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Abstract. Introduction of soft sets by Molodtsov (1999) has evolved
a revolution in the decision making paradigm. Researchers have used soft
sets with different extensions of fuzzy sets to satisfy the various types of
uncertainties involved with real life decision making problems. This paper
introduces intuitionistic trapezoidal fuzzy soft set (ITrFSS) by combining
intuitionistic trapezoidal fuzzy set (ITrFS) with soft set. Firstly, we gener-
alize the adjustable approach applied to intuitionistic fuzzy soft set (IFSS)
based decision making developed by Jiang et al. (2011) and then present
an approach to ITrFSS based decision making using threshold ITrFSs and
level soft sets. Moreover, we propose weighted ITrFSS and apply it in
a decision making problem. Fuzzy analytic hierarchy process (AHP) has
been used to derive the attribute weights. This paper has also validated
the outcome of the adjustable approaches based on ITrFSS and weighted
ITrFSS using closeness coefficient measure. Finally, two illustrative exam-
ples are provided to show the feasibility of the proposed approaches in real
life decision making problems.
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1. Introduction

Uncertainty is everywhere in our real life which are difficult to solve with the
traditional mathematical tools. To deal with it, Molodtsov [28] introduced soft set
as a generic mathematical tool. Soft set uses two important ideas which are pa-
rameterization and approximate description on the set of objects. Due to having
these properties, applicability of soft sets to real life problems have been emerging
rapidly. To deal with the inexact and incomplete uncertain realistic problems, Maji
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et al. [22] combined soft set with fuzzy set and introduced fuzzy soft set (FSS). Since
its introduction, FSS theory has been successfully applied in many different fields
such as decision making, data analysis, forecasting, simulation, optimization, texture
classification, etc. Intuitionistic fuzzy soft set (IFSS) was introduced by Maji et al.
[23, 24] as a generalization of FSS. Due to its inherent capability to represent human
thought, IFSS has been widely used by many researches and practitioners to solve
various real life decision making problems. The suitability of IFSS for the decision
making applications has been explained in [21]. Various operations, properties and
algebraic structure of IFSSs are studied in [45]. Some significant contributions on
decision making based on IFSS are narrated below. Jiang et al. [20] investigated
entropy and distance measurements on IFSSs. Zhang [39] proposed a new rough
set model and applied it in IFSS based decision making problems. Das and Kar
[7] proposed an algorithmic approach for decision making using IFSS, where the
authors used cardinals of IFSS as a novel concept. Feng et al. [18] pointed out some
limitations of the method proposed by Roy and Maji [31]. In order to overcome
those limitations, they introduced an adjustable approach in [18] for FSSs based
decision making using level soft sets. In the proposed adjustable approaches, the
authors considered different types of thresholds and consequently different level soft
sets. As a more generalized version of the method presented in [18], Jiang et al. [19]
proposed an adjustable approach to IFSSs based decision making problem using the
concept of level soft sets. The authors also extended the adjustable approach based
on weighted IFSS. Qin et al. [30] further generalized the approaches introduced by
Feng et al. [18] and Jiang et al. [19]. They developed the notion of reduct IFSS
and presented an adjustable approach to interval-valued intuitionistic fuzzy soft set
(IVIFSS) based decision making by using reduct IFSSs and level soft sets. Zhang et
al. [40] also developed an adjustable approach for decision making based on IVIFSSs
by using level soft sets. They further defined the concept of weighted IVIFSS and
applied it to decision making environment. Das et al. [8, 9] proposed two decision
making approaches using IVIFSS. Trapezoidal fuzzy soft set was introduced by Xiao
et al [41].

During the last decade, the study on hybrid models combining FSS and other
mathematical concepts have become much popular among the researchers and many
researchers have contributed to this domain. Recently, Das et al. [13] have studied
the evolutions of FSS and its extensions and extensively reviewed their applications
in decision making problems. Tang [33] have proposed a novel FSS based approach

using grey relational analysis (GRA) and DempsterÔÇôShafer theory of evidence,
where GRA is used to determine the uncertain degree of various parameters and
DempsterÔÇôShafer theory is used for aggregation purpose. Muthukumar et al.
[29] proposed a new similarity measure on IFSSs which minimized the influence of
imprecise parameters and discussed some of their basic properties. Alcantud [2] in-
vestigated the FSS based decision making approaches given by Roy and Maji [31]
and Feng et al. [18]. The author further suggested that the methodology given in [18]
can be explored to have more benefits. In their proposed approach, the author [31]
aggregated the data coming from multi-sources into a resultant FSS using a more ac-
curate operator. Wang et al. [34] used ambiguity measure and DempsterÔÇôShafer
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theory of evidence to propose an improved decision making approach based on FSS.
The authors firstly used ambiguity measure to obtain the uncertainty degree of each
parameter and then used DempsterÔÇÖs combination rule to rank the alternatives.
Triangular fuzzy soft set (TFSS) was introduced in [11]. Dutta and Limboo [17]
introduced Bell shaped FSS and applied it in medical diagnosis problem. Aiwu and
Hongjun [1] proposed fuzzy linguistic soft set (FLSS) by combining fuzzy set, linguis-
tic variable and soft set. Dey and Pal [15] introduced generalised multi-fuzzy soft set
(GMFSS) and studied their various operations and properties. Finally they applied
GMFSS in decision making problems. Intuitionistic fuzzy parameterized soft set the-
ory was defined by Deli and Cagman [14]. The authors also presented as adjustable
approach for decision making based on intuitionistic fuzzy parameterized soft set. In
[3], Alcantud extensively studied the underlying relationships among fuzzy sets, soft
sets, and their extensions. Das et al. [12] proposed correlation coefficient of hesitant
fuzzy soft set (HFSS) and using it they developed correlation efficiency. The au-
thors presented a decision making algorithm using the proposed concept. They also
proposed correlation coefficient in the framework of interval-valued hesitant fuzzy
soft set (IVHFSS). In [6], Das et al. proposed a novel approach to estimate the
missing or unknown information in incomplete fuzzy soft sets (FSSs). Then they
generalized their approach to find missing or unknown information in the context of
interval valued fuzzy soft sets. In [10], Das et al. studied an algorithmic approach
for group decision making (GDM) problems using neutrosophic soft matrix (NSM)
and relative weights of experts. They considered NSM as the matrix representation
of neutrosophic soft sets (NSSs), where NSS is the combination of neutrosophic set
and soft set.

An object is described in fuzzy set using only the membership grade and fuzzy set
considers that the sum of membership and non-membership grade is 1. But in real
life, this sum may be less than 1. Intuitionistic fuzzy set (IFS) [4] solved this kind
of problem by incorporating an additional parameter called hesitance margin. This
hesitancy parameter makes IFS significant to solve the uncertain real life problems.
Intuitionistic trapezoidal fuzzy set (ITrFS) was introduced by Wang and Zhang
[35] as a generalization of IFS [4]. In ITrFS, the membership and non-membership
functions are expressed using trapezoidal fuzzy numbers. The membership and non-
membership functions of an intuitionistic trapezoidal fuzzy number are piecewise
linear and trapezoidal, which can effectively transform the linguistic terms into nu-
merical variables. So ITrFS is considered to be more useful to express the uncertain
situations. Recently many researchers have contributed on ITrFSs based decision
making. Ye [43, 44] investigated the similarity measures and distance based simi-
larity measures between ITrFNs and applied to decision making problems. Ye [42]
also studied expected value method for intuitionistic trapezoidal fuzzy set based de-
cision making. Du and Liu [16] extended fuzzy VIKOR method with ITrFNs. Wei
et al. [38] proposed grey relational analysis (GRA) model for selecting an enter-
prise resource planning (ERP) system in trapezoidal intuitionistic fuzzy setting. Yu
[46] introduced generalized intuitionistic trapezoidal fuzzy weighted averaging oper-
ator (GITFWA) and studied its various properties. Saaty [32] introduced analytic
hierarchy process (AHP), which has been successfully applied in decision making
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problems. To include imprecise judgement, researchers used fuzzy AHP [5], where
priority vectors are derived from the fuzzy pair wise comparison matrices. To de-
rive weights from fuzzy comparison matrices, Mikhailov [25, 26, 27] proposed fuzzy
preference programming (FPP) method. Wang and Chin [37] proposed a priority
method utilizing a linear goal programming (LGP) model to derive normalized fuzzy
weights from the fuzzy pair wise comparison matrices.

As stated above, adjustable approach has drawn the attention of many researchers
due to its flexible nature on decision making paradigm. Initially adjustable approach
was applied on FSS, then gradually it was extended to IFSS and IVIFSS. Similarly
ITrFS has also many significant contributions to handle the uncertainties. However,
none has concentrated on the extension of ITrFS with soft set to explore ITrFSS. The
significance of ITrFSS on decision making problems is inevitable due to its ability
of parameterization and representation of the linguistic information in more practi-
cal and realistic manner. ITrFSS based adjustable approaches can solve the prob-
lems where both the membership and non-membership functions are expressed using
trapezoidal fuzzy numbers. As we have observed, researchers have considered simply
membership and non-membership functions to propose adjustable approaches, but
none has used trapezoidal membership and non-membership functions to implement
adjustable approaches. Some complex situations in our real life may require trape-
zoidal representations of both the membership and non-membership functions, the
concepts of level soft sets, as well as the concept of parameterizations to solve the
problems. Hence the need of ITrFSS based adjustable approaches are significant.
The purpose of this paper is to present an adjustable approach to solve real life de-
cision making problems using ITrFSSs and weighted ITrFSSs. Firstly, we introduce
the concept of ITrFSS by combining intuitionistic trapezoidal fuzzy set and soft set.
Then some threshold intuitionistic trapezoidal fuzzy sets are introduced, which are
used to compute the level soft sets of the ITrFSS. This study has presented an ad-
justable approach for decision making using ITrFSSs and level soft sets, which may
be considered as a generalized approach of the methods introduced by Feng et al. [18]
and Jiang et al. [19]. We have also introduced weighted ITrFSS, where weights of the
attributes are derived using fuzzy AHP [5]. Then the weighted ITrFSS has been ap-
plied in decision making problems based on threshold intuitionistic trapezoidal fuzzy
sets and level soft sets. Finally, we have used a closeness coefficient measure [41] to
validate the adjustable approaches which are based on ITrFSS and weighted ITrFSS.

The rest of this paper is organized as follows. Section 2 briefly presents some
relevant concepts including soft sets, fuzzy soft sets, intuitionistic fuzzy soft sets, and
intuitionistic trapezoidal fuzzy numbers. In section 3, we introduce ITrFSS, some
threshold intuitionistic trapezoidal fuzzy sets, and present an adjustable approach for
decision making using ITrFSSs. Section 4 contains weighted ITrFSS based decision
making followed by an illustrative example and validation of results using closeness
coefficient. Comparative study is given in Section 5. Finally conclusions are drawn
in section 6.
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Table 1. Tabular representation of (F̄{A}, E)

U/E s1 s2 s3 s4 s5

d1 0.2 0 0.6 0 0.6
d2 0.4 0.8 0.2 0 0.7
d3 0.9 0.1 0.8 0 0.5
d4 0.7 0.7 0 0 0.8
d5 0 0 0 0 0

2. Preliminaries

This section briefly presents some basic ideas relevant with this paper. Let U be
the initial universe and E be the set of parameters.

Definition 2.1 ([28]). Let P (U) denotes the power set of U and A ⊆ E. A pair
(F{A}, E) is called a soft set over U , where F{A} is a mapping given by F{A} : E →
P (U) such that F{A}(e) = ∅ if e /∈ A. For any parameter e ∈ A,F{A}(e) may be
considered as the set of e-approximate elements of the soft set (F{A}, E).

Example 2.2. Let U be the set of five diseases (Viral fever, Malaria, Typhoid,
Gastric ulcer, Pneumonia) given by:

U = {d1, d2, d3, d4, d5}
and E be the set of five symptoms given by:

E = {Temperature,Headache, Stomachpain,Cough,Chestpain} = {s1, s2, s3, s4, s5}.
Let A = {s1, s2, s3} ⊂ E. Now consider that F{A} is a mapping given by:

F{A}(s1) = {d1, d2, d3, d4}, F{A}(s2) = {d2, d3, d4},
F{A}(s3) = {d1, d2, d3}, F{A}(s4) = {d1, d2, d3, d4}.

Then the soft set (F{A}, E) can be represented as follows:
(F{A}, E) = {(s1, {d1, d2, d3, d4}), (s2, {d2, d3, d4}), (s3, {d1, d2, d3}),

(s4, {d1, d2, d3, d4}), (s5, {∅})}.

Definition 2.3 ([22]). Let FS(U) denotes the set of all fuzzy subsets of U and
A ⊂ E. A pair (F̄{A}, E) is called a fuzzy soft set (FSS) over U ,

where F̄{A} is a mapping F̄{A} : E → FS(U)

Example 2.4. Consider the previous Example 2.2. If one considers that the asso-
ciation of symptom s1 with the disease d1 is more important, then this information
cannot be expressed simply with 0 and 1. Such type of situation can be well expressed
using a membership value in [0, 1] instead of the crisp numbers 0 or 1. Assume that:
F̄{A}(s1) = {d1/0.2, d2/0.4, d3/0.9, d4/0.7}, F̄{A}(s2) = {d2/0.8, d3/0.1, d4/0.7},
F̄{A}(s3) = {d1/0.6, d2/0.2, d3/0.8}, F̄{A}(s5) = {d1/0.6, d2/0.7, d3/0.5, d4/0.8}.

Then the tabular representation of the FSS (F̄{A}, E) is shown in Table 1.

Definition 2.5. [23] Let IFS(U) denotes the set of all intuitionistic fuzzy subsets

of U and A ⊂ E. A pair (F̃{A}, E) is called an intuitionistic fuzzy soft set (IFSS)

over U , where F̃{A} is a mapping given by F̃{A} : E → IFS(U).
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Table 2. Tabular representation of (F̃{A}, E)

U/E s1 s2 s3 s4 s5

d1 (0.2, 0.5) 0 (0.6, 0.3) 0 (0.6, 0.1)
d2 (0.4, 0.3) (0.8, 0.2) (0.2, 0.6) 0 (0.7, 0.2)
d3 (0.9, 0.1) (0.1, 0.8) (0.8, 0.1) 0 (0.5, 0.2)
d4 (0.7, 0.2) (0.7, 0.2) 0 0 (0.8, 0.2)
d5 0 0 0 0 0

Example 2.6. Consider Example 2.4. When one hesitates to find out the associa-
tion of symptom s1 with the disease then this information cannot be expressed using
only the membership grade. Both membership and non membership values can be
considered in this kind of situation. Let us take
F̃{A}(s1) = {d1/(0.2, 0.5), d2/(0.4, 0.3), d3/(0.9, 0.1), d4/(0.7, 0.2)},
F̃{A}(s2) = {d2/(0.8, 0.2), d3/(0.1, 0.8), d4/(0.7, 0.2)},
F̃{A}(s3) = {d1/(0.6, 0.3), d2/(0.2, 0.6), d3/(0.8, 0.1)},
F̃{A}(s5) = {d1/(0.6, 0.1), d2/(0.7, 0.2), d3/(0.5, 0.2), d4/(0.8, 0.2)}.

Then the tabular representation of the IFSS (F̃{A}, E) is shown in Table 2.

Definition 2.7 ([4]). The membership and non-membership functions of an intu-
itionistic trapezoidal fuzzy number (ITrFN) á are respectively defined as:

µá(x) =



x− a
b− a

µá a ≤ x < b

µá b ≤ x ≤ c
d− x
d− c

µá c < x ≤ d
0, otherwise

and its non-membership function is defined as:

νá(x) =



b− x+ νá(x− a1)

b− a1
µá a1 ≤ x < b

νá b ≤ x ≤ c
x− c+ νá(d1 − x)

d1 − c
µá, c < x ≤ d1

0 otherwise.

Here 0 ≤ µá ≤ 1, 0 ≤ νá ≤ 1 and µá + νá ≤ 1, a, b, c, d, a1, d1 ∈ <. á =
〈([a, b, c, d] : µá) , ([a1, b, c, d1] : νá)〉 is called an ITrFN. For convenience, ITrFN á
is written as á = ([a, b, c, d];µá, νá). Let ά1 = ([a1, b1, c1, d1];µά1 , νά1) and ά2 =
([a2, b2, c2, d2];µά2 , νά2) be two ITrFNs and λ ≥ 0. Then following operations are
defined on ά1 and ά2:

(i) ά1 ⊕ ά2 = ([a1 + a2, b1 + b2, c1 + c2, d1 + d2];µά1
+ µά2

− µά1
µά2

, νά1
νά2

),
(ii) ά1 ⊗ ά2 = ([a1a2, b1b2, c1c2, d1d2];µά1

µά2
, νά1

+ νά2
− νά1

νά2
),

(iii) λά1 =
(
[λa, λb, λc, λd]; 1− (1− µά1)λ, νλά1

)
,

(v) άλ1 =
(
[aλ, bλ, cλ, dλ];µλά1

, 1− (1− νά1
)λ
)
.
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In order to compare any two ITrFNs, Wang and Zhang [35] defined the score
function, accuracy function, and expected value as given below.

Definition 2.8 ([35]). Let άi = ([ai, bi, ci, di];µάi
, νάi

) be an ITrFN. Score and
accuracy functions of acuteα are respectively defined by:

S(ά) = I(ά)× (µά − νά)

and

H(ά) = I(ά)× (µά + νά),

where

I(ά) =
1

8
× [(a+ b+ c+ d)× (1 + µά − νά)]

is the expected value of the ITrFN ´alpha. In order to compare two ITrFNs ά1 =
([a1, b1, c1, d1];µά1 , νά1) and ά2 = ([a2, b2, c2, d2];µά2 , νά2), the score and accuracy
functions are used as follows:

(i) if S(ά1) > S(ά2), then ά1 > ά2,
(ii) suppose S(ά1) = S(ά2), then

(a) if H(ά1) > H(ά2), then ά1 > ά2,
(b) if H(ά1) = H(ά2), then ά1 = ά2.

Distance between two fuzzy sets is a useful measure for calculating the difference
between them. The Hamming and Euclidean distances between two intuitionistic
trapezoidal fuzzy numbers are given below.

Definition 2.9 ([36]). Normalized Hamming distance between two ITrFNs ά1 =
([a1, b1, c1, d1];µά1

, νά1
) and ά2 = ([a2, b2, c2, d2];µά2

, νά2
) is defined as:

DH(ά1, ά2) =
1

8


|(1 + µά1

− νά1
) a1 − (1 + µά2

− νά2
) a2|

+ |(1 + µά1
− νά1

) b1 − (1 + µά2
− νά2

) b2|
+ |(1 + µά1 − νά1) c1 − (1 + µά2 − νά2) c2|
+ |(1 + µά1 − νά1) d1 − (1 + µά2 − νά2) d2|

 .

Definition 2.10 ([36]). Normalized Euclidean distance between two ITrFNs ά1 =
([a1, b1, c1, d1];µά1 , νά1) and ά2 = ([a2, b2, c2, d2];µά2 , νά2) is defined as:

DE(ά1, ά2) =

√√√√√√√√1

8


{(1 + µά1 − νά1) a1 − (1 + µά2 − νά2) a2}2

+ {(1 + µά1
− νά1

) b1 − (1 + µά2
− νά2

) b2}2

+ {(1 + µά1
− νά1

) c1 − (1 + µά2
− νά2

) c2}2

+ {(1 + µά1
− νά1

) d1 − (1 + µά2
− νά2

) d2}2

.
Example 2.11. Let ά1 = ([0.5, 0.6, 0.7, 0.9]; 0, 6, 0.3) and ά2 = ([0.4, 0.5, 0.6, 0.7]; 0.5, 0.3)
be two ITrFNs. The normalized Hamming distance DH(ά1, ά2) and Euclidean dis-
tance DE(ά1, ά2) measurements between two ITrFNs ά1 and ά2 are given below:

DH(ά1, ά2) =
1

8


|(1 + 0.6− 0.3)× 0.5− (1 + 0.5− 0.3)× 0.4|
+ |(1 + 0.6− 0.3)× 0.6− (1 + 0.5− 0.3)× 0.5|
+ |(1 + 0.6− 0.3)× 0.7− (1 + 0.5− 0.3)× 0.6|
+ |(1 + 0.6− 0.3)× 0.9− (1 + 0.5− 0.3)× 0.7|

 = 0.11,
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DE(ά1, ά2) =

√√√√√√√√1

8


{(1 + 0.6− 0.3)× 0.5− (1 + 0.5− 0.3)× 0.4}2

+ {(1 + 0.6− 0.3)× 0.6− (1 + 0.5− 0.3)× 0.5}2

+ {(1 + 0.6− 0.3)× 0.7− {(1 + 0.5− 0.3)× 0.6}2

+ {(1 + 0.6− 0.3)× 0.9− (1 + 0.5− 0.3)× 0.7}2

 = 0.16.

3. Adjustable approach to ITrFSS based decision making

In this section, we present an adjustable approach for decision making based on
ITrFSS, which extends the methods introduced by Feng et al. [18] and Jiang et al.
[19]. Firstly, we introduce ITrFSS, which is defined as a combination of intuition-
istic trapezoidal fuzzy set (ITrFS) and soft set. Then we propose various threshold
ITrFSs, such as mid-level threshold ITrFS, top-level threshold ITrFS, and bottom-
level threshold ITrFS. These threshold ITrFSs are necessary to adjust the decision
makers judgements based on the decision environment and have significant contri-
bution in decision making under various circumstances. This section also presents
positive ideal and negative ideal ITrFNs, and closeness coefficient of alternatives.

Definition 3.1. Let Ṕ (U) be the set of all intuitionistic trapezoidal fuzzy subsets

of U , E be the set of parameters and A ⊂ E. A pair (F́{A}, E) is called intuitionistic

trapezoidal fuzzy soft set (ITrFSS) over U , where F́{A} is a mapping given by F̃{A} :
E → P (U).

In other words, ITrFSS is a parameterized family of intuitionistic trapezoidal fuzzy
subsets of U . For any parameter e ∈ A, F́{A}(e) is considered as the intuitionistic
trapezoidal fuzzy value set for the parameter e.

Example 3.2. Let us consider Example 2.6 mentioned earlier. ITrFN supports
piecewise linear and trapezoidal representation of the intuitionistic fuzzy values.
When a decision maker expresses his/her opinion in linguistic terms, ITrFN is con-
sidered to be suitable for numerical conversion of those linguistic terms. For sim-
plicity, here we take numerical values to present the association of the diseases with
each of the symptoms. ITrFN á = ([a, b, c, d];µá, νá) , a, b, c, d, µá, νá ∈ < is used to
present the association. Let us take

F́{A}(s1) = {d1/(0.4, 0.5, 0.6, 0.7)(0.2, 0.5), d2/(0.1, 0.2, 0.3, 0.4)(0.4, 0.3),

d3/(0.7, 0.8, 0.8, 0.9)(0.9, 0.1), d4/(0.5, 0.6, 0.7, 0.8)(0.7, 0.2)}

F́{A}(s2) = {d2/(0.4, 0.5, 0.5, 0.6)(0.8, 0.2), d3/(0.3, 0.4, 0.5, 0.6)(0.1, 0.8),

d4/(0.1, 0.2, 0.2, 0.4)(0.7, 0.2)}

F́{A}(s3) = {d1/(0.1, 0.2, 0.2, 0.3)(0.6, 0.3), d2/(0.3, 0.4, 0.5, 0.6)(0.2, 0.6),

d3/(0.7, 0.8, 0.8, 0.9)(0.8, 0.1)}

F́{A}(s5) = {d1/(0.5, 0.6, 0.6, 0.7)(0.6, 0.1), d2/(0.4, 0.5, 0.6, 0.7)(0.7, 0.2),

d3/(0.1, 0.2, 0.3, 0.4)(0.5, 0.2), d4/(0.2, 0.3, 0.4, 0.5)(0.8, 0.2)}.
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Table 3. Tabular representation of (F́{A}, E)

U/E s1 s2 s3 s4 s5

d1 (0.4, 0.5, 0.6, 0.7)(0.2, 0.5) 0 (0.1, 0.2, 0.2, 0.3)(0.6, 0.3) 0 (0.5, 0.6, 0.6, 0.7)(0.6, 0.1)
d2 (0.1, 0.2, 0.3, 0.4)(0.4, 0.3) (0.4, 0.5, 0.5, 0.6)(0.8, 0.2) (0.3, 0.4, 0.5, 0.6)(0.2, 0.6) 0 (0.4, 0.5, 0.6, 0.7)(0.7, 0.2)
d3 (0.7, 0.8, 0.8, 0.9)(0.9, 0.1) (0.3, 0.4, 0.5, 0.6)(0.1, 0.8) (0.7, 0.8, 0.8, 0.9)(0.8, 0.1) 0 (0.1, 0.2, 0.3, 0.4)(0.5, 0.2)
d4 (0.5, 0.6, 0.7, 0.8)(0.7, 0.2) (0.1, 0.2, 0.2, 0.4)(0.7, 0.2) 0 0 (0.2, 0.3, 0.4, 0.5)(0.8, 0.2)
d5 0 0 0 0 0

Then the tabular representation of the ITrFSS (F́{A}, E) is shown in Table 3.

Let z = (F́{A}, E) be an ITrFSS over U and A ⊆ E, Let ź = ([a, b, c, d];µź, νź) be

an ITrFN for the ITrFSS (F́{A}, E). These notations are used in all of the following
definitions.

Definition 3.3. For any ITrFN ć = ([c1, c2, c3, c4];µć, νć) the ć-level soft set of

ITrFSS z = (F́{A}, E) is a crisp soft set L(z, ć) =
(
F{A}(ε), ć

)
which is defined

below.

L
(
F{A}(ε); ć

)
= {x ∈ U |ź > ć} ,∀ε ∈ A.

The ITrFN ć = ([c1, c2, c3, c4];µć, νć) is considered as threshold ITrFN, which is
chosen by the decision maker in advance for the real life decision making problems
based on ITrFSS.

Definition 3.4. The mid-level intuitionistic trapezoidal fuzzy set (ITrFS) midź for

the ITrFSS z = (F́{A}, E) is defined as: for each ε ∈ A,

[amidź(ε) =
1

|U |
∑
x∈U

aF́{A}(ε)(x), bmidź(ε) =
1

|U |
∑
x∈U

bF́{A}(ε)(x),

cmidź(ε) =
1

|U |
∑
x∈U

cF́{A}(ε)(x), dmidź(ε) =
1

|U |
∑
x∈U

dF́{A}(ε)(x)],

[µmidź(ε) =
1

|U |
∑
x∈U

µF́{A}(ε)(x), νmidź(ε) =
1

|U |
∑
x∈U

νF́{A}(ε)(x)].

The mid-level ITrFS midź is denoted as mid-level threshold for the ITrFSS z =
(F́{A}, E). The level soft set of ITrFSS ź concerned with the mid-level thresh-
old midź is called the mid-level soft set of ź denoted by L(ź;midź) The mid-level
threshold ITrFS is useful in those uncertain decision making problems, where the
expert/decision maker takes a decision giving more focus on the average opinions.

Definition 3.5. Top-level threshold intuitionistic trapezoidal fuzzy set topź of the
ITrFSS z = (F́{A}, E) is defined by: for each ε ∈ A,

[atoptopź(ε) = max
x∈U

aF́{A}(ε)(x), btoptopź(ε) = max
x∈U

bF́{A}(ε)(x),

ctoptopź(ε) = max
x∈U

cF́{A}(ε)(x), dtoptopź(ε) = max
x∈U

dF́{A}(ε)(x)],

[µtoptopź(ε) = max
x∈U

µF́{A}(ε)(x), νtoptopź(ε) = min
x∈U

νF́{A}(ε)(x)].

The level soft set of ITrFSS ź regarding the top-level threshold topź is called the top-
level soft set of ź and denoted by L(ź; topź). This top-level soft set can be considered

107



S. Das et al./Ann. Fuzzy Math. Inform. 16 (2018), No. 1, 99–116

in those decision making problems, where the decision maker mostly considers the
higher ITrFNs, i.e., the better opinions.

Definition 3.6. Bottom level threshold intuitionistic trapezoidal fuzzy set bottomź
of the ITrFSS z = (F́{A}, E) is defined by: for each ε ∈ A,

[abottomź(ε) = min
x∈U

aF́{A}(ε)(x), bbottomź(ε) = min
x∈U

bF́{A}(ε)(x),

cbottomź(ε) = min
x∈U

cF́{A}(ε)(x), dbottomź(ε) = min
x∈U

dF́{A}(ε)(x)],

[µbottomź(ε) = min
x∈U

µF́{A}(ε)(x), νbottomź(ε) = max
x∈U

νF́{A}(ε)(x)].

The level soft set of ITrFSS ź regarding the bottom-level threshold bottomź is called
the bottom-level soft set of and denoted by L(ź; bottomź) This bottom-level soft set
can be considered in those decision making problems, where the decision maker want
to consider almost all opinions for decision making purpose.

Definition 3.7. Positive ideal ITrFN I+ = (aI+ , bI+ , cI+ , dI+); (µI+ , νI+) is defined
by: for each ε ∈ A,

aI+ = max
x∈U

dF́{A}(ε)(x), bI+ = max
x∈U

bF́{A}(ε)(x),

cI+ = max
x∈U

cF́{A}(ε)(x), dI+ = max
x∈U

dF́{A}(ε)(x),

µI+ = max
x∈U

µF́{A}(ε)(x), νI+ = min
x∈U

νF́{A}(ε)(x).

Negetive ideal ITrFN I− = (aI− , bI− , cI− , dI−); (µI− , νI−) is defined by: for each
ε ∈ A,

aI− = min
x∈U

dF́{A}(ε)(x), bI− = min
x∈U

bF́{A}(ε)(x),

cI− = min
x∈U

cF́{A}(ε)(x), dI− = min
x∈U

dF́{A}(ε)(x),

µI− = min
x∈U

µF́{A}(ε)(x), νI− = max
x∈U

νF́{A}(ε)(x).

The distances of each object in an ITrFSS with the positive/negative ideal ITrFNs
are computed by D+

i = DH(xi, I
+), i = 1, 2, ...,m and D−i = DH(xi, I

−), i =
1, 2, ...,m. Closeness coefficient CCi of each alternative i = 1, 2, ...,m is calculated as

CCi =
D−i

D+
i +D−i

When the closeness coefficient of an alternative is more, the difference between it and
the negative ideal ITrFN is more, i.e., the alternative is more similar to the positive
ideal ITrFN. In other words, the closeness coefficient of an object is closer to 1 as it
is closer to the positive ideal ITrFN and more distant from the negative ideal ITrFN.

Below we present the adjustable approach to ITrFSS based decision making using
threshold ITrFSs and level soft sets. Let ź = (F́{A}, E) be an ITrFSS with alter-
natives di, i = 1, ...,m and attributes/parameters sj , j = 1, 2, ...n. Following steps
explores the optimal alternatives(s) based on the proposed ideas.

Algorithm 1

Step 1. ITrFSS ź = (F́{A}, E) is taken as input.
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Table 4. Tabular representation of ITrFSS (F́{A}, E)

U/E s1 s2 s3 s4

u1 (0.3, 0.4, 0.4, 0.6)(0.3, 0.5) (0.4, 0.5, 0.5, 0.6)(0.7, 0.3) (0.3, 0.4, 0.5, 0.6)(0.6, 0.4) (0.7, 0.8, 0.8, 0.9)(0.6, 0.3)

u2 (0.5, 0.6, 0.6, 0.8)(0.6, 0.2) (0.1, 0.3, 0.5, 0.6.)(0.5, 0.4) (0.5, 0.6, 0.6, 0.7)(0.7, 0.1) (0.6, 0.7, 0.8, 0.9)(0.3, 0.4)

u3 (0.4, 0.5, 0.5, 0.7)(0.7, 0.1) (0.7, 0.8, 0.8, 0.9)(0.3, 0.6) (0.6, 0.8, 0.8, 0.9)(0.3, 0.5) (0.4, 0.5, 0.5, 0.7)(0.4, 0.5)

u4 (0.4, 0.5, 0.5, 0.6)(0.6, 0.4) (0.5, 0.6, 0.6, 0.8)(0.4, 0.6) (0.7, 0.8, 0.9, 1)(0.5, 0.3) (0.3, 0.4, 0.4, 0.6)(0.4, 0.5)

u5 (0.7, 0.8, 0.8, 1)(0.4, 0.5) (0.6, 0.7, 0.7, 0.9)(0.7, 0.1) (0.1, 0.2, 0.2, 0.3)(0.6, 0.4) (0.4, 0.5, 0.5, 0.6)(0.5, 0.4)

Step 2. The threshold intuitionistic trapezoidal fuzzy set of the ITrFSS ź = (F́{A}, E)
is computed. As per requirements, one may compute mid-level threshold
ITrFS midź or top-level threshold ITrFS topź or bottom-level threshold
ITrFS bottomź which are respectively defined in Definitions 3.4, 3.5, and
3.6.

Step 3. The level soft set is computed from the ITrFSS ź = (F́{A}, E) using midź
or topź or bottomź to produce respectively mid-level soft set L (ź;midź) or
top-level soft set L (ź; topź) or bottom-level soft set L (ź; bottomź). Score
and accuracy function of ITrFN, given in Definition 2.8, are used to compute
the level soft sets.

Step 4. The level soft set L (ź;midź) or L (ź; topź) or L (ź; bottomź) is presented as
a crisp relation R, where R = [rij ]mn. Here m be the number of alternatives
and n be the number of parameters/attributes.

Step 5. The choice value ci for each alternative di, i = 1, 2, ...,m is determined form

the relation R, ci =
n∑
j=1

rij , where rij ∈ {0, 1}.

Step 6. Alternative dk, k ∈ 1, 2, ...,m is selected as optimal decision if ck = maxici∀i
Step 7. If k has more than one value, then any one of dk may be chosen.

Following steps 8, 9 and 10 are used to validate the results of Algorithm 1.

Step 8. The difference of each alternative di, i = 1, 2, ...,m from the positive ideal
ITrFN I+ = (aI+ , bI+ , cI+ , dI+); (µI+νI+ , ) and the negative ideal ITrFN
I− = (aI− , bI− , cI− , dI−); (µI−νI− , ) is calculated. Normalized Hamming
distance, given in Definition 2.9, is used to find the differences.

Step 9. The closeness coefficient CCi of each alternative di, i = 1, 2, ...,m is computed
using the difference of the alternative from positive ideal ITrFN and negative
ideal ITrFN.

Step 10. Alternative with maximum closeness coefficient is selected.

Algorithm 1 has been illustrated using the following example.

Example 3.8. Suppose Mr. X wants to buy a car among a set of five cars (alter-
natives) U = u1, u2, u3, u4, u5={Scorpio, Innova, Bolero, Xylo, Xuv5} which have
a set of four attributes given by E = s1, s2, s3, s4={Fuel economy, Price, Comfort,
Design}. Information about the attributes of different cars is represented using an

ITrFSS z = (F́{A}, E) which is given below in tabular form (Table 4).
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Table 5. Tabular representation of the mid-level, top-level, and
bottom-level soft sets and the corresponding choice values

L (ź;midź) L (ź; topź) L (ź; bottomź)

s1 s2 s3 s4 ci s1 s2 s3 s4 ci s1 s2 s3 s4 ci

u1 0 1 0 1 2 0 1 0 0 1 0 1 1 1 3

u2 1 1 1 0 3 0 0 0 0 0 1 1 1 1 4

u3 1 0 0 0 1 0 0 0 0 0 1 0 0 1 2

u4 0 0 1 0 1 0 0 0 0 0 1 0 1 1 3

u5 0 1 0 1 2 0 1 0 0 1 0 1 1 1 3

Mid-level threshold intuitionistic trapezoidal fuzzy set midź, top-level threshold
intuitionistic trapezoidal fuzzy set topź , and bottom-level threshold intuitionistic
trapezoidal fuzzy set bottomź corresponding to the ITrFSS ź = (F́{A}, E) which
is shown in Table 4, are given below. Computation procedures of these threshold
intuitionistic trapezoidal fuzzy sets (midź, topź and bottomź) are respectively given
in Definitions 3.4, 3.5, and 3.6.

midź = {s1, (0.46, 0.56, 0.56, 0.74)(0.52, 0.34)}, {s2, (0.46, 0.58, 0.62, 0.76)(0.52, 0.4)},
{s3, (0.44, 0.56, 0.6, 0.7)(0.54, 0.34)}, {s4, (0.48, 0.58, 0.6, 0.74)(0.44, 0.42)}

topź = {s1, (0.7, 0.8, 0.8, 0.1)(0.7, 0.1)}, {s2, (0.7, 0.8, 0.8, 0.9)(0.7, 0.1)},
{s3, (0.7, 0.8, 0.9, 0.1)(0.7, 0.1)}, {s4, (0.7, 0.8, 0.8, 0.9)(0.6, 0.3)}

bottomź = {s1, (0.3, 0.4, 0.4, 0.6)(0.3, 0.5)}, {s2, (0.1, 0.3, 0.5, 0.6)(0.3, 0.6)},
{s3, (0.1, 0.2, 0.2, 0.3)(0.3, 0.5)}, {s4, (0.3, 0.4, 0.4, 0.6)(0.3, 0.5)}.

Level soft sets such as mid-level soft set L (ź;midź) top-level soft set L (ź; topź)
and bottom-level soft set L (ź; bottomź) and their corresponding choice values are
displayed in Table 5.

Table 5 shows that the optimal decision is to select the car u2 i.e., Innova if one
uses mid-level threshold. Car Scorpio ( u1) or Xuv5 (u5) will be selected if one uses
top-level threshold. When one uses bottom-level threshold, car Innova (u2) will be
the optimal decision.

4. Adjustable approach to weighted ITrFSS based decision making

Definition 4.1. Let Ṕ (U) be the set of all intuitionistic trapezoidal fuzzy subsets
of U , E be the set of parameters, and A ⊆ E. A weighted ITrFSS is a triple
ξ = (F́{A}, E, ω), where (F́{A}, E) is called ITrFSS over U and ω : A → [0, 1]
is an weight function specifying the weight wj = ω(εj) for each attribute εj ∈
A. Weighted ITrFSS is considered as a special case of ITrFSS, where importance
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of different parameters are different and the parameters are categorized by their
respective weights.

Below we present the adjustable approach to weighted ITrFSS based decision
making using threshold ITrFSs and level soft sets.

Algorithm 2 The algorithm is explained below stepwise.

Step 1. Weighted ITrFSS ξ = (F́{A}, E, ω) is taken as input. Weights of the at-
tributes are computed using fuzzy AHP.

Step 2. The threshold intuitionistic trapezoidal fuzzy set of the ITrFSS ź = (F́{A}, E)
is computed. As per requirements, one may compute mid-level threshold
ITrFS midź or top-level threshold ITrFS topź or bottom-level threshold
ITrFS bottomź which are respectively defined in Definitions 3.4, 3.5, and
3.6.

Step 3. The level soft set is computed from the ITrFSS ź = (F́{A}, E) using midź
or topź or bottomź to produce respectively mid-level soft set L (ź;midź) or
top-level soft set L (ź; topź) or bottom-level soft set L (ź; bottomź). Score
and accuracy function of ITrFN, given in Definition 2.8, are used to compute
the level soft sets.

Step 4. The level soft set L (ź;midź) or L (ź; topź) or L (ź; bottomź) is presented as
a crisp relation R, where R = [rij ]mn. Here m be the number of alternatives
and n be the number of parameters/attributes.

Step 5. The weighted choice value wi for each alternative di, i = 1, 2, ...,m is deter-

mined form the relation R, wi =
n∑
j=1

ωjrij , where rij ∈ {0, 1}.

Step 6. Alternative dk, k ∈ 1, 2, ...,m is selected as optimal decision if wk = maxiwi∀i
Step 7. If k has more than one value, then any one of dk may be chosen.

Steps 8, 9 and 10 of algorithm 1, described earlier, are also used here to validate the
results. Algorithm 2 has been illustrated using the following example.

Example 4.2. Let us consider the trapezoidal fuzzy comparison matrix [37] for the
attributes E = {s1, s2, s3, s4} as considered in Example 3.8, is given below:

1 (1, 2, 3, 4) (2, 3, 4, 5) (2, 3, 4, 5)
(0.25, 0.33, 0.5, 1) 1 (1, 2, 3, 4) (1, 2, 3, 4)

(0.02, 0.25, 0.33, 0.5) (0.25, 0.33, 0.5, 1) 1 (1, 2, 3, 4)
(0.02, 0.25, 0.33, 0.5) (0.25, 0.33, 0.5, 1) (0.33, 0.5, 0.5, 1) 1

 .
Using the linear goal programming model [37], the normalized trapezoidal fuzzy

weight vector is computed as:
W = {(0.35, 0.45, 0.53, 0.53), (0.16, 0.22, 0.31, 0.38), (0.12, 0.15, 0.15, 0.19),

(0.08, 0.09, 0.10, 0.15)T }.
Using weight vector and expected values, the attributes weights are computed as:

ω1 = 0.47, ω2 = 0.27, ω3 = 0.15, ω4 = 0.10.

Then the tabular representation of the ITrFSS ź = (F́{A}, E) along with the corre-
sponding mid-level (midź), top-level (topź), and bottom-level (bottomź) threshold
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Table 6. Tabular representation of the mid-level, top-level, and
bottom-level soft sets and their weighted choice values

L (ź;midź)

s1, ω1 = 0.47 s2, ω2 = 0.27 s3, ω3 = 0.15 s4, ω4 = 0.10 ωici

u1 0 1 0 1 0.37

u2 1 1 1 0 0.89

u3 1 0 0 0 0.47

u4 0 0 1 0 0.15

u5 0 1 0 1 0.37

L (ź; topź)

s1, ω1 = 0.47 s2, ω2 = 0.27 s3, ω3 = 0.15 s4, ω4 = 0.10 ωici

u1 0 1 0 0 0.27

u2 0 0 0 0 0

u3 0 0 0 0 0

u4 0 0 0 0 0

u5 0 1 0 0 0.27

L (ź; bottomź)

s1, ω1 = 0.47 s2, ω2 = 0.27 s3, ω3 = 0.15 s4, ω4 = 0.10 ωici

u1 0 1 1 1 0.52

u2 1 1 1 1 0.99

u3 1 0 0 1 0.57

u4 1 0 1 1 0.72

u5 0 1 1 1 0.52

intuitionistic trapezoidal fuzzy sets remain similar as shown in example 3.2. Level
soft sets such as mid-level soft set L (ź;midź), top-level soft set L (ź; topź), and
bottom-level soft set L (ź; bottomź) and their corresponding weighted choice values
are given in Table 6.

Table 6 shows that the optimal decision is to select the car u2 i.e., Innova if one
uses mid-level threshold. Car Scorpio (u1 ) or Xuv5 (u5) will be selected if one
uses top-level threshold. When one uses bottom-level threshold, car Innova (u2)
will be the optimal decision. Although the decisions are similar with table 5, but
these may be changed with some changes in the trapezoidal fuzzy comparison matrix.

Validation of results using closeness coefficient
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Table 7. Closeness coefficient of the alternatives

Closeness coefficient

u1 u2 u3 u4 u5

0.310701 0.382799 0.299685 0.30036 0.340284

The closeness coefficients of various alternatives are shown in Table 7, which
reflects that the alternative u2, i.e., car Innova has the highest closeness coefficient.
In the proposed adjustable approaches based on ITrFSS and weighted ITrFSS, car
Innova (u2) has been selected as the optimal decision, when the middle-level or
bottom-level thresholds are used. But the result of using top-level threshold is found
to be different which is either u1 or u5. This is due to the fact that a few numbers of
alternatives can participate in case of top-level threshold. In contrast, more numbers
of alternatives are allowed to participate in mid-level and bottom-level thresholds.
Due to the participation of more number of alternatives in the cases of mid-level
and bottom-level thresholds, the final outcome is same as found as using closeness
coefficient.

5. Comparative study

Decision makers often prefer to express their opinions using linguistic terms rather
than exact numeric values since linguistic terms can capture the uncertainty more
closely. For the purpose of computation, the linguistic terms must be converted
to some suitable numerical values. Among some other options, ITrFNs are consid-
ered to be more suitable for the said task as ITrFNs represent both of the mem-
bership and non-membership functions using trapezoidal fuzzy numbers where the
trapezoidal fuzzy numbers are piecewise linear and trapezoidal. Since ITrFSS based
approaches use ITrFNs to represent the necessary information, thus ITrFSS based
decision making approaches are more appropriate for many real life problems. In
the existing adjustable approaches [18, 30, 19, 40], the authors have used FSS, IV-
IFSS, and IFSS respectively to investigate the decision making problem, however,
in this paper, we apply ITrFSS to solve the decision making problem. Since ITrFSS
is a generalization of FSS and IFSS, hence the proposed approaches are more gen-
eral compared to [18] and [19]. Moreover, the proposed approach has performed a
validation testing using closeness coefficient whereas none of the relevant existing
approaches performed validation testing.

6. Conclusions

In this paper, we generalize the approaches introduced by Feng et al. [18] and
Jiang et al. [19] in the framework of ITrFSS. We present as adjustable approach
to decision making using the proposed ITrFSS, thresholds and level soft sets. This
approach is known as adjustable as it can adjust the decision makers judgements
with respect to their thoughts whenever necessary using different thresholds. The
subjectivity in the decision making activities and inexact human thoughts act as
a basis of the adjustable approach. We have also introduced weighted ITrFSS and
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applied it in adjustable approach. The weights of various attributes of the weighted
ITrFSS are derived using fuzzy AHP. Closeness coefficient has been used to validate
the results of the adjustable approaches. In future, researchers may study the ap-
plications of level soft sets and thresholds in different extensions of fuzzy soft sets,
vague sets and rough sets theory.
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