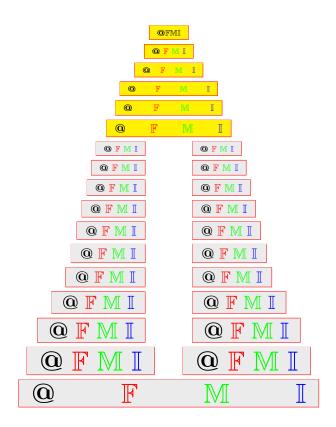
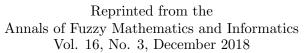
Annals of Fuzzy Mathematics and Informatics
Volume 16, No. 3, (December 2018) pp. 317–331
ISSN: 2093–9310 (print version)
ISSN: 2287–6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2018.16.3.317

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Hesitant fuzzy soft sets over UP-algebras

Phakawat Mosrijai, Aiyared Iampan





Annals of Fuzzy Mathematics and Informatics Volume 16, No. 3, (December 2018) pp. 317–331 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2018.16.3.317

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Hesitant fuzzy soft sets over UP-algebras

Phakawat Mosrijai, Aiyared Iampan

Received 24 June 2018; Revised 28 July 2018; Accepted 6 August 2018

ABSTRACT. This paper aims to extend the notion of hesitant fuzzy sets on UP-algebras to hesitant fuzzy soft sets over UP-algebras by merging the notions of hesitant fuzzy sets and soft sets. Further, we discuss the notions of hesitant fuzzy soft strongly UP-ideals, hesitant fuzzy soft UP-ideals, hesitant fuzzy soft UP-filters, and hesitant fuzzy soft UP-subalgebras of UP-algebras, and provide some properties.

2010 AMS Classification: 03G25

Keywords: UP-algebra, Hesitant fuzzy soft UP-subalgebra, Hesitant fuzzy soft UP-filter, Hesitant fuzzy soft UP-ideal, Hesitant fuzzy soft strongly UP-ideal.

Corresponding Author: Aiyared Iampan (aiyared.ia@up.ac.th)

1. INTRODUCTION

The branch of the logical algebra, UP-algebras was introduced by Iampan [3] in 2017, and it is known that the class of KU-algebras [14] is a proper subclass of the class of UP-algebras. It have been examined by several researchers, for example, Somjanta et al. [19] introduced the notion of fuzzy sets in UP-algebras, the notion of intuitionistic fuzzy sets in UP-algebras was introduced by Kesorn et al. [7], the notion of Q-fuzzy sets in UP-algebras was introduced by Tanamoon et al. [20], Senapati et al. [17, 18] applied cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras, etc.

A soft set over a universe set is a parametized family of subsets of the universe set. Molodtsov [8] introduced the notion of soft sets over a universe set in 1999.

A hesitant fuzzy set on a set is a function from a reference set to a power set of the unit interval. The notion of a hesitant fuzzy set on a set was first considered by Torra [21] in 2010. Recently hesitant fuzzy sets theory has been applied to the different algebraic structures (see [6, 11, 12, 13]). In UP-algebras, Mosrijai et al. [9] extended the notion of fuzzy sets in UP-algebras to hesitant fuzzy sets on UP-algebras, and Satirad et al. [16] considered level subsets of a hesitant fuzzy set on UP-algebras

in 2017. The notion of partial constant hesitant fuzzy sets on UP-algebras was introduced by Mosrijai et al. [10] afterwards.

The notion of hesitant fuzzy soft sets that is a link between classical soft sets and hesitant fuzzy sets is introduced by Babitha and John [1] in 2013. There exists some researchers, such as Jun et al. [5], applied hesitant fuzzy soft set theory to some algebraic structures, which are BCK and BCI algebras.

In this paper, we extend the notion of hesitant fuzzy sets on UP-algebras to hesitant fuzzy soft sets over UP-algebras by merging the notion of hesitant fuzzy sets and soft sets. Further, we discuss the notion of hesitant fuzzy soft strongly UP-ideals, hesitant fuzzy soft UP-ideals, hesitant fuzzy soft UP-filters and hesitant fuzzy soft UP-subalgebras of UP-algebras, and provide some properties.

2. Basic results on UP-algebras

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 2.1 ([3]). An algebra $A = (A, \cdot, 0)$ of type (2,0) is called a UP-algebra, where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation), if it satisfies the following axioms: for any $x, y, z \in A$,

(UP-1) $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0,$ (UP-2) $0 \cdot x = x,$ (UP-3) $x \cdot 0 = 0,$ (UP-4) $x \cdot y = 0$ and $y \cdot x = 0$ imply x = y.

From [3], we know that the notion of UP-algebras is a generalization of KUalgebras.

Example 2.2 ([15]). Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Let $\mathcal{P}_{\Omega}(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_{\Omega}(X)$ by : for all $A, B \in \mathcal{P}_{\Omega}(X)$,

$$A \cdot B = B \cap (A' \cup \Omega).$$

Then $(\mathcal{P}_{\Omega}(X), \cdot, \Omega)$ is a UP-algebra and we shall call it the generalized power UPalgebra of type 1 with respect to Ω .

In particular, $(\mathcal{P}(X), \cdot, \emptyset)$ is the power UP-algebra of type 1.

Example 2.3 ([15]). Let X be a universal set and let $\Omega \in \mathcal{P}(X)$. Let $\mathcal{P}^{\Omega}(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation * on $\mathcal{P}^{\Omega}(X)$ by : for all $A, B \in \mathcal{P}^{\Omega}(X)$,

$$A * B = B \cup (A' \cap \Omega)$$

Then $(\mathcal{P}^{\Omega}(X), *, \Omega)$ is a UP-algebra and we shall call it the generalized power UPalgebra of type 2 with respect to Ω .

In particular, $(\mathcal{P}(X), *, X)$ is the power UP-algebra of type 2.

In a UP-algebra $A = (A, \cdot, 0)$, the following assertions are valid (see [3, 4]):

$$(2.1) \qquad (\forall x \in A)(x \cdot x = 0),$$

(2.2)
$$(\forall x, y, z \in A)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0),$$

(2.3)
$$(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0),$$

318

 $(2.4) \qquad (\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0),$

(2.5)
$$(\forall x, y \in A)(x \cdot (y \cdot x) = 0),$$

(2.6) $(\forall x, y \in A)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x),$

(2.7)
$$(\forall x, y \in A)(x \cdot (y \cdot y) = 0),$$

(2.8)
$$(\forall a, x, y, z \in A)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0),$$

(2.9)
$$(\forall a, x, y, z \in A)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0),$$

(2.10)
$$(\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0),$$

(2.11)
$$(\forall x, y, z \in A)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0),$$

 $(2.12) \qquad (\forall x, y, z \in A)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0),$

(2.13)
$$(\forall a, x, y, z \in A)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0).$$

In what follows, let A denote UP-algebras unless otherwise specified.

On a UP-algebra $A = (A, \cdot, 0)$, we define a binary relation \leq on A [3] as follows: for any $x, y \in A$,

$$x \leq y$$
 if and only if $x \cdot y = 0$.

Definition 2.4 ([3]). A subset S of A is called a UP-subalgebra of A, if the constant 0 of A is in S and $(S, \cdot, 0)$ itself forms a UP-algebra.

Iampan [3] proved the useful criteria that a nonempty subset S of A is a UP-subalgebra of A if and only if S is closed under the \cdot multiplication on A.

Definition 2.5 ([2, 3, 19]). A subset S of A is called:

- (1) a UP-filter of A, if
 - (i) the constant 0 of A is in S, and

(ii) for any $x, y \in A, x \cdot y \in S$ and $x \in S$ imply $y \in S$,

- (2) a UP-ideal of A, if
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y, z \in A, x \cdot (y \cdot z) \in S$ and $y \in S$ imply $x \cdot z \in S$,
- (3) a strongly UP-ideal of A, if
 - (i) the constant 0 of A is in S, and
 - (ii) for any $x, y, z \in A, (z \cdot y) \cdot (z \cdot x) \in S$ and $y \in S$ imply $x \in S$.

Guntasow et al. [2] proved the generalization that the notion of UP-subalgebras is a generalization of UP-filters, the notion of UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals. Moreover, they also proved that a UP-algebra X is the only one strongly UP-ideal of itself.

3. Basic results on hesitant fuzzy sets

Definition 3.1 ([21]). Let X be a reference set. A hesitant fuzzy set on X is defined in term of a function h_H that when applied to X return a subset of [0, 1], that is, $h_H: X \to \mathcal{P}([0,1])$. A hesitant fuzzy set h_H can also be viewed as the following mathematical representation:

$$H := \{ (x, h_H(x)) \mid x \in X \}$$

where $h_{\rm H}(x)$ is a set of some values in [0, 1], denoting the possible membership degrees of the elements $x \in X$ to the set H.

Definition 3.2 ([9]). A hesitant fuzzy set H on A is called:

- (1) a hesitant fuzzy UP-subalgebra of A, if it satisfies the following property: for any $x, y \in A$, $h_{\rm H}(x \cdot y) \supseteq h_{\rm H}(x) \cap h_{\rm H}(y)$,
- (2) a hesitant fuzzy UP-filter of A, if it satisfies the following properties: for any $x, y \in A$,
 - (i) $h_{\rm H}(0) \supseteq h_{\rm H}(x)$, and
 - (ii) $h_{\rm H}(y) \supseteq h_{\rm H}(x \cdot y) \cap h_{\rm H}(x)$,
- (3) a hesitant fuzzy UP-ideal of A, if it satisfies the following properties: for any $x, y, z \in A$,
 - (i) $h_{\rm H}(0) \supseteq h_{\rm H}(x)$, and
 - (ii) $h_{\mathrm{H}}(x \cdot z) \supseteq h_{\mathrm{H}}(x \cdot (y \cdot z)) \cap h_{\mathrm{H}}(y),$
- (4) a hesitant fuzzy strongly UP-ideal of A, if it satisfies the following properties: for any $x, y, z \in A$,
 - (i) $h_{\rm H}(0) \supseteq h_{\rm H}(x)$, and
 - (ii) $h_{\mathrm{H}}(x) \supseteq h_{\mathrm{H}}((z \cdot y) \cdot (z \cdot x)) \cap h_{\mathrm{H}}(y).$

Mosrijai et al. [9] proved that the notion of hesitant fuzzy UP-subalgebras of UP-algebras is a generalization of hesitant fuzzy UP-filters, the notion of hesitant fuzzy UP-filters of UP-algebras is a generalization of hesitant fuzzy UP-ideals, and the notion of hesitant fuzzy UP-ideals of UP-algebras is a generalization of hesitant fuzzy strongly UP-ideals.

Theorem 3.3 ([9]). A hesitant fuzzy set H on A is a hesitant fuzzy strongly UP-ideal of A if and only if it is a constant hesitant fuzzy set on A.

Proposition 3.4. Let H be a hesitant fuzzy UP-filter (and also hesitant fuzzy UPideal, hesitant fuzzy strongly UP-ideal) of A. Then for any $x, y \in A$,

 $x \leq y$ implies $h_{\mathrm{H}}(x) \subseteq h_{\mathrm{H}}(y) \subseteq h_{\mathrm{H}}(x \cdot y)$.

Proof. Let $x, y \in A$ be such that $x \leq y$. Then $x \cdot y = 0$. Thus

$$h_{\mathrm{H}}(y) \supseteq h_{\mathrm{H}}(x \cdot y) \cap h_{\mathrm{H}}(x) = h_{\mathrm{H}}(0) \cap h_{\mathrm{H}}(x) = h_{\mathrm{H}}(x).$$

By (2.5), we have $y \leq x \cdot y$. So $h_H(y) \subseteq h_H(x \cdot y)$.

4. Hesitant fuzzy soft UP-subalgebras

Definition 4.1 ([1]). Let X be a reference set (or an initial universe set) and P be a set of parameters. Let HFS(X) be the set of all hesitant fuzzy sets on X and Y

be a nonempty subset of P. A pair $(\widetilde{\mathbf{H}}, Y)$ is called a hesitant fuzzy soft set over X, where $\widetilde{\mathbf{H}}$ is a mapping given by:

$$\widetilde{\mathrm{H}} \colon Y \to \mathrm{HFS}(X), p \mapsto \widetilde{\mathrm{H}}[p].$$

Definition 4.2. Let Y be a nonempty subset of P. A hesitant fuzzy soft set (\widetilde{H}, Y) over A is called a hesitant fuzzy soft UP-subalgebra based on $p \in Y$ (we shortly call a p-hesitant fuzzy soft UP-subalgebra) of A, if the hesitant fuzzy set

$$\mathbf{H}[p] := \{(a, \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(a)) \mid a \in A\}$$

on A is a hesitant fuzzy UP-subalgebra of A. If (\widetilde{H}, Y) is a p-hesitant fuzzy soft UP-subalgebra of A for all $p \in Y$, we state that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-subalgebra of A.

Theorem 4.3. If (\widetilde{H}, Y) is a hesitant fuzzy soft UP-subalgebra of A, then it satisfies the property: for any $p \in Y$ and $x \in A$,

(4.1)
$$h_{\widetilde{H}[p]}(0) \supseteq h_{\widetilde{H}[p]}(x).$$

Proof. Assume that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-subalgebra of A and let $p \in Y$ and $x \in A$. Then $\widetilde{H}[p]$ is a hesitant fuzzy UP-subalgebra of A. Thus,

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(0) = \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot x) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x) = \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x).$$

Example 4.4. Let $(\mathcal{P}_{\varnothing}(\{a, b\}), \cdot, \emptyset)$ is the power UP-algebra of type 1 which a binary operation \cdot defined by the following Cayley table:

•	Ø	$\{a\}$	$\{b\}$	X
Ø	Ø	$\{a\}$	$\{b\}$	X
$\{a\}$	Ø	Ø	$\{b\}$	$\{b\}$
$\{b\}$	Ø	$\{a\}$	Ø	$\{a\}$
X	Ø	Ø	Ø	Ø

Let $Y = \{p_1, p_2, p_3, p_4\}$ be a parameter set. We define a hesitant fuzzy soft set (\widetilde{H}, Y) over $\mathcal{P}_{\varnothing}(\{a, b\})$ by the following table:

Ĥ	Ø	$\{a\}$	$\{b\}$	X
p_1	$\{0.3, 0.4\}$	$\{0.3\}$	$\{0.4\}$	Ø
p_2	[0.6, 0.9]	$\{0.9\}$	[0.6, 0.9]	[0.6, 0.9]
p_3	(0.3, 0.8)	[0.3, 0.5]	$\{0.4, 0.5\}$	$\{0.4, 0.5\}$
p_4	[0,1)	[0,1)	[0,1)	[0,1)

Then (\widetilde{H}, Y) satisfies the property (4.1), but not a hesitant fuzzy soft UP-subalgebra of A based on parameter p_2 . Indeed,

$$\begin{split} \mathbf{h}_{\widetilde{\mathbf{H}}[p_2]}(\{b\} \cdot X) &= \mathbf{h}_{\widetilde{\mathbf{H}}[p_2]}(\{a\}) = \{0.9\} \not\supseteq [0.6, 0.9] \\ &= [0.6, 0.9] \cap [0.6, 0.9] \\ &= \mathbf{h}_{\widetilde{\mathbf{H}}[p_2]}(\{b\}) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p_2]}(X) \\ &\qquad 321 \end{split}$$

Theorem 4.5. Let (\widetilde{H}, Y) be a hesitant fuzzy soft set over A which satisfies the condition: for any $p \in Y$ and $x, y, z \in A$,

(4.2)
$$z \le x \cdot y \text{ implies } h_{\widetilde{H}[p]}(y) \supseteq h_{\widetilde{H}[p]}(z) \cap h_{\widetilde{H}[p]}(x).$$

Then (\widetilde{H}, Y) is a hesitant fuzzy soft UP-subalgebra of A.

Proof. Let $p \in Y$ and $x, y \in A$. Then by (2.5) and (UP-3), we have $x \cdot (y \cdot (x \cdot y)) = x \cdot 0 = 0$. Thus $x \leq y \cdot (x \cdot y)$. It follows form (4.2) that

$$h_{\widetilde{H}[p]}(x \cdot y) \supseteq h_{\widetilde{H}[p]}(x) \cap h_{\widetilde{H}[p]}(y).$$

So, H[p] is a hesitant fuzzy UP-subalgebra of A. Hence, (\widetilde{H}, Y) is a p-hesitant fuzzy soft UP-subalgebra of A. Since p is arbitrary, we know that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-subalgebra of A.

Corollary 4.6. If (\tilde{H}, Y) is a hesitant fuzzy soft set over A which satisfies the condition (4.2), then it satisfies the property (4.1).

Proof. It is straightforward form Theorems 4.5 and 4.3.

Theorem 4.7. If (\widetilde{H}, Y) is a hesitant fuzzy soft UP-subalgebra of A and N is a nonempty subset of Y, then $(\widetilde{H}|_N, N)$ is a hesitant fuzzy soft UP-subalgebra of A.

Proof. Assume that $(\widetilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft UP-subalgebra of A and $\emptyset \neq N \subseteq Y$. Then $(\widetilde{\mathbf{H}}, Y)$ is a p-hesitant fuzzy soft UP-subalgebra of A, for all $p \in Y$. Since $N \subseteq Y$, we have $(\widetilde{\mathbf{H}}|_N, N)$ is a p-hesitant fuzzy soft UP-subalgebra of A, for all $p \in N$. Then, $(\widetilde{\mathbf{H}}|_N, N)$ is a hesitant fuzzy soft UP-subalgebra of A.

The following example shows that there exists a nonempty subset N of Y such that $(\widetilde{H}|_N, N)$ is a hesitant fuzzy soft UP-subalgebra of A, but (\widetilde{H}, Y) is not a hesitant fuzzy soft UP-subalgebra of A.

Example 4.8. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	0	1 0 0 0 0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra. Let $Y = \{p_1, p_2, p_3, p_4, p_5\}$ be a parameter set. We define a hesitant fuzzy soft set (\widetilde{H}, Y) over A as the following table:

~					
$\widetilde{\mathbf{H}}$	0	1	2	3	4
p_1	$\{0.5, 0.6, 0.7\}$	$\{0.5\}$	$\{0.6\}$	$\{0.6\}$	Ø
p_2	[0.4, 0.6]	(0.4, 0.6)	(0.5, 0.6)	(0.5, 0.55)	$\{0.5\}$
p_3	$\{0.1, 0.2, 0.3\}$	$\{0.1, 0.2\}$	$\{0.1, 0.2\}$	$\{0.2\}$	$\{0.2\}$
p_4	[0.7, 1)	[0.7, 1]	$\{0.7\}$	$\{0.5, 0.7\}$	[0.5, 0.7]
p_5	$\{0.9\}$	$\{0.9\}$	$\{0.9\}$	$\{0.9\}$	$\{0.9\}$
		0.0	0		

Then $\widetilde{H}[p_4]$ is not a hesitant fuzzy UP-subalgebra of A. Indeed,

$$\begin{split} \mathbf{h}_{\widetilde{\mathbf{H}}[p_4]}(1\cdot 1) &= \mathbf{h}_{\widetilde{\mathbf{H}}[p_4]}(0) = [0.7, 1) \not\supseteq [0.7, 1] \\ &= [0.7, 1] \cap [0.7, 1] \\ &= \mathbf{h}_{\widetilde{\mathbf{H}}[p_4]}(1) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p_4]}(1) \end{split}$$

Thus, $(\widetilde{\mathbf{H}}, Y)$ is not a hesitant fuzzy soft UP-subalgebra of A. But if we choose $N = \{p_1, p_2, p_3, p_5\}$, then $(\widetilde{\mathbf{H}}|_N, N)$ is a hesitant fuzzy soft UP-subalgebra of A.

5. Hesitant fuzzy soft UP-filters

Definition 5.1. Let Y be a nonempty subset of P. A hesitant fuzzy soft set (H, Y) over A is called a hesitant fuzzy soft UP-filter based on $p \in Y$ (we shortly call a p-hesitant fuzzy soft UP-filter) of A, if the hesitant fuzzy set

$$\widetilde{\mathbf{H}}[p] := \{(a, \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(a)) \mid a \in A\}$$

on A is a hesitant fuzzy UP-filter of A. If (\widetilde{H}, Y) is a p-hesitant fuzzy soft UP-filter of A for all $p \in Y$, we state that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-filter of A.

From [9], we known that every hesitant fuzzy UP-filter of A is a hesitant fuzzy UP-subalgebra. Then we have the following theorem:

Theorem 5.2. Every p-hesitant fuzzy soft UP-filter of A is a p-hesitant fuzzy soft UP-subalgebra.

Proof. Assume that (\widetilde{H}, Y) is a *p*-hesitant fuzzy soft UP-filter of *A*. Then $\widetilde{H}[p]$ is a hesitant fuzzy UP-filter of *A*. Thus $\widetilde{H}[p]$ is a hesitant fuzzy UP-subalgebra of *A*. So, (\widetilde{H}, Y) is a *p*-hesitant fuzzy soft UP-subalgebra of *A*.

The following example shows that the converse of Theorem 5.2 is not true, in general.

Example 5.3. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

•	0	1	2	3
0	0	1	2	3
$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	0	0	2	3
2	0	0	0	3
3	0	0	0	0

Then $(A, \cdot, 0)$ is a UP-algebra. Let $Y = \{p_1, p_2, p_3, p_4\}$ be a parameter set. We define a hesitant fuzzy soft set (\widetilde{H}, Y) over A by the following table:

Ĥ	0	1	2	3
p_1	$\{0.5, 0.6\}$	$\{0.5\}$	$\{0.6\}$	Ø
p_2	[0.4, 0.6]	(0.4, 0.6)	[0.4, 0.6]	[0.4, 0.6]
p_3	(0.2, 0.7)	[0.3, 0.5]	$\{0.4, 0.5\}$	$\{0.5\}$
p_4	$\{0.8\}$	$\{0.8\}$	$\{0.8\}$	$\{0.8\}$
		323		

Then $(\widetilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft UP-subalgebra of A, but not a hesitant fuzzy soft UP-filter of A based on parameter p_1 . Indeed,

$$\begin{split} h_{\widetilde{H}[p_1]}(1) &= \{0.5\} \not\supseteq \{0.6\} \\ &= \{0.5, 0.6\} \cap \{0.6\} \\ &= h_{\widetilde{H}[p_1]}(0) \cap h_{\widetilde{H}[p_1]}(2) \\ &= h_{\widetilde{H}[p_1]}(2 \cdot 1) \cap h_{\widetilde{H}[p_1]}(2). \end{split}$$

Theorem 5.4. A hesitant fuzzy soft set (\widetilde{H}, Y) over A is a hesitant fuzzy soft UPfilter of A if and only if it satisfies the condition (4.2).

Proof. Assume that (\tilde{H}, Y) is a hesitant fuzzy soft UP-filter of A. Let $p \in Y$ and let $x, y, z \in A$ be such that $z \leq x \cdot y$. Then $\tilde{H}[p]$ is a hesitant fuzzy UP-filter of A. By Proposition 3.4, we have $h_{\tilde{H}[p]}(z) \subseteq h_{\tilde{H}[p]}(x \cdot y)$. Thus,

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot y) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(z) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x).$$

Conversely, assume that (\tilde{H}, Y) satisfies the condition (4.2). Let $p \in Y$ and let $x \in A$. By Corollary 4.6, we have $h_{\tilde{H}[p]}(0) \supseteq h_{\tilde{H}[p]}(x)$. Let $x, y \in A$. Then by (2.1), we have $(x \cdot y) \cdot (x \cdot y) = 0$. Thus $x \cdot y \leq x \cdot y$. It follows from (4.2) that

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot y) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x)$$

So, $\widetilde{H}[p]$ is a hesitant fuzzy UP-filter of A. Hence, (\widetilde{H}, Y) is a p-hesitant fuzzy soft UP-filter of A. Since p is arbitrary, we know that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-filter of A.

Theorem 5.5. Let (\widetilde{H}, Y) be a hesitant fuzzy soft set over A which satisfies the condition: for any $p \in Y$ and $w, x, y, z \in A$,

(5.1)
$$x \le w \cdot (y \cdot z) \text{ implies } h_{\widetilde{H}[p]}(x \cdot z) \supseteq h_{\widetilde{H}[p]}(w) \cap h_{\widetilde{H}[p]}(y).$$

Then it is a hesitant fuzzy soft UP-filter of A.

Proof. Assume that $(\widetilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft set over A which satisfies the condition (5.1). Let $p \in Y$ and let $x, y \in A$. Then by (2.1), we have $0 \cdot ((x \cdot y) \cdot (x \cdot y)) = 0 \cdot 0 = 0$. Thus $0 \leq (x \cdot y) \cdot (x \cdot y)$. It follows form (5.1) that

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y) = \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(0 \cdot y) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot y) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x).$$

So, (H, Y) is a hesitant fuzzy soft UP-filter of A.

Corollary 5.6. If (\tilde{H}, Y) is a hesitant fuzzy soft set over A which satisfies the condition (5.1), then it satisfies the condition (4.2).

Proof. It is straightforward form Theorems 5.5 and 5.4.

Theorem 5.7. Let (\widetilde{H}, Y) be a hesitant fuzzy soft set over A which satisfies the condition: for any $p \in Y$ and $w, x, y, z \in A$,

(5.2)
$$w \le x \cdot (y \cdot z) \text{ implies } h_{\widetilde{H}[p]}(x \cdot z) \supseteq h_{\widetilde{H}[p]}(w) \cap h_{\widetilde{H}[p]}(y).$$

Then it is a hesitant fuzzy soft UP-filter of A.

Proof. Assume that $(\tilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft set over A which satisfies the condition (5.2). Let $p \in Y$ and let $x, y \in A$. Then by (2.1) and (UP-2), we have $(x \cdot y) \cdot (0 \cdot (x \cdot y)) = (x \cdot y) \cdot (x \cdot y) = 0$. Thus $x \cdot y \leq 0 \cdot (x \cdot y)$. It follows form (5.2) that

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y) = \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(0 \cdot y) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot y) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x).$$

So, $(\widetilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft UP-filter of A.

Corollary 5.8. If $(\dot{\mathbf{H}}, Y)$ is a hesitant fuzzy soft set over A which satisfies the condition (5.2), then it satisfies the condition (4.2).

Proof. It is straightforward form Theorems 5.7 and 5.4.

6. Hesitant fuzzy soft UP-ideals

Definition 6.1. Let Y be a nonempty subset of P. A hesitant fuzzy soft set $(\widetilde{\mathbf{H}}, Y)$ over A is called a hesitant fuzzy soft UP-ideal based on $p \in Y$ (we shortly call a p-hesitant fuzzy soft UP-ideal) of A if the hesitant fuzzy set

$$\mathbf{H}[p] := \{(a, \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(a)) \mid a \in A\}$$

on A is a hesitant fuzzy UP-ideal of A. If (\widetilde{H}, Y) is a p-hesitant fuzzy soft UP-ideal of A for all $p \in Y$, we state that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-ideal of A.

From [9], we known that every hesitant fuzzy UP-ideal of A is a hesitant fuzzy UP-filter. Then we have the following theorem:

Theorem 6.2. Every p-hesitant fuzzy soft UP-ideal of A is a p-hesitant fuzzy soft UP-filter.

Proof. Assume that (\widetilde{H}, Y) is a *p*-hesitant fuzzy soft UP-ideal of *A*. Then $\widetilde{H}[p]$ is a hesitant fuzzy UP-ideal of *A*. Thus $\widetilde{H}[p]$ is a hesitant fuzzy UP-filter of *A*. So, (\widetilde{H}, Y) is a *p*-hesitant fuzzy soft UP-filter of *A*.

The following example shows that the converse of Theorem 6.2 is not true in general.

Example 6.3. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

	0	1	2	3
0	0	1	2	3
1	0	0	3	3
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array} $	0 0 0 0	1	0	0
3	0	1	2	0

Then $(A, \cdot, 0)$ is a UP-algebra. Let $Y = \{p_1, p_2, p_3, p_4\}$ be a parameter set. We define a hesitant fuzzy soft set (\widetilde{H}, Y) over A by the following table:

Ĥ	0	1	2	3
p_1	[0.2, 0.5]	$\{0.5\}$	Ø	$\{0.3, 0.4\}$
p_2	[0.4, 0.6]	(0.4, 0.6)	$\{0.5\}$	$\{0.5\}$
p_3	[0.5, 0.7]	$\{0.5, 0.6\}$	$\{0.5, 0.6\}$	[0.5, 0.6)
p_4	$\{0.1, 0.6\}$	$\{0.1, 0.6\}$	$\{0.1, 0.6\}$	$\{0.1, 0.6\}$
		325		

Then (\widetilde{H}, Y) is a hesitant fuzzy soft UP-filter of A, but not a hesitant fuzzy soft UP-ideal of A based on parameter p_1 . Indeed,

$$\begin{split} h_{\widetilde{H}[p_1]}(3 \cdot 2) &= h_{\widetilde{H}[p_1]}(2) = \varnothing \not\supseteq \{0.5\} \\ &= [0.2, 0.5] \cap \{0.5\} \\ &= h_{\widetilde{H}[p_1]}(0) \cap h_{\widetilde{H}[p_1]}(1) \\ &= h_{\widetilde{H}[p_1]}(3 \cdot (1 \cdot 2)) \cap h_{\widetilde{H}[p_1]}(1). \end{split}$$

Theorem 6.4. If (\widetilde{H}, Y) is a hesitant fuzzy soft UP-ideal of A, then it satisfies the condition (5.1).

Proof. Assume that (H, Y) is a hesitant fuzzy soft UP-ideal of A. Let $p \in Y$ and let $w, x, y, z \in A$ be such that $x \leq w \cdot (y \cdot z)$. Then $\widetilde{H}[p]$ is a hesitant fuzzy UP-ideal of A and $x \cdot (w \cdot (y \cdot z)) = 0$. Thus

$$\begin{split} \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot (y \cdot z)) &\supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot (w \cdot (y \cdot z))) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(w) \\ &= \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(0) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(w) = \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(w). \\ \\ \text{So, } \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot z) &\supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot (y \cdot z)) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(w) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y). \end{split}$$

Example 6.5. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the same Cayley table in Example 6.3. Then $(A, \cdot, 0)$ is a UP-algebra. Let $Y = \{p_1, p_2, p_3, p_4\}$ be a parameter set. We define a hesitant fuzzy soft set (\widetilde{H}, Y) over A by the following table:

Ĥ	0	1	2	3
p_1	[0.2, 0.5]	$\{0.5\}$	Ø	$\{0.3, 0.4\}$
p_2	[0.4, 0.6]	(0.4, 0.6)	$\{0.5\}$	$\{0.5\}$
p_3	[0.5, 0.7]	[0.5, 0.7)	Ø	$\{0.7\}$
p_4	$\{0.7, 0.8, 0.9\}$	$\{0.7, 0.8\}$	$\{0.8\}$	$\{0.8\}$

Then (H, Y) is a hesitant fuzzy soft UP-filter of A, but does not satisfy the condition (5.1).

Theorem 6.6. A hesitant fuzzy soft set (\tilde{H}, Y) over A is a hesitant fuzzy soft UPideal of A if and only if it satisfies the condition (5.2).

Proof. Assume that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-ideal of A. Let $p \in Y$ and $w, x, y, z \in A$ be such that $w \leq x \cdot (y \cdot z)$. Then $\widetilde{H}[p]$ is a hesitant fuzzy UP-ideal of A. Thus by Proposition 3.4, we have $h_{\widetilde{H}[p]}(w) \subseteq h_{\widetilde{H}[p]}(x \cdot (y \cdot z))$. So,

$$h_{\widetilde{H}[p]}(x \cdot z) \supseteq h_{\widetilde{H}[p]}(x \cdot (y \cdot z)) \cap h_{\widetilde{H}[p]}(y) \supseteq h_{\widetilde{H}[p]}(w) \cap h_{\widetilde{H}[p]}(y).$$

Conversely, assume that (\widetilde{H}, Y) satisfies the condition (5.2). Let $p \in Y$ and let $x \in A$. By Corollary 5.8 and 4.6, we have $h_{\widetilde{H}[p]}(0) \supseteq h_{\widetilde{H}[p]}(x)$. Let $x, y, z \in A$. Then by (2.1), we have $(x \cdot (y \cdot z)) \cdot (x \cdot (y \cdot z)) = 0$. Thus $x \cdot (y \cdot z) \leq x \cdot (y \cdot z)$. It follows form (5.2) that

$$h_{\widetilde{H}[p]}(x \cdot z) \supseteq h_{\widetilde{H}[p]}(x \cdot (y \cdot z)) \cap h_{\widetilde{H}[p]}(y).$$

$$326$$

So, $\widetilde{H}[p]$ is a hesitant fuzzy UP-ideal of A. Hence, (\widetilde{H}, Y) is a p-hesitant fuzzy soft UP-ideal of A. Since p is arbitrary, we know that (\widetilde{H}, Y) is a hesitant fuzzy soft UP-ideal of A.

Theorem 6.7. Let (H, Y) be a hesitant fuzzy soft set over A which satisfies the condition: for any $p \in Y$ and $w, x, y, z \in A$,

(6.1)
$$w \le (z \cdot y) \cdot (z \cdot x) \text{ implies } h_{\widetilde{H}[p]}(x) \supseteq h_{\widetilde{H}[p]}(w) \cap h_{\widetilde{H}[p]}(y).$$

Then it is a hesitant fuzzy soft UP-ideal of A.

Proof. Assume that $(\widetilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft set over A which satisfies the condition (6.1). Let $p \in Y$ and let $x, y, z \in A$. Then by (2.1) and (UP-3), we have $(x \cdot (y \cdot z)) \cdot (((x \cdot z) \cdot y) \cdot ((x \cdot z) \cdot (x \cdot z))) = (x \cdot (y \cdot z)) \cdot (((x \cdot z) \cdot y) \cdot 0) = (x \cdot (y \cdot z)) \cdot 0 = 0$. Thus $x \cdot (y \cdot z) \leq ((x \cdot z) \cdot y) \cdot ((x \cdot z) \cdot (x \cdot z))$. It follows form (6.1) that

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot z) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x \cdot (y \cdot z)) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y).$$

So, $(\hat{\mathbf{H}}, Y)$ is a hesitant fuzzy soft UP-ideal of A.

Corollary 6.8. If
$$(\widetilde{H}, Y)$$
 is a hesitant fuzzy soft set over A which satisfies the condition (6.1), then it satisfies the conditions (5.1) and (5.2).

Proof. It is straightforward form Theorems 6.7, 6.4, and 6.6.

7. Hesitant fuzzy soft strongly UP-ideals

Definition 7.1. Let Y be a nonempty subset of P. A hesitant fuzzy soft set (H, Y) over A is called a hesitant fuzzy soft strongly UP-ideal based on $p \in Y$ (we shortly call a p-hesitant fuzzy soft strongly UP-ideal) of A, if the hesitant fuzzy set

$$\mathbf{H}[p] := \{(a, \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(a)) \mid a \in A\}$$

on A is a hesitant fuzzy strongly UP-ideal of A. If (H, Y) is a p-hesitant fuzzy soft strongly UP-ideal of A for all $p \in Y$, we state that (\widetilde{H}, Y) is a hesitant fuzzy soft strongly UP-ideal of A.

From [9], we known that every hesitant fuzzy strongly UP-ideal of A is a hesitant fuzzy UP-ideal. Then we have the following theorem:

Theorem 7.2. Every p-hesitant fuzzy soft strongly UP-ideal of A is a p-hesitant fuzzy soft UP-ideal.

Proof. Assume that (H, Y) is a *p*-hesitant fuzzy soft strongly UP-ideal of *A*. Then $\widetilde{H}[p]$ is a hesitant fuzzy strongly UP-ideal of *A*. Thus $\widetilde{H}[p]$ is a hesitant fuzzy UP-ideal of *A*. So, (\widetilde{H}, Y) is a *p*-hesitant fuzzy soft UP-ideal of *A*.

The following example shows that the converse of Theorem 7.2 is not true in general.

Example 7.3. Let $A = \{0, 1, 2, 3\}$ be a set with a binary operation \cdot defined by the following Cayley table:

	0	1	2	3
0	0	1	2	3
1	$\begin{vmatrix} 0\\ 0 \end{vmatrix}$	0	0	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0	1	0	0
3	0	1	2	0

Then $(A, \cdot, 0)$ is a UP-algebra. Let $Y = \{p_1, p_2, p_3, p_4\}$ be a parameter set. We define a hesitant fuzzy soft set (\widetilde{H}, Y) over A by the following table:

Ĥ	0	1	2	3
p_1	[0.2, 0.5]	$\{0.4\}$	(0.2, 0.4)	(0.2, 0.4)
p_2	[0.9, 1]	$\{1\}$	$\{1\}$	$\{1\}$
p_3	[0, 0.2]	(0, 0.2]	[0, 0.2]	[0, 0.2]
p_4	(0,1)	(0, 1)	(0,1)	(0,1)

Then $(\tilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft UP-ideal of A, but not a hesitant fuzzy soft strongly UP-ideal of A based on parameter p_2 . Indeed,

$$\begin{split} \mathbf{h}_{\widetilde{\mathbf{H}}[p_{2}]}(3) &= \{1\} \not\supseteq [0.9, 1] \\ &= [0.9, 1] \cap [0.9, 1] \\ &= \mathbf{h}_{\widetilde{\mathbf{H}}[p_{2}]}(0) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p_{2}]}(0) \\ &= \mathbf{h}_{\widetilde{\mathbf{H}}[p_{2}]}((1 \cdot 0) \cdot (1 \cdot 3)) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p_{2}]}(0). \end{split}$$

By Theorems 5.2, 6.2, and 7.2 and Examples 5.3, 6.3, and 7.3, we have that the notion of p-hesitant fuzzy soft UP-subalgebras is a generalization of p-hesitant fuzzy soft UP-filters, the notion of p-hesitant fuzzy soft UP-filters is a generalization of p-hesitant fuzzy soft UP-filters is a generalization of p-hesitant fuzzy soft UP-ideals, and the notion of p-hesitant fuzzy soft UP-ideals is a generalization of p-hesitant fuzzy soft strongly UP-ideals.

Theorem 7.4. A hesitant fuzzy soft set (H, Y) over A is a hesitant fuzzy soft strongly UP-ideal of A if and only if it satisfies the condition (6.1).

Proof. Assume that $(\widetilde{\mathbf{H}}, Y)$ is a hesitant fuzzy soft strongly UP-ideal of A. Let $p \in Y$ and let $w, x, y, z \in A$ be such that $w \leq (z \cdot y) \cdot (z \cdot x)$. Then $\widetilde{\mathbf{H}}[p]$ is a hesitant fuzzy strongly UP-ideal of A. Thus by Proposition 3.4, we have $h_{\widetilde{\mathbf{H}}[p]}(w) \subseteq h_{\widetilde{\mathbf{H}}[p]}((z \cdot y) \cdot (z \cdot x))$. So,

$$\mathbf{h}_{\widetilde{\mathbf{H}}[p]}(x) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}((z \cdot y) \cdot (z \cdot x)) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y) \supseteq \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(w) \cap \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(y).$$

Conversely, assume that (\widetilde{H}, Y) satisfies the condition (6.1). Let $p \in Y$ and let $x \in A$. By Corollary 6.8, 5.8 and 4.6, respectively, we have $h_{\widetilde{H}[p]}(0) \supseteq h_{\widetilde{H}[p]}(x)$. Let $x, y, z \in A$. Since $((z \cdot y) \cdot (z \cdot x)) \cdot ((z \cdot y) \cdot (z \cdot x)) = 0$, we have $(z \cdot y) \cdot (z \cdot x) \leq (z \cdot y) \cdot (z \cdot x)$. Then it follows from (6.1) that

$$h_{\widetilde{H}[p]}(x) \supseteq h_{\widetilde{H}[p]}((z \cdot y) \cdot (z \cdot x)) \cap h_{\widetilde{H}[p]}(y).$$

$$328$$

Thus, $\widetilde{H}[p]$ is a hesitant fuzzy strongly UP-ideal of A. So, (\widetilde{H}, Y) is a p-hesitant fuzzy soft strongly UP-ideal of A. Since p is arbitrary, we know that (\widetilde{H}, Y) is a hesitant fuzzy soft strongly UP-ideal of A.

Theorem 7.5. Let (\dot{H}, Y) is a hesitant fuzzy soft set over A such that $\emptyset \neq N \subseteq Y$. Then the following statements are hold:

- if (H,Y) is a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-filter) of A, then (H
 _N,N) is a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-filter) of A,
- (2) There exists (H|_N, N) is a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-filter) of A, but (H, Y) is not a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-filter) of A.

Proof. (1) Assume that (\tilde{H}, Y) is a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-filter) of A. In the same way as Theorem 4.7, we can show that $(\tilde{H}|_N, N)$ is a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-ideal) (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-filter) of A.

(2) By Example 7.3 (resp., Example 6.3, Example 5.3), if we choose $N = \{p_4\}$ (resp., $\{p_3, p_4\}$, $\{p_3, p_4\}$), then $(\widetilde{H}|_N, N)$ is a hesitant fuzzy soft strongly UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-ideal (resp., hesitant fuzzy soft UP-ideal, hesitant fuzzy soft UP-ideal (figure deta) hesitant f

Definition 7.6. Let Y be a nonempty subset of P. A hesitant fuzzy soft set $(\hat{\mathbf{H}}, Y)$ over A is called a constant hesitant fuzzy soft set based on $p \in Y$ (we shortly call a p-constant hesitant fuzzy soft set) over A, if the hesitant fuzzy set

$$\mathbf{H}[p] := \{(a, \mathbf{h}_{\widetilde{\mathbf{H}}[p]}(a)) \mid a \in A\}$$

on A is a constant hesitant fuzzy set on A. If (H, Y) is a p-constant hesitant fuzzy soft set over A for all $p \in Y$, we state that (\widetilde{H}, Y) is a constant hesitant fuzzy soft set over A.

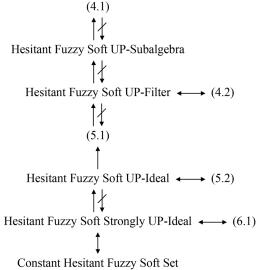
Theorem 7.7. A hesitant fuzzy soft set (\tilde{H}, Y) over A is a hesitant fuzzy soft strongly UP-ideal of A if and only if is a constant hesitant fuzzy soft set over A.

Proof. Assume that (\tilde{H}, Y) is a hesitant fuzzy soft strongly UP-ideal of A and let $p \in Y$. Then $\tilde{H}[p]$ is a hesitant fuzzy strongly UP-ideal of A. By Theorem 3.3, we obtain $\tilde{H}[p]$ is a constant hesitant fuzzy set on A. Thus (\tilde{H}, Y) is a p-constant hesitant fuzzy soft set over A. Since p is arbitrary, we know that (\tilde{H}, Y) is a constant hesitant fuzzy soft set over A.

Conversely, let $p \in Y$. Assume that (H, Y) is a constant hesitant fuzzy soft set over A. Then $\widetilde{H}[p]$ is a constant hesitant fuzzy set on A. By Theorem 3.3, we have $\widetilde{H}[p]$ is a hesitant fuzzy strongly UP-ideal of A. Since p is arbitrary, we state that (\widetilde{H}, Y) is a hesitant fuzzy soft strongly UP-ideal of A.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the notion of hesitant fuzzy soft sets which is a new extension of hesitant fuzzy sets over UP-algebras and the notions of hesitant fuzzy soft UP-subalgebras, hesitant fuzzy soft UP-filters, hesitant fuzzy soft UPideals and hesitant fuzzy soft strongly UP-ideals of UP-algebras and investigated some of its important properties. Then we have the diagram of hesitant fuzzy soft sets over UP-algebras below.



In our future study of UP-algebras, may be the following topics should be considered:

- To get more results in hesitant fuzzy soft sets over UP-algebras.
- To define hesitant anti-fuzzy soft sets over UP-algebras.
- To define operations of hesitant (anti-)fuzzy soft sets over UP-algebras.

Acknowledgements. This work was financially supported by the University of Phayao.

References

- [1] K. V. Babitha and S. J. John, Hesitant fuzzy soft sets, J. New Res. Sci. 3 (2013) 98-107.
- [2] T. Guntasow, S. Sajak, A. Jomkham and A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc. 23 (2) (2017) 1-19.
- [3] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (1) (2017) 35–54.
- [4] A. Iampan, UP-algebras: the beginning, Copy House and Printing, Thailand 2018.
- [5] Y. B. Jun, S. S. Ahn and G. Muhiuddin, Hesitant fuzzy soft subalgebra and ideal in BCI/BCKalgebras, Sci. World J. 2014 (2014) Article ID 763929, 7 pages.
- [6] Y. B. Jun, S. Z. Song and G. Muhiuddin, Hesitant fuzzy semigroups with a frontier, J. Intell. Fuzzy Syst. **30** (3) (2016) 1613–1618.
- [7] B. Kesorn, K. Maimun, W. Ratbandan and A. Iampan, Intuitionistic fuzzy sets in UP-algebras, Ital. J. Pure Appl. Math. 34 (2015) 339-364.
- [8] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (4-5) (1999) 19-31.

- [9] P. Mosrijai, W. Kamti, A. Satirad and A. Iampan, Hesitant fuzzy sets on UP-algebras, Konuralp J. Math. 5 (2) (2017) 268–280.
- [10] P. Mosrijai, A. Satirad and A. Iampan, Partial constant hesitant fuzzy sets on UP-algebras, J. New Theory 22 (2018) 39–50.
- [11] G. Muhiuddin, Hesitant fuzzy filters and hesitant fuzzy G-filter in residuated lattices, J. Comput. Anal. Appl. 21 (2) (2016) 394–404.
- [12] G. Muhiuddin, H. S. Kim, S. Z. Song and Y. B. Jun, Hesitant fuzzy translations and extensions of subalgebras and ideals in BCK/BCI-algebras, J. Intell. Fuzzy Syst. 32 (1) (2017) 43–48.
- [13] G. Muhiuddin, E. H. Roh, S. S. Ahn and Y. B. Jun, Hesitant fuzzy filters in lattice implication algebras, J. Comput. Anal. Appl. 22 (6) (2017) 1105–1113.
- [14] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (1) (2009) 54–57.
- [15] A. Satirad, P. Mosrijai and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci. 14 (1) (2019) 17–25.
- [16] A. Satirad, P. Mosrijai, W. Kamti and A. Iampan, Level subsets of a hesitant fuzzy set on UP-algebras, Ann. Fuzzy Math. Inform. 14 (3) (2017) 279–302.
- [17] T. Senapati, Y. B. Jun and K. P. Shum, Cubic set structure applied in UP-algebras, Discrete Math. Algorithms Appl. 10 (4) (2018) 1850049.
- [18] T. Senapati, G. Muhiuddin and K. P. Shum, Representation of UP-algebras in interval-valued intuitionistic fuzzy environment, Ital. J. Pure Appl. Math. 38 (2017) 497–517.
- [19] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 12 (6) (2016) 739–756.
- [20] K. Tanamoon, S. Sripaeng and A. Iampan, Q-fuzzy sets in UP-algebras, Songklanakarin J. Sci. Technol. 40 (1) (2018) 9–29.
- [21] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (6) (2010) 529-539.

PHAKAWAT MOSRIJAI (phakawat.mo@gmail.com)

Department of Mathematics, School of Science, University of Phayao, Phayao, postal code 56000, Thailand

<u>AIYARED IAMPAN</u> (aiyared.ia@up.ac.th)

Department of Mathematics, School of Science, University of Phayao, Phayao, postal code 56000, Thailand