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Abstract. Fuzzy set theory, soft set theory and rough set theory
are mathematical tools for dealing with uncertainties and are closely
related. In 1982, Pawlak initiated the rough set theory, Dubois and Prade
combined fuzzy sets and rough sets all together. In 1999, Molodtsov
introduced the concept of soft sets to solve complicated problems and
various types of uncertainties. Maji et al. studied the (Zadeh’s) fuzzi-
fication of the soft set theory. As a generalization, I define the notion
of a soft set in L-set theory, introduce several operators for L-soft set
theory, and investigate the rough operators on LX induced by an L-soft set.
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1. Introduction

As a generalization of Zadeh’s(classical) notion of a fuzzy set [24], the notion of
an L-set was introduced in [10]. The basic ideas of L-set theory and its extensions,
as well as many interesting applications, can be found in [1].

In 1982, Pawlak [19] initiated rough set theory to study incomplete and insufficient
information. In rough set theory, the approximation of an arbitrary subset of a
universe by two definable subsets are called lower and upper approximations, which
correspond to two rough operators. The two rough operators were first defined by
means of a given indiscernibility relation in [19]. Usually indiscernibility relations
are supposed to be equivalences. Furthermore, as generalizations, they also were
defined by an arbitrary binary relation in [23], a mapping in [4, 11], and other
methods. Dubois and Prade [6] first investigated fuzzy rough set and rough fuzzy
set.
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Ganter and Wille [9] put forward formal concept analysis theory(FCA), which
is an order-theoretical analysis of scientific data. Formal context, concept lattice
are two main notions and tools. Bĕlohlávek [1] established L-order, L-context and
L-concept lattice from the point of view of graded approach.

In 1999, Molodtsov [15] introduced the concept of soft sets to solve complicated
problems and various types of uncertainties. Maji [13] and Ali et al. [16] introduced
several operators for soft set theory. Moreover, Maji et al. [12] studied fuzzy soft
set theory. Feng et al. [7, 8] investigated the problem of combining fuzzy sets, rough
sets with soft sets. Recently, soft set theory has been developed rapidly by some
scholars in theory and practice (See [14, 17, 18, 20, 21, 22]).

I defined the notion of a soft set in L-set theory and introduced several operators
for L-soft set theory in [5], and investigated the rough operators on the set of all
L-soft sets induced by the rough operators on LX in [4]. As a continuation, in the
paper, I define an L-order �, an L-equality ≈, the union, the extended (restricted)
intersection, AND,OR, the complement on L-soft sets, support them by examples,
so a basic version of L-soft set theory is provided. On the other hand, I define the
two rough operators on the set LX of all L-sets induced by an L-soft set, discuss
the lattice structure of L-rough sets, show that it includes the two rough operators
on LX in [4] as a special case.

The above contents are arranged into three parts, Section 3: L-soft sets, and
Section 4: Rough operators on LX induced by a soft set. In Section 2, I give an
overview of L-sets, FCA, soft sets and fuzzy soft sets, rough sets, which surveys
Preliminaries.

2. Preliminaries

The section is devoted to some main notions for each area, i.e., L-sets [1, 10],
formal concept analysis[1, 9], soft sets [7, 13, 15, 18] and rough sets [2, 3, 4, 11, 19, 23].

2.1. L-sets. The seminal paper on fuzzy sets is [24]. As a generalization, the notion
of an L-set was introduced in [10]. An overview of the theory of L-sets and L-
relations (i.e., fuzzy sets and relations in the framework of complete residuated
lattices) can be found in [1].

First, residuated lattice is one of the fundamental concepts.

Definition 2.1. A residuated lattice is an algebra L= 〈L,∨,∧,⊗,→, 0, 1〉 such
that

(i) 〈L,∨,∧, 0, 1〉 is a lattice with the least element 0 and the greatest element 1,
(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e., ⊗ is associative, commutative, and

it holds the identity a⊗ 1 = a,
(iii) ⊗,→ form an adjoint pair, i.e., a⊗b ≤ c iff a ≤ b→ c holds for all a, b, c ∈ L.

Residuated lattice L is called complete if 〈L,∨,∧〉 is a complete lattice. In this
paper, we assume that L is complete.

Next, an L-set is defined in the following manner.
For a universe set X, an L-set in X is a mapping Ã : X → L. Ã(x) indicates

the truth degree of “x belongs to Ã”. We use the symbol LX to denote the set
224
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of all L-sets in X. For instance: 1̃X : X → L, 0̃X : X → L are defined as: for all
x ∈ X, 1̃X(x) = 1, 0̃X(x) = 0, respectively.

The negation operator is defined: for Ã ∈ LX , Ã∗(x) = Ã(x) → 0 for every
x ∈ X. The classical order ≤ and equality = are generalized in fuzzy setting. i.e.,
L-relation, L-equality.
I ∈ LX×X is called an L-binary relation. The truth degree to which elements x

and y are related by an L-relation I is denoted by I(x, y) or (xIy).
A binary L-relation I on X is an L-equivalence if it satisfies: ∀x, y, z ∈ X,

I(x, x) = 1 (reflexivity), I(x, y) = I(y, x) (symmetry), I(x, y) ⊗ I(y, z) ≤ I(x, z)
(transitivity). An L-equivalence is an L-equality if it satisfies: I(x, y) = 1 implies
x = y.

An L-order on X with an L-equality relation ≈ is a binary L-relation � which is
compatible with respect to ≈ and satisfies: ∀x, y, z ∈ X, (x � x) = 1 (reflexivity),
(x � y) ∧ (y � x) ≤ (x ≈ y) (antisymmetry), (x � y) ⊗ (y � z) ≤ (x � z)
(transitivity). A set X equipped with an L-order � and an L-equality ≈ is called
an L-ordered set 〈〈X,≈〉,�〉.

The subsethood degree S(Ã, B̃) is defined as: for Ã, B̃ ∈ LX ,

S(Ã, B̃) =
∧

x∈X
Ã(x)→ B̃(x), and (Ã � B̃) = S(Ã, B̃),

(Ã ≈ B̃) = S(Ã, B̃) ∧ S(B̃, Ã). We write Ã ⊆ B̃, if S(Ã, B̃) = 1.

Example 2.2. For ∅ 6= W ⊆ LX , we obtain that 〈〈W,≈〉, S〉 is an L-ordered set.
In fact, reflexivity and antisymmetry are trivial, we have to prove transitivity and
compatibility.

Transitivity: S(Ã, B̃)⊗S(B̃, C̃) ≤ S(Ã, C̃) holds if and only if S(Ã, B̃)⊗ S(B̃, C̃) ≤
Ã(x) → C̃(x), i.e., ∀x ∈ X, Ã(x) ⊗ S(Ã, B̃) ⊗ S(B̃, C̃) ≤ C̃(x), and it is true since

Ã(x)⊗ S(Ã, B̃)⊗ S(B̃, C̃) ≤ Ã(x)⊗ (Ã(x)→ B̃(x))⊗ (B̃(x)→ C̃(x)) ≤ C̃(x).
In the similarly way, we also prove Compatibility:

S(Ã, B̃)⊗ (Ã ≈ Ã1)⊗ (B̃ ≈ B̃1) ≤ S(Ã1, B̃1).

By Example 2.2, we know that 〈〈LX ,≈〉,�〉 is an L-ordered set.
Corresponding the operations ∨,∧,⊗ on L, three operations are defined on L-sets

as follows.

Definition 2.3. (i) Suppose {Ãi | i ∈ I} ⊆ LX is a system of L-sets. Then
∨
i∈I

Ãi

and
∧
i∈I

Ãi are two L-sets defined as follows, for every x ∈ X,

(
∨
i∈I

Ãi)(x) =
∨
i∈I

Ãi(x), (
∧
i∈I

Ãi)(x) =
∧
i∈I

Ãi(x).

(ii) For Ã, B̃ ∈ LX , Ã⊗ B̃ is an L-set in X defined as: for every x ∈ X,

(Ã⊗ B̃)(x) = Ã(x)⊗ B̃(x).

2.2. Formal concept analysis. FCA is an order-theoretic method for the math-
ematical analysis of scientific data, pioneered by Ganter and Wille [9], has attracted
a growing number of researchers and practitioners. I introduce by formalizing the
notion of (formal) context.
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A context is a triple (G,M, I) consisting of two sets G and M and a relation I
between them. The elements of G are called the objects and the elements of M are
called the attributes. We write gIm or (g,m) ∈ I to show that the object g has the
attribute m.

For a set A ⊆ G of objects define A
′

= {m ∈ M | gIm for all g ∈ A}. Corre-

spondingly, for a set B ⊆M of attributes define B
′

= {g ∈ G | gIm for all m ∈ B}.
A concept of the context (G,M, I) is a pair (A,B) where A ⊆ G,B ⊆ M , A

′
= B

and B
′

= A. We call A the extent and B the intent of the concept (A,B).
Suppose (A1, B1), (A2, B2) are two concepts of the context (G,M, I). Then we

define an order ≤, where (A1, B1) ≤ (A2, B2), if A1 ⊆ A2 (which is equivalent to
B1 ⊇ B2).

Let C(G,M, I,≤) be the set of all concepts of the context (G,M, I) with the order
≤. It forms a complete lattice (Concept Lattice) in which join and meet are given
by: ∨

j∈J
(Aj , Bj) = ((

⋃
j∈J

Aj)
′′
,
⋂
j∈J

Bj),
∧
j∈J

(Aj , Bj) = (
⋂
j∈J

Aj , (
⋃
j∈J

Bj)
′′
).

In [1], from the point of view of graded approach, Bĕlohlávek investigated L-order,
L-Galois connection and L-concept lattice.

2.3. Soft sets and fuzzy soft sets. In 1999, Molodtsov [15] proposed soft sets and
established the fundamental results of the new theory, to solve complicated problems
and various types of uncertainties. A soft set is an approximate description of an
object precisely consisting of two parts, namely predicate and approximate value
set.

Let X be an initial universe set and EX (simple E) be a collection of all possible
parameters with respect to X. Usually, parameters are attributes, characteristics,
or properties of objects in X (The role of E is the same with M in FCA).

In [15], Molodtsov introduced the notion of a soft set as follows.

Definition 2.4. A pair (F,A) is called a soft set over X, if A ⊆ E, and F : A→ 2X ,
where 2X is the power set of X.

In other words, a soft set over X is a parameterized family of subsets of the
universe X. For t ∈ A, F (t) may be viewed as the set of t-approximate elements of
the soft set (F,A) (See [16]).

In fact, a soft set can be seen as a formal context and vice verse. Then it is related
to the theory of formal concept analysis (See[9]).

As a generalization, in [12], Maji et al. defined the notion of a fuzzy soft set.

Definition 2.5. A pair (F,A) is called a fuzzy soft set over X if A ⊆ E, and
F : A→ [0, 1]X , where [0, 1]X is the collection of all fuzzy sets on X.

Maji et al. [12], and Ali and Shabir [17] introduced several operators for fuzzy
soft set theory: equality of two fuzzy soft sets, subset and superset of a fuzzy soft
set, complement of a fuzzy soft set, null fuzzy soft set, and absolute fuzzy soft set,
the union, the intersection, etc.. Some researchers have studied soft sets, rough sets,
fuzzy sets and soft topology (See [7, 8, 13, 15, 18, 20]).
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2.4. Rough sets. Pawlak [19] initiated the rough set theory. Let (X,R) be an
approximation space, and R ⊆ X ×X be an equivalence relation. Then for A ⊆ X,
two subsets R(A) and R(A) of X are defined:

R(A) = {x ∈ X | [x]R ⊆ A}, R(A) = {x ∈ X | [x]R ∩A 6= ∅},

where [x]R = {y ∈ X | xRy}.

If R(A) = R(A), A is called a definable set; if R(A) 6= R(A), A is called an
undefinable set, and (R(A), R(A)) is referred to as a pair of rough set. Therefore, R
and R are called two rough operators.

In [23], Yao defined the two rough operators by an arbitrary binary relation.
Furthermore, there are many generalizations of the theory of rough sets. Dubois
and Prade investigated fuzzy rough set and rough fuzzy set in [6].

In [11], Järvinen introduced the two rough operators in a lattice-theoretical setting
and studied their properties. Suppose (P, 0, 1,∨,∧,′ ) is an atomic Boolean lattice,
Q is the set of all atoms. As a generalization, for an arbitrary mapping ϕ : Q→ P ,
Järinven defined two rough approximation operators as follows: for every a ∈ P, x ∈
Q,

N(a) = ∨{x | ϕ(x) ≤ a}, H(a) = ∨{x | a ∧ ϕ(x) 6= 0} (∗)
We generalized the method in fuzzy setting (See[4]). First, the operation ρ was

defined between L-sets.

Definition 2.6. Suppose Ã, B̃ ∈ LX , let ρ(Ã, B̃) =
∨

x∈X
Ã(x)⊗ B̃(x), which is the

related degree of Ã and B̃ with respect to ⊗.

Then, we gave the following definition, which is a graded extension of [11].

Definition 2.7. Suppose X is a universe set, LX is the set of all L-sets on X,
M = {{a/x} | a ∈ L, a > 0, x ∈ X} is the set of all singletons, ϕ : M → LX is an
arbitrary mapping, then we obtain two L-rough operators Nϕ and Hϕ as follows:

for every Ã ∈ LX , x ∈ X,

Nϕ(Ã)(x) =
∨

{a/x}∈M

a⊗ S(ϕ({a/x}), Ã),

Hϕ(Ã)(x) =
∨

{a/x}∈M

a⊗ ρ(ϕ({a/x}), Ã).

If Nϕ(Ã) = Hϕ(Ã), then Ã is called a definable L-set; otherwise, Ã is called an

undefinable L-set. (Nϕ(Ã), Hϕ(Ã)) is referred to as a pair of L-rough set.

When LX is Boolean, the above definitions coincide with the formula (*).

Example 2.8. Suppose X = {x1, x2, x3}, and L = [0, 1] with a ⊗ b = min(a, b),
a→ b = 1, if a ≤ b; a→ b = b, if a > b. (Gödel Structure)

Let ϕ({a/xi}) = {a⊗ 0.5/xi} for i = 1, 2, 3. Then we have

S(ϕ({a/xi}), Ã) =
∧

y∈X
ϕ({a/xi})(y)→ Ã(y)

=
∧

y∈X
({a⊗ 0.5/xi})(y)→ Ã(y)
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= a⊗ 0.5→ Ã(xi), for i = 1, 2, 3
and

ρ(ϕ({a/xi}), Ã) =
∨

y∈X
ϕ({a/xi})(y)⊗ Ã(y)

=
∨

y∈X
({a⊗ 0.5/xi})(y)⊗ Ã(y)

= [a⊗ 0.5]⊗ Ã(xi), for i = 1, 2, 3.

For Ã = {0.6/x1, 0.2/x2, 0.7/x3}, we obtain

Nϕ(Ã)(x1) =
∨

{a/x1}∈M
a⊗ S(ϕ({a/x1}), Ã)

=
∨

{a/x1}∈M
a⊗ [a⊗ 0.5→ Ã(x1)]

=
∨

{a/x1}∈M
a⊗ [a⊗ 0.5→ 0.6]

=
∨
a∈L

a⊗ [a⊗ 0.5→ 0.6] = 1.

Similarly, we obtain

Nϕ(Ã) = {1/x1, 0.2/x2, 1/x3}, Hϕ(Ã) = {0.5/x1, 0.2/x2, 0.5/x3}.

3. L-soft sets

In the section, I generalize the notion of a soft set in fuzzy setting, define L-order,
L-equivalence relation, and several operators on the set of all L-soft sets over X.
The definitions are accompanies with examples.

Suppose X is a universe set, LX is the set of all L-sets in X. We know that
(LX ,

⋃
,
⋂
, ∗, 1̃X , 0̃X) is not a Boolean algebra. Let E be a collection of all possible

parameters with respect to X.
First, I define the notion of a soft set in fuzzy setting.

Definition 3.1. A pair (F,A) is called an L-soft set over X, if A ⊆ E and F :
A→ LX , denoted by θ = (F,A).

Clearly, when L=2, the above definition coincides with Definition 2.4, when L=[0,
1], the above definition coincides with Definition 2.5.

Example 3.2. Suppose X = {x1, x2, x3}, and L = [0, 1] equipped with Gödel
Structure. Let E = {t1, t2, t3, t4}, A1 = {t1, t2, t3} and let F1 : A1 → LX , where
F1(t1) = {0.7/x1 }, F1(t2) = {1/x1, 0.5/x2}, F1(t3) = {0.6/x1, 0.2/x2, 0.7/x3}.
Then clearly, (F1, A1) is an L-soft set.

Let LS(X) be the set of all L-soft sets over X. On which, there exist two kinds
of special elements: one is called a absolute soft set (1A, A), ∀t ∈ A, 1A(t) = 1̃X ,
denoted by ΓA = (1A, A); the other is called a null soft set (0A, A), ∀t ∈ A, 0A(t) =
0̃X , denoted by ΦA = (0A, A).

Second, I introduce the relation L-order �, and L-equivalence relation ≈ which
correspond the relations ⊆̃,= in classical case (See [12, 13, 15]). For two L-soft sets
θ1 = (F,A), θ2 = (G,B) ∈LS(X),

(θ1 � θ2) = S(θ1, θ2) =
∧
t∈A

S(F (t), G(t)),
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(θ1 ≈ θ2) = S(θ1, θ2) ∧ S(θ2, θ1).

Example 3.3. Follows Example 3.2, (F1, A1) is an L-soft set. LetA2 = {t1, t2, t3, t4}
and let F2 : A2 → LX , where F2(t1) = {0.4/x1}, F2(t2) = {0.9/x1, 0.5/x2, 0.3/x3},
F2(t3) = {0.4/x1, 0.2/x2, 0.5/x3}, F2(t4) = {1/x1, 0.7/x2, 0.6/x3}. Then (F2, A2) is
also an L-soft set. Thus we obtain

S((F1, A1), (F2, A2))
=

∧
t∈A1

S(F1(t), F2(t))

= S(F1(t1), F2(t1)) ∧ S(F1(t2), F2(t2)) ∧ S(F1(t3), F2(t3)) = 0.4,
S((F2, A2), (F1, A1)) =

∧
t∈A2

S((F2(t), F1(t)) = 0.

Clearly, we have
θ1⊆̃θ2 ⇔ S(θ1, θ2) = 1 ⇔ A ⊆ B, and ∀t ∈ A,F (t) ⊆ G(t),
θ1 = θ2 ⇔ S(θ1, θ2) = 1, S(θ2, θ1) = 1 ⇔ A = B, and ∀t ∈ A,F (t) = G(t).
So 〈〈LS(X),≈, 〉,�〉 is an L-order set (See[1]). When L=2, the above definitions

coincide with [15], when L=[0, 1], the above definition coincides with [12].

Example 3.4. Follows Example 3.2, (F1, A1) is a L-soft set. Let A3 = A1 and
let F3 : A3 → LX , where F3(t1) = { 0.4/x1 }, F3(t2) = {0.9/x1, 0.5/x2}, F3(t3) =
{0.4/x1, 0.2/x2, 0.5/x3}. Then (F3, A3) is also an L-soft set and (F3, A3)⊆̃(F1, A1).

Third, I introduce the union and the extended (restricted) intersection of two
L-soft sets. Maji et al. [12]defined the union of two fuzzy soft sets as follows.

Definition 3.5. Suppose (F,A), (G,B) ∈LS(X) are two L-soft sets. Then the
union of (F,A) and (G,B) is an L-soft set (H,C), where C = A∪B, and for t ∈ C,

H(t) =

 F (t) if t ∈ A−B
G(t) if t ∈ B −A
F (t) ∨G(t) if t ∈ A ∩B

and written as (F,A)
⋃̃

(G,B) = (H,C).

About some properties of the union, I combine Proposition 3.2 in [12] and Propo-
sition 2 in [17] as follows.

Proposition 3.6. (1) (F,A)
⋃̃

(F,A) = (F,A),

(2) (F,A)
⋃̃

(G,B) = (G,B)
⋃̃

(F,A),

(3) ((F,A)
⋃̃

(G,B))
⋃̃

(H,C) = (F,A)
⋃̃

((G,B)
⋃̃

(H,C)),

(4) (F,A)⊆̃(F,A)
⋃̃

(G,B), and (G,B)⊆̃(F,A)
⋃̃

(G,B)

(5) (F,A)⊆̃(G,B)⇒ (F,A)
⋃̃

(G,B) = (G,B),

(6) (F,A)
⋃̃

ΦA = (F,A),

(7) (F,A)
⋃̃

ΓA = ΓA .

In [12], Maji et al. also defined the intersection of two fuzzy soft sets, i.e., suppose
(F,A), (G,B) ∈LS(X) are two L-soft sets, then the intersection of (F,A) and (G,B)
is also an L-soft set (K,D), where D = A ∩ B, and for t ∈ D, K(t) = F (t) or G(t)
(as both are the same L-set).
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But generally F (t) = G(t) does not hold, and A ∩B may be a empty set. So Ali
et al. introduced a new definition (See Definition 3.3 in [16] and Definition 10 in
[17]). In [16, 17], it is called the restricted intersection(∩).

Definition 3.7. Suppose (F,A), (G,B) ∈LS(X) are two L-soft sets such that A ∩
B 6= ∅. Then the (restricted) intersection of (F,A) and (G,B) is also an L-soft set
(K,D), where D = A ∩ B, and for t ∈ D, K(t) = F (t) ∧ G(t). It is denoted by

(F,A)
⋂̃

(G,B) = (K,D).

Example 3.8. Follows Example 3.3, we obtain (H,C) = (F1, A1)
⋃̃

(F2, A2), where
C = A1 ∪ A2 = {t1, t2, t3, t4}, and H(t1) = F1(t1) ∨ F2(t1) = {0.7/x1}, H(t2) =
F1(t2) ∨ F2(t2) = {1/x1, 0.5/x2, 0.3/x3}, H(t3) = F1(t3)∨ F2(t3) = {0.6/x1, 0.2/x2,
0.7/x3}, H(t4) = F2(t4) = { 1/x1, 0.7/x2, 0.6/x3}.

Similarly, (K,D) = (F1, A1)
⋂̃

(F2, A2), where D = A1 ∩ A2 = {t1, t2, t3}, and
K(t1) = F1(t1) ∧ F2(t1) = {0.4/x1}, K(t2) = F1(t2) ∧ F2(t2) = {0.9/x1, 0.5/x2},
K(t3) = F1(t3) ∧ F2(t3) = {0.4/x1, 0.2/x2, 0.5/x3}.

In [16, 17],Ali et al. defined a new intersection, which is called the extended
intersection.

Definition 3.9. Suppose (F,A), (G,B) ∈LS(X) are two L-soft sets. Then the
extended intersection of (F,A) and (G,B) is also an L-soft set (J,C), where C =
A ∪B, and for t ∈ C,

J(t) =

 F (t) if t ∈ A−B
G(t) if t ∈ B −A
F (t) ∧G(t) if t ∈ A ∩B

and written as (F,A) u (G,B) = (J,C).

Example 3.10. Follows Example 3.8, we obtain (J,C) = (F1, A1) u (F2, A2),
where C = A1 ∪ A2 = {t1, t2, t3, t4}, and J(t1) = F1(t1) ∧ F2(t1) = {0.4/x1},
J(t2) = F1(t2) ∧ F2(t2) = {0.9/x1, 0.5/x2}, J(t3) = F1(t3) ∧ F2(t3) = {0.4/x1,
0.2/x2, 0.5/x3}, J(t4) = F2(t4) = {1/x1, 0.7/x2, 0.6/x3}.

Fourth, I consider the complement of an L-soft set (F,A). Maji et al. [12] intro-
duced the notion of NOT SET OF A SET OF PARAMETERS, that is, Definition
3.11.

Definition 3.11. Let E = {t1, t2, · · · , tn} be the set of parameters. The NOT set
of E, denoted by eE, is defined by eE = {¬t1,¬t2, · · · ,¬tn}, where eti = not ti, ∀i.
(It may be noted that e and ¬ are different operators).

About the NOT SET OF E, the following proposition holds.

Proposition 3.12 ([12] ). (1) e(eA) = A,
(2) e(A ∪B) =eA∪eB,
(3) e(A ∩B) =eA∩eB.

Definition 3.13. The complement of an L-soft set (F,A) is denoted by (F,A)c,
and is defined by (F,A)c = (F c, eA), where F c :eA→ LX , for every ¬t ∈eA,

F c(¬t) = F ∗(t) = F (t)→ 0.
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Example 3.14. Suppose X = {x1, x2, x3} and L = [0, 1] with a ⊗ b = max(a +
b− 1, 0), a→ b = min(1− a+ b, 1) (Lukasiewicz Structure). a∗ = a→ 0.

Consider (F1, A1) defined in Example 3.2. Then (F1, A1)c = (F c
1 , eA1), eA1 =

{¬t1,¬t2,¬t3}, F c
1 :eA1 → LX , where

F c
1 (¬t1) = {0.7/x1}∗ = {0.3/x1, 1/x2, 1/x3},
F c
1 (¬t2) = {1/x1, 0.5/x2}∗ = {0/x1, 0.5/x2, 1/x3},
F c
1 (¬t3) = {0.6/x1, 0.2/x2, 0.7/x3}∗ = {0.4/x1, 0.8/x2, 0.3/x3}.

Thus Clearly, Γc
A = ΦA and Φc

A = ΓA hold.
Furthermore, L satisfies the law of double negation, if it satisfies a = (a→ 0)→ 0,

for every a ∈ L, that is a∗∗ = a (See p. 32 in [1]).
In [17], the following proposition was proved.

Proposition 3.15 ([17], De Morgan Law). Suppose L satisfies the law of double
negation. Then

(1) [(F,A)
⋃̃

(G,B)]c = (F,A)c u (G,B)c,

(2) [(F,A) u (G,B)]c = (F,A)c
⋃̃

(G,B)c.

Finally, I introduce the operators OR,AND on LS(X).

Definition 3.16. Suppose (F,A), (G,B) ∈LS(X), (F,A)AND(G,B) is an L-soft
set, denoted by (F,A)∧̃(G,B) = (H,C), where C = A×B, for every t1 ∈ A, t2 ∈ B,
H(t1, t2) = F (t1) ∧G(t2).

(F,A)OR(G,B) is an L-soft set, denoted by (F,A)∨̃(G,B) = (K,D), where
D = A×B, for every t1 ∈ A, t2 ∈ B, K(t1, t2) = F (t1) ∨G(t2).

Example 3.17. Follows Example 3.3, (F1, A1) and (F2, A2) are two L-soft sets.
Then we have, (F1, A1)∧̃(F2, A2) = (H,C), where C = A×B,

C H
(t1, t1) {0.4/x1}
(t1, t2) {0.7/x1}
(t1, t3) {0.4/x1}
(t2, t1) {0.4/x1}
(t2, t2) {0.9/x1, 0.5/x2}
(t2, t3) {0.4/x1, 0.2/x2}
(t3, t1) {0.4/x1}
(t3, t2) {0.6/x1, 0.2/x2, 0.3/x3}
(t3, t3) {0.4/x1, 0.2/x2, 0.5/x3}

(F1, A1)∨̃(F2, A2) = (K,D), where D = A×B,
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D K
(t1, t1) {0.7/x1}
(t1, t2) {0.9/x1, 0.5/x2, 0.3/x3}
(t1, t3) {0.7/x1, 0.2/x2, 0.5/x3}
(t2, t1) {1/x1, 0.5/x2}
(t2, t2) {1/x1, 0.5/x2, 0.3/x3}
(t2, t3) {1/x1, 0.5/x2, 0.5/x3}
(t3, t1) {0.6/x1, 0.2/x2, 0.7/x3}
(t3, t2) {0.9/x1, 0.5/x2, 0.7/x3}
(t3, t3) {0.6/x1, 0.2/x2, 0.7/x3}

About the operators OR,AND on LS(X), the following De Morgan’s types of
results hold.

Proposition 3.18. Suppose L satisfies the law of double negation. Then
(1) ((F,A)∨̃(G,B))c = (F,A)c∧̃(G,B)c,
(2) ((F,A)∧̃(G,B))c = (F,A)c∨̃(G,B)c.

Remark 3.19. In [5], by means of Nϕ, Hϕ on LX , we defined two rough operators
N,H on LS(X) in following manner: for every θ = (F,A) and for every t ∈ A,

F∗(t) : A→ LX , F∗(t) = Nϕ(F (t)),

F ∗(t) : A→ LX , F ∗(t) = Hϕ(F (t)).

Then we obtain two L-soft setsN(θ) = (F∗, A), H(θ) = (F ∗, A). The operatorsN,H
are called the lower and upper rough approximations of L-soft sets. If N(θ) = H(θ),
the L-soft set θ is said to be definable, otherwise (N(θ), H(θ)) is called a pair of
rough L-soft set.

I present the following example.

Example 3.20. Let (F,A) = (F1, A1) defined in Example 3.2. Then we may obtain,
F∗(t1) = Nϕ(F (t1)) = {1/x1},
F∗(t2) = Nϕ(F (t2)) = {1/x1, 1/x2},
F∗(t3) = Nϕ(F1(t3)) = {1/x1, 0.2/x2, 1/x2}; and
F ∗(t1) = Hϕ(F1(t1)) = {0.5/x1},
F ∗(t2) = Hϕ(F1(t2)) = {0.5/x1, 0.5/x2},
F ∗(t3) = Hϕ(F1(t3)) = {0.5/x1, 0.2/x2, 0.5/x2}.

Then N(θ) = (F∗, A), H(θ) = (F ∗, A) is the lower and upper approximations of
θ = (F,A). For more details, see [5].

4. Rough operators on LX defined by a soft set

In the section, suppose X is a universe set, LX is the set of all L-sets in X, E
is a collection of all possible parameters with respect to X. I wish investigate two
rough operators on LX induced by an L-soft set.

Definition 4.1. Suppose θ = (F,A) is an L-soft set, two L-rough operators N and

H are defined as follows: for every Ã ∈ LX , x ∈ X,
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N(Ã)(x) =
∨
t∈A

F (t)(x)⊗ S(F (t), Ã),

H(Ã)(x) =
∨
t∈A

F (t)(x)⊗ ρ(F (t), Ã). (∗∗)

If N(Ã) = H(Ã), then Ã is called a definable L-set, otherwise, Ã is called an

undefinable L-set. (N(Ã), H(Ã)) is referred to as a pair of L-rough set.

Next, I introduce some examples.

Example 4.2. In [4], for LX , let M be the set of all singletons. Then we define
two L-rough approximation operators Nϕ and Hϕ induced by an arbitrary mapping
ϕ : M → LX , for every A ∈ LX , x ∈ X,

Nϕ(A)(x) =
∨

{a/x}∈M

a⊗ S(ϕ({a/x}), A),

Hϕ(A)(x) =
∨

{a/x}∈M

a⊗ ρ(ϕ({a/x}), A).

Obviously, if we choose M is the set of all possible parameters with respect to
X, then (ϕ,M) is an L-soft set, and according to the formula (**). Thus we obtain
N = Nϕ, H = Hϕ.

Furthermore, if (LX ,
⋃
,
⋂
, ∗, 1̃X , 0̃X) is a Boolean lattice, and E is the set of all

atoms. When A = E, the above definition coincides with the case in [11].

Example 4.3. Suppose X = {x1, x2, x3} and L = [0, 1] equipped with Gödel
Structure. Let E = {t1, t2, t3, t4}, A = {t1, t2, t3} and let F : A→ LX is defined as:
F (t1) = {0.5/x1}, F (t2) = {0.4/x1, 0.7/x2, 0.7/x3}, F (t3) = {0.7/x2, 0.4/x3}.

Then (F,A) is an L-soft set.

Let Ã = {0.1/x1, 0.5/x2, 0.7/x3}. Then we have

S(F (t1), Ã) =
∧
y∈X

F (t1)(y)→ Ã(y) = 0.1,

S(F (t2), Ã) =
∧
y∈X

F (t2)(y)→ Ã(y) = 0.1,

S(F (t3), Ã) =
∧
y∈X

F (t3)(y)→ Ã(y) = 0.5;

ρ(F (t1), Ã) =
∨
y∈X

F (t1)(y)⊗ Ã(y) = 0.1,

ρ(F (t2), Ã) =
∨
y∈X

F (t2)(y)⊗ Ã(y) = 0.7,

ρ(F (t3), Ã) =
∨
y∈X

F (t3)(y)⊗ Ã(y) = 0.5.

Thus
N(Ã)(x1)
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=
∨
t∈A

F (t)(x1)⊗ S(F (t), A)

= [F (t1)(x1)⊗S(F (t1), A)] ∨[F (t2)(x1)⊗S(F (t2), A)]∨ [F (t3)(x1)⊗S(F (t3), A)]
= 0.1,

N(Ã)(x2) =
∨
t∈A

F (t)(x2)⊗ S(F (t), A) = 0.5,

N(Ã)(x3) =
∨
t∈A

F (t)(x3)⊗ S(F (t), A) = 0.4.

So N(Ã) = {0.1/x1, 0.5/x2, 0.4/x3}.
Similarly, we obtain H(Ã) = {0.4/x1, 0.7/x2, 0.7/x3}.

Let P = {N(Ã) | Ã ∈ LX} and Q = {H(Ã) | Ã ∈ LX }, which are the set of
all lower approximations, and all upper approximations, respectively. We define the
relation L-order � and L-equivalence relation ≈. For example, for N(Ã), N(B̃) ∈ P ,

S(N(Ã), N(B̃)) =
∧
x∈X

N(Ã)(x)→ N(B̃)(x),

(N(Ã) � N(B̃)) = S(N(Ã), N(B̃)),

(N(Ã) ≈ N(B̃)) = S(N(Ã), N(B̃)) ∧ S(N(B̃), N(Ã)).

Then 〈〈P,≈〉,�〉 and 〈〈Q,≈〉,�〉 are two L-ordered sets.
Certainly, there is a natural bivalent order relation on the set of all L-rough sets

{(N(Ã), H(Ã)) | Ã ∈ LX} defined by: (N(Ã), H(Ã)) ≤ (N(B̃), H(B̃)) iff N(Ã) ⊆
N(B̃), and H(Ã) ⊆ H(B̃).

Furthermore, we may define the relation L-order �, and L-equivalence relation
≈ on {(N(Ã), H(Ã)) | Ã ∈ LX}, for any Ã, B̃ ∈ LX ,

S((N(Ã), H(Ã)), (N(B̃), H(B̃))) = S(N(Ã), N(B̃)) ∧ S(H(Ã), H(B̃)),

((N(Ã), H(Ã)) � (N(B̃), H(B̃))) = S((N(Ã), H(Ã)), (N(B̃), H(B̃))),
and

((N(Ã), H(Ã)) ≈ (N(B̃), H(B̃))) = S((N(Ã), H(Ã)), (N(B̃), H(B̃)))

∧S((N(B̃), H(B̃)), (N(Ã), H(Ã))).

Thus {(N(Ã), H(Ã)) | Ã ∈ LX} is also an L-ordered set.
Third, I investigate some properties of the two rough operators.
In the classical case, N and H are monotone increasing, i.e., if Ã ⊆ B̃, N(Ã) ⊆

N(B̃) and H(Ã) ⊆ H(B̃) hold. For LX , from the point of view of graded approach,
we will prove the two L-rough operators are monotone increasing for the subsethood
degrees (See (2) and (3) in Proposition 4.4).

Proposition 4.4. (1) H(0̃X) = 0̃X ,

(2) S(Ã, B̃) ≤ S(N(Ã), N(B̃)),

(3) S(Ã, B̃) ≤ S(H(Ã), H(B̃)).

Proof. (1) For every x ∈ X, we have
H(0̃X)(x) =

∨
t∈A

F (t)(x)⊗ ρ(F (t), 0̃X)

=
∨
t∈A

F (t)(x)⊗ 0

= 0.
(2) For every x ∈ X, we have
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S(Ã, B̃)⊗N(Ã)(x) = S(Ã, B̃)⊗
∨
t∈A

F (t)(x)⊗ S(F (t), Ã)

=
∨
t∈A

S(Ã, B̃)⊗ F (t)(x)⊗ S(F (t), Ã)

≤
∨
t∈A

F (t)(x)⊗ S(F (t), B̃)

= N(B̃)(x).

Then we obtain S(Ã, B̃) ≤ N(Ã)(x) → N(B̃)(x). Thus S(Ã, B̃) ≤ S(N(Ã), N(B̃))
holds.

(3) For every x ∈ X, we have

S(Ã, B̃)⊗H(Ã)(x) = S(Ã, B̃)⊗
∨
t∈A

F (t)(x)⊗ ρ(F (t), Ã)

=
∨
t∈A

S(Ã, B̃)⊗ F (t)(x)⊗ ρ(F (t), Ã)

≤
∨
t∈A

F (t)(x)⊗ ρ(F (t), B̃)

= H(B̃)(x).

Then we obtain S(Ã, B̃) ≤ H(Ã)(x) → H(B̃)(x). Thus S(Ã, B̃) ≤ S(H(Ã), H(B̃))
holds.

Clearly, for Ã, B̃ ∈ LX , if Ã ⊆ B̃, we also have N(Ã) ⊆ N(B̃), H(Ã) ⊆ H(B̃). �

Remark 4.5. (F,A) is called a full soft set, if
∨
t∈A

F (t) = 1̃X . i.e., {F (t) | t ∈ A}

is a cover of LX . In the case, we have N(1̃X) = 1̃X .

In [11], the set of all lower approximations and the set of all upper approximations
form complete lattices. In fuzzy setting, we also obtain the following propositions,
which show the algebraic structure of P and Q.

Proposition 4.6. Suppose {Ãi | i ∈ I} ⊆ LX . Then

(1)
∨
i∈I

N(Ãi) ⊆ N(
∨
i∈I

Ãi),

(2) N(
∧
i∈I

Ãi) ⊆
∧
i∈I

N(Ãi),

(3) H(
∧
i∈I

Ãi) ⊆
∧
i∈I

H(Ãi).

L satisfies idempotency, if it satisfies a⊗ a = a, for every a ∈ L (See [1]).

Proposition 4.7. Suppose L satisfies idempotency. Then for Ã, B̃ ∈ LX ,

H(Ã)⊗H(B̃) = H(Ã⊗ B̃).

Proof. Suppose Ã, B̃ ∈ LX . Then for every x ∈ X, we have
H(Ã⊗ B̃)(x) =

∨
t∈A

F (t)(x)⊗ ρ(F (t), Ã⊗ B̃)

=
∨
t∈A

F (t)(x)⊗
∨

y∈X
F (t)(y)⊗ Ã(y)⊗ B̃(y)

=
∨
t∈A

F (t)(x)⊗ [
∨

y∈X
F (t)(y)⊗ Ã(y)] ⊗[

∨
y∈X

F (t)(y)⊗ B̃(y)]

=
∨
t∈A

F (t)(x)⊗ ρ(F (t), Ã)⊗ ρ(F (t), B̃)

=
∨
t∈A

F (t)(x)⊗ ρ(F (t), Ã) ⊗
∨
t∈A

F (t)(x)⊗ ρ(F (t), B̃)

235



X. Chen /Ann. Fuzzy Math. Inform. 16 (2018), No. 2, 223–237

= H(Ã)(x)⊗H(B̃)(x).
Thus the above proposition holds. �

Proposition 4.8. Suppose Q = {H(Ã) | Ã ∈ LX} is closed for
⋃

, that is, U is an
L-set in Q. Then

⋃
U ∈ Q.

Proof. Suppose U is an L-set in Q. Then for every x ∈ X, we have⋃
U(x) =

∨
Ã∈LX

U(H(Ã))⊗H(Ã)(x).

For an L-set U in Q, there exists an L-set U∗ in LX such that for every Ã ∈ LX ,
we have U∗(Ã) = U(H(Ã)). Let D̃ =

⋃
U∗, i.e.,

D̃(x) =
∨

Ã∈LX

U∗(Ã)⊗ Ã(x) =
∨

Ã∈LX

U(H(Ã))⊗ Ã(x).

Then ⋃
U(x) =

∨
Ã∈LX

U(H(Ã))⊗H(Ã)(x)

=
∨

Ã∈LX

U(H(Ã))⊗
∨
t∈A

F (t)(x)⊗ ρ(F (t), Ã)

=
∨
t∈A

F (t)(x)⊗
∨

Ã∈LX

U(H(Ã))⊗ ρ(F (t), Ã)

=
∨
t∈A

F (t)(x)⊗
∨

Ã∈LX

U(H(Ã))⊗
∨

y∈X
F (t)(y)⊗ Ã(y)

=
∨
t∈A

F (t)(x)⊗
∨

y∈X
F (t)(y)⊗

∨
Ã∈LX

U(H(Ã))⊗ Ã(y)

=
∨
t∈A

F (t)(x)⊗
∨

y∈X
F (t)(y)⊗ D̃(y)

=
∨
t∈A

F (t)(x)⊗ ρ(F (t), D̃)

= H(D̃)(x).

Suppose {Ãi | i ∈ I} ⊆ Q. Then Clearly, we also have

H(
∨
i∈I

Ãi) =
∨
i∈I

H(Ãi).

�

Remark 4.9. By the above propositions, we know that if L satisfies idempotency, Q
is an L-open topology on X (See [1]). Unfortunately, P does not form an L-topology
on X.

In fact, Q is a semilattice with respect to
⋃

, and the minimal element is 0X .

Conclusion

In the paper, I investigated two problems. One is generalized the notion of soft
set in fuzzy setting, and introduced several operators for L-soft set theory: the com-
plement of an L-soft set; L-order, L-equivalence relation, the union, the intersection,
OR, AND of two L-soft sets. The other is defined two rough operators on LX by
an L-soft set, and discussed some of their properties.
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