Annals of Fuzzy Mathematics and Informatics
Volume 15, No. 3, (June 2018) pp. 309–312
ISSN: 2093–9310 (print version)
ISSN: 2287–6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2018.15.3.309

$@\mathbb{FMI}$

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Corrigendum to "Separation axioms on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 511- 525"

T. M. Al-shami

Reprinted from the Annals of Fuzzy Mathematics and Informatics Vol. 15, No. 3, June 2018

Annals of Fuzzy Mathematics and Informatics Volume 15, No. 3, (June 2018) pp. 309–312 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2018.15.3.309

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Corrigendum to "Separation axioms on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 11 (4) (2016) 511- 525"

T. M. Al-shami

Received 4 March 2018; Revised 3 April 2018; Accepted 27 April 2018

ABSTRACT. In [7], the authors reported that a soft T_i -space need not be a soft T_{i-1} -space, for i = 3, 4, 5 [Line 4 and 5 in abstract] and [Theorem 3.21], and the soft T_i -spaces in the sense of [3] and soft T_i -spaces in their work are equivalent, for i = 0, 1, 2, 3 [Line 7 and 8 in abstract] and [Line 12 and 13, p.p. 522]. In this note, we correct the errors in these assertions by proving that every soft T_3 -space is a soft T_2 -space and presenting two counterexamples to show that a soft T_i -space in the sense of [3] is not equivalent to a soft T_i -space in the sense of [7], for i = 2, 3.

2010 AMS Classification: 54D10, 54D15

Keywords: Soft set, Soft point, Soft T_i -space (i = 1, 2, 3).

Corresponding Author: T. M. Al-shami (tareqalshami83@gmail.com)

1. INTRODUCTION

Molodtsov [4] in 1999, initiated the concept of soft sets as a new mathematical tool for dealing with uncertainties. Shabir and Naz [6] in 2011, employed this notion in establishing the concept of soft topological spaces. They introduced soft separation axioms by utilizing ordinary points and investigated its basic properties. The authors of [2] and [5] defined a concept of soft point, which is a special case of the definition of soft point in [8], and verified some results related to soft limit points and soft neighborhood systems. Georgiou et al. [3] in 2013, introduced and studied new soft axioms namely soft T_i -spaces, for i = 0, 1, 2, 3, 4, 5.

We observe that there are some mistakes in [7]. To correct these mistakes, we prove that every soft T_3 -space is a soft T_2 -space with respect to [7] and provide two examples to illustrate that soft T_i -spaces in [3] and soft T_i -spaces in [7] are not equivalent, for i = 2, 3.

2. Preliminaries

In what follows, we recall some definitions that will be needed in the sequels.

Definition 2.1 ([4]). A pair (G, A) is said to be a soft set over X provided that G is a map of A into the family of all subsets of X. For short, we write (G, A) as ordered pairs $G_A = \{(a, G(a)) : a \in A \text{ and } G(a) \in 2^X\}$.

Definition 2.2 ([1]). The relative complement of a soft set (G, A), denoted by $(G, A)^c$, is given by $(G, A)^c = (G^c, A)$, where a map $G^c : A \to 2^X$ is defined by

$$G^{c}(a) = X - G(a)$$
, for each $a \in A$.

Definition 2.3 ([6]). A collection τ of soft sets over X with a fixed set of parameter A is called a soft topology on X, if it satisfies the following three axioms:

(i) the null soft set $\widetilde{\varnothing}$ and the absolute soft set X are members of τ ,

(ii) the soft union of an arbitrary number of soft sets in τ is also a member of τ ,

(iii) the soft intersection of a finite number of soft sets in τ is also a member of τ . The triple (X, τ, A) is called a soft topological space. Each soft set in τ is called soft open and its relative complement is called soft closed.

Definition 2.4 ([2, 5]). A soft subset (P, A) of (X, τ, A) is called soft point, if there is $a \in A$ and $x \in X$ satisfies that $P(a) = \{x\}$ and $P(e) = \emptyset$, for each $e \in A \setminus \{a\}$. A soft point will be shortly denoted by x_a .

Definition 2.5 ([3]). A soft topological space (X, τ, A) is said to be:

(i) soft T_0 -space, if for every pair of distinct points $x, y \in X$ and for every $a \in A$, there is a soft open set U_A such that $x \in_a U_A$ and $y \notin_a U_A$ or $y \in_a U_A$ and $x \notin_a U_A$,

(ii) soft T_1 -space, if for every pair of distinct points $x, y \in X$ and for every $a \in A$, there are soft open sets U_A and V_A such that $x \in_a U_A, y \notin_a U_A$ and $y \in_a V_A$, $x \notin_a V_A$,

(iii) soft T_2 -space, if for every pair of distinct points $x, y \in X$ and for every $a \in A$, there are soft open sets U_A and V_A such that $x \in_a U_A$, $y \in_a V_A$ and $U(a) \bigcap V(a) = \emptyset$,

(iv) soft T_3 -space, if for every $x \in X$, for every $a \in A$ and for every soft closed set H_A such that $x \notin_a H_A$, there are soft open sets U_A and V_A such that $x \in V(a)$, $H(a) \subseteq U(a)$ and $U(a) \cap V(a) = \emptyset$.

Definition 2.6 ([7]). A soft topological space (X, τ, A) is said to be:

(i) soft T_0 -space, if for every pair of distinct soft points $x_a, y_a \in X$, there is a soft open set U_A such that $x_a \in U_A$ and $y_a \notin U_A$ or $y_a \in U_A$ and $x_a \notin U_A$,

(ii) soft T_1 -space, if for every pair of distinct soft points $x_a, y_a \in X$, there are soft open sets U_A and V_A such that $x_a \in U_A, y_a \notin U_A$ and $y_a \in V_A, x_a \notin V_A$,

(iii) soft T_2 -space, if for every pair of distinct soft points $x_a, y_a \in X$, there are disjoint soft open sets U_A and V_A containing x_a and y_a , respectively,

(iv) soft regular, if for every soft closed set H_A and $x_a \in X$ such that $x_a \notin H_A$, there are disjoint soft open sets U_A and V_A such that $H_A \subseteq U_A$ and $x_a \in V_A$,

(v) soft T_3 -space, if it is both soft regular and soft T_1 -space.

3. Main Results

Tantawy et al. [7] claimed that a soft T_3 -space is a soft T_2 -space provided that x_a is a soft closed set, for each $x \in X$ and $a \in A$ [Line 4 and 5 in abstract] and [Theorem 3.21, p.p. 519]. In the following result, we prove that a soft T_3 -space is a soft T_2 -space without imposing x_a is a soft closed set.

Theorem 3.1. Every soft T_3 -space (X, τ, A) is a soft T_2 -space.

Proof. Let $x_a \neq y_a \in \widetilde{X}$. Since (X, τ, A) is a soft T_1 -space, there exists a soft open sets U_A such that $x_a \in U_A$ and $y_a \notin U_A$. Now, $x_a \notin U_A^c$ and U_A^c is a soft closed set containing y_a . It follows, by soft regularity of (X, τ, A) , that there exist disjoint soft open sets W_A and V_A such that $x_a \in W_A$ and $y_a \in U_A^c \subseteq V_A$. Then the desired result is proved.

Tantawy et al. [7] claimed that the soft T_i -spaces in the sense of [3] and soft T_i -spaces in their work are equivalent, for i = 0, 1, 2, 3 [Line 7 and 8 in abstract] and [Line 12 and 13, p.p. 522]. The following two examples illustrate that this result need not be true in general in case of i = 2, 3.

Example 3.2. Let $A = \{a, b, c\}$ be a set of parameters and let the universe set $X = \{x, y\}$. Then a soft collection $\tau = \{\widetilde{\emptyset}, \widetilde{X}, (G_i, A) : i = 1, 2, ..., 8\}$ is a soft topology on X, where

 $\begin{array}{l} (G_1, A) = \{(a, \{x\}), (b, \{y\}), (c, \{x\})\}, \\ (G_2, A) = \{(a, \{y\}), (b, \{x\}), (c, \{x\})\}, \\ (G_3, A) = \{(a, X), (b, X), (c, \{x\})\}, \\ (G_4, A) = \{(a, \varnothing), (b, \varnothing), (c, \{x\})\}, \\ (G_5, A) = \{(a, \varnothing), (b, \varnothing), (c, \{y\})\}, \\ (G_6, A) = \{(a, \{x\}), (b, \{y\}), (c, X)\}, \\ (G_7, A) = \{(a, \{y\}), (b, \{x\}), (c, X)\}, \\ (G_8, A) = \{(a, \varnothing), (b, \varnothing), (c, X)\}. \end{array}$

Obviously (X, τ, A) is a soft T_2 -space in the sense of [3]. On the other hand, $x_b \neq y_b$. For any two soft open sets (G_i, A) , (G_j, A) such that $x_b \in (G_i, A)$ and $y_b \in (G_j, A)$, we have that $x \in G_i(c) \cap G_j(c)$. Hence it is not a soft T_2 -space with respect to the definition of [7].

Example 3.3. Let $A = \{a, b\}$ be a set of parameters and let the universe set $X = \{x, y, z\}$. Then a soft collection $\tau = \{\widetilde{\varnothing}, \widetilde{X}, \{(a, \{x, y\}), (b, \{z\})\}, \{(a, \{z\}), (b, \{x, y\})\}\}$ is a soft topology on X. Obviously, (X, τ, A) is a soft T_3 -space in the sense of [3]. On the other hand, $x_a \neq y_a$ and any soft open set containing x_a contains y_a as well. Thus it is not a soft T_1 -space with respect to the definition of [7]. So it is not a soft T_3 -space with respect to [7].

References

- M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547–1553.
- [2] S. Das and S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6 (1) (2013) 77–94.
- [3] D. N. Georgiou, A. C. Mergaritis and V. I. Petropoulos, On soft topological spaces, Appl. Math. Inform. Sci. 5 (2013) 1889–1901.
- [4] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19–31.

- [5] Sk. Nazmul and S. K. Samanta, Neigbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform. 6 (1) (2013) 1–15.
- [6] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786–1799.
- [7] O. Tantawy, S. A. El-Sheikh and S. Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform. 11 (4) (2016) 511–525.
- [8] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform. 3 (2) (2012) 171–185.

T. M. AL-SHAMI (tareqalshami83@gmail.com)

Department of Mathematics, Sana'a University, Sana'a, Yemen