Annals of Fuzzy Mathematics and Informatics
Volume 15, No. 3, (June 2018) pp. 309-312
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2018.15.3.309

@IFMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Corrigendum to "Separation axioms on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 511-525"

T. M. Al-SHAMI

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 15, No. 3, June 2018

Science, Wonkwang University http://ribs.wonkwang.ac.kr

Corrigendum to "Separation axioms on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 511-525"

T. M. Al-SHAMI

Received 4 March 2018; Revised 3 April 2018; Accepted 27 April 2018
Abstract. In [7], the authors reported that a soft T_{i}-space need not be a soft T_{i-1}-space, for $i=3,4,5$ [Line 4 and 5 in abstract] and [Theorem 3.21], and the soft T_{i}-spaces in the sense of [3] and soft T_{i}-spaces in their work are equivalent, for $i=0,1,2,3$ [Line 7 and 8 in abstract] and [Line 12 and 13 , p.p. 522]. In this note, we correct the errors in these assertions by proving that every soft T_{3}-space is a soft T_{2}-space and presenting two counterexamples to show that a soft T_{i}-space in the sense of [3] is not equivalent to a soft T_{i}-space in the sense of [7], for $i=2,3$.

2010 AMS Classification: 54D10, 54D15
Keywords: \quad Soft set, Soft point, Soft T_{i}-space $(i=1,2,3)$.
Corresponding Author: T. M. Al-shami (tareqalshami83@gmail.com)

1. Introduction

Molodtsov [4] in 1999, initiated the concept of soft sets as a new mathematical tool for dealing with uncertainties. Shabir and Naz [6] in 2011, employed this notion in establishing the concept of soft topological spaces. They introduced soft separation axioms by utilizing ordinary points and investigated its basic properties. The authors of [2] and [5] defined a concept of soft point, which is a special case of the definition of soft point in [8], and verified some results related to soft limit points and soft neighborhood systems. Georgiou et al. [3] in 2013, introduced and studied new soft axioms namely soft T_{i}-spaces, for $i=0,1,2,3$, and Tantawy et al. [7] investigated new soft axioms namely soft T_{i}-spaces, for $i=0,1,2,3,4,5$.

We observe that there are some mistakes in [7]. To correct these mistakes, we prove that every soft T_{3}-space is a soft T_{2}-space with respect to [7] and provide two examples to illustrate that soft T_{i}-spaces in [3] and soft T_{i}-spaces in [7] are not equivalent, for $i=2,3$.

2. Preliminaries

In what follows, we recall some definitions that will be needed in the sequels.
Definition 2.1 ([4]). A pair (G, A) is said to be a soft set over X provided that G is a map of A into the family of all subsets of X. For short, we write (G, A) as ordered pairs $G_{A}=\left\{(a, G(a)): a \in A\right.$ and $\left.G(a) \in 2^{X}\right\}$.

Definition 2.2 ([1]). The relative complement of a soft set (G, A), denoted by $(G, A)^{c}$, is given by $(G, A)^{c}=\left(G^{c}, A\right)$, where a map $G^{c}: A \rightarrow 2^{X}$ is defined by

$$
G^{c}(a)=X-G(a), \text { for each } a \in A
$$

Definition 2.3 ([6]). A collection τ of soft sets over X with a fixed set of parameter A is called a soft topology on X, if it satisfies the following three axioms:
(i) the null soft set $\widetilde{\varnothing}$ and the absolute soft set \widetilde{X} are members of τ,
(ii) the soft union of an arbitrary number of soft sets in τ is also a member of τ,
(iii) the soft intersection of a finite number of soft sets in τ is also a member of τ.

The triple (X, τ, A) is called a soft topological space. Each soft set in τ is called soft open and its relative complement is called soft closed.

Definition $2.4([2,5])$. A soft subset (P, A) of (X, τ, A) is called soft point, if there is $a \in A$ and $x \in X$ satisfies that $P(a)=\{x\}$ and $P(e)=\varnothing$, for each $e \in A \backslash\{a\}$. A soft point will be shortly denoted by x_{a}.

Definition 2.5 ([3]). A soft topological space (X, τ, A) is said to be:
(i) soft T_{0}-space, if for every pair of distinct points $x, y \in X$ and for every $a \in A$, there is a soft open set U_{A} such that $x \in_{a} U_{A}$ and $y \not \otimes_{a} U_{A}$ or $y \in_{a} U_{A}$ and $x \not \uplus_{a} U_{A}$,
(ii) soft T_{1}-space, if for every pair of distinct points $x, y \in X$ and for every $a \in A$, there are soft open sets U_{A} and V_{A} such that $x \in_{a} U_{A}, y \not \not_{a} U_{A}$ and $y \in_{a} V_{A}$, $x \notin a V_{A}$,
(iii) soft T_{2}-space, if for every pair of distinct points $x, y \in X$ and for every $a \in A$, there are soft open sets U_{A} and V_{A} such that $x \in_{a} U_{A}, y \in_{a} V_{A}$ and $U(a) \bigcap V(a)=\varnothing$,
(iv) soft T_{3}-space, if for every $x \in X$, for every $a \in A$ and for every soft closed set H_{A} such that $x \not \oiint_{a} H_{A}$, there are soft open sets U_{A} and V_{A} such that $x \in V(a)$, $H(a) \subseteq U(a)$ and $U(a) \bigcap V(a)=\varnothing$.

Definition 2.6 ([7]). A soft topological space (X, τ, A) is said to be:
(i) soft T_{0}-space, if for every pair of distinct soft points $x_{a}, y_{a} \in X$, there is a soft open set U_{A} such that $x_{a} \in U_{A}$ and $y_{a} \notin U_{A}$ or $y_{a} \in U_{A}$ and $x_{a} \notin U_{A}$,
(ii) soft T_{1}-space, if for every pair of distinct soft points $x_{a}, y_{a} \in X$, there are soft open sets U_{A} and V_{A} such that $x_{a} \in U_{A}, y_{a} \notin U_{A}$ and $y_{a} \in V_{A}, x_{a} \notin V_{A}$,
(iii) soft T_{2}-space, if for every pair of distinct soft points $x_{a}, y_{a} \in X$, there are disjoint soft open sets U_{A} and V_{A} containing x_{a} and y_{a}, respectively,
(iv) soft regular, if for every soft closed set H_{A} and $x_{a} \in \widetilde{X}$ such that $x_{a} \notin H_{A}$, there are disjoint soft open sets U_{A} and V_{A} such that $H_{A} \widetilde{\subseteq} U_{A}$ and $x_{a} \in V_{A}$,
(v) soft T_{3}-space, if it is both soft regular and soft T_{1}-space.

3. Main Results

Tantawy et al. [7] claimed that a soft T_{3}-space is a soft T_{2}-space provided that x_{a} is a soft closed set, for each $x \in X$ and $a \in A$ [Line 4 and 5 in abstract] and [Theorem 3.21, p.p. 519]. In the following result, we prove that a soft T_{3}-space is a soft T_{2}-space without imposing x_{a} is a soft closed set.

Theorem 3.1. Every soft T_{3}-space (X, τ, A) is a soft T_{2}-space.
Proof. Let $x_{a} \neq y_{a} \in \tilde{X}$. Since (X, τ, A) is a soft T_{1}-space, there exists a soft open sets U_{A} such that $x_{a} \in U_{A}$ and $y_{a} \notin U_{A}$. Now, $x_{a} \notin U_{A}^{c}$ and U_{A}^{c} is a soft closed set containing y_{a}. It follows, by soft regularity of (X, τ, A), that there exist disjoint soft open sets W_{A} and V_{A} such that $x_{a} \in W_{A}$ and $y_{a} \in U_{A}^{c} \widetilde{\subseteq} V_{A}$. Then the desired result is proved.

Tantawy et al. [7] claimed that the soft T_{i}-spaces in the sense of [3] and soft T_{i}-spaces in their work are equivalent, for $i=0,1,2,3$ [Line 7 and 8 in abstract] and [Line 12 and 13, p.p. 522]. The following two examples illustrate that this result need not be true in general in case of $i=2,3$.

Example 3.2. Let $A=\{a, b, c\}$ be a set of parameters and let the universe set $X=\{x, y\}$. Then a soft collection $\tau=\left\{\widetilde{\varnothing}, \widetilde{X},\left(G_{i}, A\right): i=1,2, \ldots, 8\right\}$ is a soft topology on X, where

$$
\begin{aligned}
\left(G_{1}, A\right) & =\{(a,\{x\}),(b,\{y\}),(c,\{x\})\}, \\
\left(G_{2}, A\right) & =\{(a,\{y\}),(b,\{x\}),(c,\{x\})\}, \\
\left(G_{3}, A\right) & =\{(a, X),(b, X),(c,\{x\})\}, \\
\left(G_{4}, A\right) & =\{(a, \varnothing),(b, \varnothing),(c,\{x\})\}, \\
\left(G_{5}, A\right) & =\{(a, \varnothing),(b, \varnothing),(c,\{y\})\}, \\
\left(G_{6}, A\right) & =\{(a,\{x\}),(b,\{y\}),(c, X)\}, \\
\left(G_{7}, A\right) & =\{(a,\{y\}),(b,\{x\}),(c, X)\}, \\
\left(G_{8}, A\right) & =\{(a, \varnothing),(b, \varnothing),(c, X)\} .
\end{aligned}
$$

Obviously (X, τ, A) is a soft T_{2}-space in the sense of [3]. On the other hand, $x_{b} \neq y_{b}$. For any two soft open sets $\left(G_{i}, A\right),\left(G_{j}, A\right)$ such that $x_{b} \in\left(G_{i}, A\right)$ and $y_{b} \in\left(G_{j}, A\right)$, we have that $x \in G_{i}(c) \bigcap G_{j}(c)$. Hence it is not a soft T_{2}-space with respect to the definition of [7].

Example 3.3. Let $A=\{a, b\}$ be a set of parameters and let the universe set $X=\{x, y, z\}$. Then a soft collection $\tau=\{\widetilde{\varnothing}, \widetilde{X},\{(a,\{x, y\}),(b,\{z\})\},\{(a,\{z\})$, $(b,\{x, y\})\}\}$ is a soft topology on X. Obviously, (X, τ, A) is a soft T_{3}-space in the sense of [3]. On the other hand, $x_{a} \neq y_{a}$ and any soft open set containing x_{a} contains y_{a} as well. Thus it is not a soft T_{1}-space with respect to the definition of [7]. So it is not a soft T_{3}-space with respect to [7].

References

[1] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547-1553.
[2] S. Das and S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6 (1) (2013) 77-94.
[3] D. N. Georgiou, A. C. Mergaritis and V. I. Petropoulos, On soft topological spaces, Appl. Math. Inform. Sci. 5 (2013) 1889-1901.
[4] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
[5] Sk. Nazmul and S. K. Samanta, Neigbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform. 6 (1) (2013) 1-15.
[6] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786-1799.
[7] O. Tantawy, S. A. El-Sheikh and S. Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform. 11 (4) (2016) 511-525.
[8] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform. 3 (2) (2012) 171-185.
T. M. AL-SHAMI (tareqalshami83@gmail.com)

Department of Mathematics, Sana'a University, Sana'a, Yemen

