be helpful for the researchers in the field of operator theory in fuzzy
setting.
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