Annals of Fuzzy Mathematics and Informatics Volume 22, No. 2, (October 2021) pp. 111–122 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2021.22.2.111

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

LM-fuzzy bitopological spaces

FADHIL ABBAS

Annals of Fuzzy Mathematics and Informatics Volume 22, No. 2, (October 2021) pp. 111–122 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2021.22.2.111

OFMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

LM-fuzzy bitopological spaces

FADHIL ABBAS

Received 9 April 2021; Revised 28 April 2021; Accepted 4 May 2021

ABSTRACT. In this paper, we introduce a new class of topology called an LM-fuzzy bitopological spaces. Also we introduces the closure operator $\tau_1\tau_2 - Cl(A, r)$, and interior operator $\tau_1\tau_2 - Int(A, r)$ in LM-fuzzy bitopological spaces as an extension of them in mated fuzzy bitopological spaces and establishes the relationship between $\tau_1\tau_2 - Cl(A, r)$ and the smooth closure $\tau_1\tau_2 - cl(A, r)$. Furthermore, we introduce different concepts of closed sets and open sets in double fuzzy bitopological spaces are extended to LM-fuzzy bitopological spaces and the algebraic structures associated with the families of these sets are investigated. As a result, certain monoids (denoted by $\tau_1\tau_2 - O_r$, $\tau_1\tau_2 - C_r$, $\tau_1\tau_2 - L_r$, $\tau_1\tau_2 - RO_r$, $\tau_1\tau_2 - RC_r$, $\tau_1\tau_2 - SO_r, \tau_1\tau_2 - SC_r, \tau_1\tau_2 - bO_r, \tau_1\tau_2 - GO_r, \tau_1\tau_2 - GC_r,$ $\tau_1\tau_2 - RGO_r, \tau_1\tau_2 - RGC_r, \tau_1\tau_2 - GSO_r, \tau_1\tau_2 - GSO_r, \tau_1\tau_2 - GbO_r$ and $\tau_1\tau_2 - GbC_r$) contained in L^X are identified. Finally, the study associates a lattice of monoids to each element of M, which is associative, complemented but not modular.

2020 AMS Classification: 54A40

Keywords: LM-fuzzy bitopology, Closure operator, Interior operator, Lattice.

Corresponding Author: Fadhil Abbas (fadhilhaman@gmail.com)

1. INTRODUCTION

The concept of fuzzy sets was first presented in 1965 by Zadeh [1]. After that, Chang in 1968 [2] introduced the concept of fuzzy topology. The concept of LMfuzzy topology was introduced by Kubiak [3] and Sostak [4], since that many authors have contributed to the development of the theory of LM-fuzzy topological spaces. Kelly first proposed the concept of a bitopological space in 1963 [5]. In an ideal topological space, he also introduced local function. In 1995, Kandil et al. [6] introduced a concept of fuzzy bitopological spaces. In this paper, we introduce a new class of topology called an LM-fuzzy bitopological spaces. Also we introduces the closure operator $\tau_1\tau_2 - Cl(A, r)$, and interior operator $\tau_1\tau_2 - Int(A, r)$ in LM-fuzzy bitopological spaces as an extension of them in mated fuzzy bitopological spaces and establishes the relationship between $\tau_1\tau_2 - Cl(A, r)$ and the smooth closure $\tau_1\tau_2 - cl(A, r)$. Furthermore, we introduce different concepts of closed sets and open sets in double fuzzy bitopological spaces are extended to LM-fuzzy bitopological spaces and the algebraic structures associated with the families of these sets are investigated. As a result, certain monoids (denoted by $\tau_1\tau_2 - O_r$, $\tau_1\tau_2 - C_r$, $\tau_1\tau_2 - L_r$, $\tau_1\tau_2 - RO_r$, $\tau_1\tau_2 - RC_r$, $\tau_1\tau_2 - SO_r$, $\tau_1\tau_2 - SC_r$, $\tau_1\tau_2 - GO_r$, $\tau_1\tau_2 - GC_r$, $\tau_1\tau_2 - GC_r$, $\tau_1\tau_2 - GSO_r$, $\tau_1\tau_2 - GSO_r$, $\tau_1\tau_2 - GBO_r$,

2. Preliminaries

Throughout this paper, X denotes a non-empty set, I = [0, 1]. The constant L-set having the value α is denoted by $\underline{\alpha}$.

Definition 2.1 ([7]). Let L be a poset. Then L is called:

(i) a *join-semilattice*, if $a \lor b \in L$ for every $a, b \in L$,

(ii) a meet-semilattice, if $a \wedge b \in L$ for every $a, b \in L$.

L is called a *lattice*, if it is both a join-semilattice and a meet-semilattice.

Definition 2.2 ([8]). Let L be a lattice. Then $a \in L$ is called:

(i) a minimal element of L, if $\nexists b \in L$ such that $b \leq a$ and $b \neq a$,

(ii) a maximal element of L, if $\nexists b \in L$ such that $b \ge a$ and $b \ne a$,

(iii) an *atom* of L, if a is a minimal element in $L \setminus \{0\}$,

(iv) a *dual atom* of L, if a is a maximal element in $L \setminus \{1\}$.

Definition 2.3 ([8]). A completely distributive lattice L is a called a F-lattice, if L has an order reversing involution $': L \longrightarrow L$.

Definition 2.4 ([8]). Let L be a poset. Then L is called:

(i) a *complete join-semilattice*, if every join for an arbitrary subset of L exists,

(ii) a complete meet-semilattice, if every meet for an arbitrary subset of L exists,

(iii) a *complete lattice*, if it is both a complete join-semilattice and a complete meet-semilattice.

Definition 2.5. A monoid is a set X with a binary operation $* : X \times X \longrightarrow X$ which is associative and has an identity element.

Definition 2.6 ([7]). A DeMorgan algebra is a structure $A = (A, \lor, \land, 0, 1, ')$ such that

(i) $(A, \lor, \land, 0, 1)$ is a bounded distributive lattice,

(ii) ' is a De Morgan involution: $(a \wedge b)' = a' \vee b'$ and (a')' = a.

Definition 2.7 ([8]). For every $A \in L^X$, A' is defined by A'(x) = (A(x))' for every $x \in X$.

Definition 2.8 ([8]). An *L*-fuzzy point x_{α} is an *L*-fuzzy set $A \in L^X$ such that $A(x) = \alpha \neq 0$ and A(y) = 0 for $x \neq y$. The set of all L-fuzzy points x_{α} is denoted by $pt(L^X)$.

Definition 2.9 ([8]). Let $A, B \in L^X$. Then A quasi coincides with B at x, if $A(x) \not\leq A$ B(x). Also, A is said to be quasi coincident with B, if A quasi coincides with B at some $x \in X$ and is denoted by $A\overline{q}B$.

Definition 2.10 ([3, 4]). Let L be an lattice and M is a completely distributive lattice. Then an *LM*-fuzzy topology on a set X is defined to be a mapping $\tau: L^X \longrightarrow$ M satisfying:

(i) $\tau(\underline{0}) = \tau(\underline{1}) = 1$,

(ii) $\tau(A \land B) \ge \tau(A) \land \tau(B)$ for every $A, B \in L^X$, (iii) $\tau(\bigvee_{j \in J} A_j) \ge \bigwedge_{j \in J} \tau(A_j)$ for every $\{A_j\}_{j \in J} \in L^X$.

The pair (X, τ) is called an *LM-fuzzy topological space* (LM-fts, for short). The elements of τ are called *LM-fuzzy open sets* and the complement of *LM*-fuzzy open sets are called *LM-fuzzy closed sets*.

Definition 2.11 ([9]). Let τ be a map from L^X to M. Then for $r \in M$, the *r*-level decomposition of τ is defined as $\{A \in L^X : \tau(A) > r\}$.

Definition 2.12 ([10]). Let (X, τ) be an *LM*-fts. The closure of A denoted by cl(A) is defined as

$$cl(A) = \bigwedge \{F \in L^X : A \leqslant F, \tau(F') > 0\}.$$

Definition 2.13 ([10]). Let (X, τ) be an *LM*-fts. The *interior* of *A* denoted by int(A) is defined as

$$int(A) = \bigvee \{ U \in L^X : A \ge U, \tau(U) > 0 \}.$$

3. LM-fuzzy bitopological spaces

In this section, we define the concept of an LM-fuzzy bitopological space on set X and we define closure and interior operators in LM-fuzzy topological spaces. Also we define a base and subbase of $\tau_i, i \in \{1, 2\}$.

Definition 3.1. Let (X, τ_1) and (X, τ_2) be a two *LM*-fuzzy topological spaces. Then the triple (X, τ_1, τ_2) is called an *LM-fuzzy bitopological space* on set X (*LM*-fbts, for short).

Definition 3.2. Let (X, τ_1, τ_2) be an *LM*-fbts and let $A \in L^X$. Then A is called $\tau_1\tau_2$ -LM-fuzzy open set, if $A \subseteq U \cup V$ for every $U \in \tau_1$ and $V \in \tau_2$. The complement $\tau_1 \tau_2$ -LM-fuzzy open set is called $\tau_1 \tau_2$ -LM-fuzzy closed set.

Remark 3.3. (1) The union of any family of $\tau_1 \tau_2$ -LM-fuzzy open sets is a $\tau_1 \tau_2$ -LM-fuzzy open set.

(2) The intersection of any family of $\tau_1 \tau_2$ -LM-fuzzy open sets is a $\tau_1 \tau_2$ -LM-fuzzy open set.

Definition 3.4. Let (X, τ_1, τ_2) be an *LM*-fbts and let $A \in L^X$. Then $\tau_1 \tau_2$ -closure of A denoted by $\tau_1 \tau_2 - cl(A)$ is defined as

$$\tau_{1}\tau_{2} - cl(A) = \bigwedge \{F \in L^{X} : A \leqslant F, \tau_{i}(F') > 0, i \in \{1, 2\}\}.$$
113

Definition 3.5. Let (X, τ_1, τ_2) be an *LM*-fbts and let $A \in L^X$. Then $\tau_1 \tau_2$ -interior of A denoted by $\tau_1 \tau_2 - int(A)$ is defined as

$$\tau_{1}\tau_{2} - int(A) = \bigvee \{ U \in L^{X} : A \ge U, \tau_{i}(U') > 0, i \in \{1, 2\} \}.$$

Definition 3.6. Let (X, τ_1, τ_2) be an *LM*-fbts. For $r \in M$ the operator $\tau_1 \tau_2 - Cl : L^X \times M \longrightarrow L^X$ defined by

$$\tau_{1}\tau_{2} - Cl(A, r) = \bigwedge \{F \in L^{X} : A \leqslant F, \tau_{i}(F') \ge r, i \in \{1, 2\}\}$$

is called the $\tau_1 \tau_2$ -LM-fuzzy closure operator on (X, τ_1, τ_2) .

Definition 3.7. Let (X, τ_1, τ_2) be an *LM*-fbts. For $r \in M$ the operator $\tau_1 \tau_2 - Int$: $L^X \times M \longrightarrow L^X$ defined by

$$\tau_1 \tau_2 - Int(A, r) = \bigvee \{ U \in L^X : A \ge U, \tau_i(U) \ge r, i \in \{1, 2\} \}$$

is called the $\tau_1 \tau_2$ -LM-fuzzy interior operator on (X, τ_1, τ_2) .

Theorem 3.8. Let (X, τ_1, τ_2) be an LM-fbts, let $A, B \in L^X$ and let $r, s \in M$. Then (1) $\tau_1 \tau_2 - Cl(A, \underline{0}) = A = \tau_1 \tau_2 - Int(A, \underline{0}),$ (2) $A \leq \tau_1 \tau_2 - cl(A) \leq \tau_1 \tau_2 - Cl(A, r),$ (3) $\tau_1 \tau_2 - Cl(A \lor B, r) = \tau_1 \tau_2 - Cl(A, r) \lor \tau_1 \tau_2 - Cl(B, r),$ (4) $\tau_1 \tau_2 - Cl(A, r) \leq \tau_1 \tau_2 - Cl(A, s), \text{ if } r \leq s,$ (5) $\tau_1 \tau_2 - Cl(\tau_1 \tau_2 - Cl(A, r), r) = \tau_1 \tau_2 - Cl(A, r),$ (6) $\tau_1 \tau_2 - Int(A', r) = (\tau_1 \tau_2 - Cl(A, r))',$ (7) $\tau_1 \tau_2 - Int(A, r) \leq \tau_1 \tau_2 - int(A) \leq A,$ (8) $\tau_1 \tau_2 - Int(A \land B, r) = \tau_1 \tau_2 - Int(A, r) \land \tau_1 \tau_2 - Int(B, r),$ (9) $\tau_1 \tau_2 - Int(A, r) \geq \tau_1 \tau_2 - Int(A, s), \text{ if } r \leq s,$ (10) $\tau_1 \tau_2 - Int(\tau_1 \tau_2 - Int(A, r), r) = \tau_1 \tau_2 - Int(A, r),$ (11) if $A = \tau_1 \tau_2 - Int(\tau_1 \tau_2 - Cl(A, r), r), \text{ then } \tau_1 \tau_2 - Cl(\tau_1 \tau_2 - Int(A', r), r) = A'.$

Definition 3.9. Let (X, τ_1, τ_2) be an *LM*-fbts and let $\beta : L^X \longrightarrow M$ with $\beta \leq \tau_1 \vee \tau_2$. Then β is called a *base* of τ_i , if

$$\forall A \in L^X, \tau_i(A) = \bigvee_{\bigvee_{\alpha \in \Lambda} B_\alpha = A} \bigwedge_{\alpha \in \Lambda} \beta(B_\alpha),$$

where

$$\bigvee_{\bigvee_{\alpha\in\Lambda}B_{\alpha}=A}\bigwedge_{\alpha\in\Lambda}\beta(B_{\alpha})$$

will be denoted by $\beta^{(\sqcup)}(A)$.

Definition 3.10. Let (X, τ_1, τ_2) be an *LM*-fbts and let $\phi : L^X \longrightarrow M$, with $\phi \leq \tau_1 \vee \tau_2$. Then ϕ is called a *subbase* of τ_i if $\phi^{(\sqcap)} : L^X \longrightarrow M$ is a base of τ_i where

$$\phi^{(\Box)}(A) = \bigvee_{(\Box)_{\alpha \in J} B_{\alpha} = A} \bigwedge_{\alpha \in J} \phi(B_{\alpha})$$

for every $A \in L^X$ with (\Box) standing for finite intersection.

Lemma 3.11. Let (X, τ_1, τ_2) be an LM-fbts. Then $\phi : L^X \longrightarrow M$ with $\phi \leq \tau_1 \lor \tau_2$ is the base of τ_i iff $\phi^{(\sqcup)}(1_X) = 1$.

4. Different types of $\tau_1 \tau_2$ -open sets and $\tau_1 \tau_2$ -closed sets

In this section, we introduces different types of closed and open sets in an LM-fuzzy bitopological space and studies the interrelations between them. Also, the algebraic structures associated with the collections of these sets are investigated.

Definition 4.1. Let (X, τ_1, τ_2) be an *LM*-fbts. For $r \in M$, a fuzzy set A is called (i) $\tau_1 \tau_2$ -*r*-fuzzy open, if $\tau_i(A) \ge r, i \in \{1, 2\}$,

(ii) $\tau_1 \tau_2$ -r-fuzzy closed, if $\tau_i(A'), i \in \{1, 2\}$. is $\tau_1 \tau_2$ -r-fuzzy open.

The family of all $\tau_1 \tau_2$ -r-fuzzy open sets are denoted by $\tau_1 \tau_2 - O_r$ and the family of all $\tau_1 \tau_2$ -r-fuzzy closed sets are denoted by $\tau_1 \tau_2 - C_r$.

Theorem 4.2. Let $\tau_i : L^X \longrightarrow M, i \in \{1, 2\}$ be a function. Then τ_i is an LM-fuzzy bitopology on X iff $\tau_1 \tau_2 - O_r$ is an L-bitopology on X for every $r \in M$.

Remark 4.3. Clearly, $\tau_1 \tau_2 - Cl(A, r)$ gives the $\tau_1 \tau_2$ --closure of A in the L-bitopology $\tau_1 \tau_2 - O_r$.

Theorem 4.4. Let (X, τ_1, τ_2) be an LM-fbts. Then

(1) $\tau_1 \tau_2 - O_r$ and $\tau_1 \tau_2 - C_r$ are lattices,

(2) $\tau_1 \tau_2 - O_r$ is a complete join-semilattice and $\tau_1 \tau_2 - C_r$ is a complete meetsemilattice,

(3) $\tau_1 \tau_2 - O_r$ and $\tau_1 \tau_2 - C_r$ are monoids.

Remark 4.5. However, $\tau_1\tau_2 - O_r$ need not be a complete meet-semilattice and $\tau_1\tau_2 - C_r$ need not be a complete join-semilattice. Let $X = L = I, M = I \times I$ with partial ordering defined by $r_1 \leq r_2$ and $s_1 \leq s_2$ and $\mathbb{V} = \{\underline{\alpha} : \alpha = \frac{1}{4} + \frac{1}{n}, n \in \mathbb{N} \setminus \{1\}\}$. Now, consider the *LM*-fuzzy bitopology τ_i defined by

$$\tau_1(B) = \tau_2(B) = \begin{cases} (1,1) & \text{if } B \in \{\underline{0},\underline{1}\}\\ (\alpha,\frac{1}{4}) & \text{if } B = \underline{\alpha} \in \mathbb{V}\\ 0 & \text{otherwise} \end{cases}$$

Then for $r = (\frac{1}{4}, \frac{1}{4}), \tau_1\tau_2 - O_r = \mathbb{V} \cup \{\underline{0}, \underline{1}\}$ which is not closed under arbitrary meet since $\bigwedge_{B \in \mathbb{V}} B = (\frac{1}{4}) \notin \tau_1\tau_2 - O_r$. Hence, $\tau_1\tau_2 - O_r$ is not a complete meet-semilattice and consequently, $\tau_1\tau_2 - C_r$ is not a complete join-semilattice.

For any $r \in M$, let $\tau_1 \tau_2 - L_r = \tau_1 \tau_2 - O_r \cap \tau_1 \tau_2 - C_r$. Then, $\tau_1 \tau_2 - L_r$ is a lattice containing <u>0</u> and <u>1</u> and if $A \in \tau_1 \tau_2 - L_r$ then $A' \in \tau_1 \tau_2 - L_r$.

Theorem 4.6. Let (X, τ_1, τ_2) be an LM-fbts. Then for any $r \in M$, $\tau_1 \tau_2 - L_r = \tau_1 \tau_2 - O_r \cap \tau_1 \tau_2 - C_r$ is a De Morgan algebra.

Theorem 4.7. Let (X, τ_1, τ_2) be an LM-fbts where L is a chain. Then $\tau_1\tau_2 - L_r$ is a Boolean algebra iff $\tau_1\tau_2 - L_r \subseteq \{\chi_G : G \subseteq X\}$.

Proof. Suppose $\tau_1 \tau_2 - L_r$ is a Boolean algebra and let $A \in \tau_1 \tau_2 - L_r$. If there exists $x \in X$ such that 0 < A(x) < 1, then for every $B \in L^X$, either $(A \lor B) = \underline{1}$ or $(A \land B) = \underline{0}$ which contradicts the existence of complement for A in $\tau_1 \tau_2 - L_r$. Consequently, $\tau_1 \tau_2 - L_r \subseteq \{\chi_G : G \subseteq X\}$.

Conversely, suppose $\tau_1\tau_2 - L_r \subseteq \{\chi_G : G \subseteq X\}$ By Theorem 4.3, $\tau_1\tau_2 - L_r$ is a De-Morgan algebra with an order reversing involution '. Also, $\underline{0}, \underline{1} \in \tau_1\tau_2 - L_r$ with $A \wedge \underline{1} = A$ and $A \vee \underline{0} = A$ for every $A \in \tau_1\tau_2 - L_r$.

Remark 4.8. Though $\tau_1 \tau_2 - L_r$ is a lattice, it is is neither atomic nor dual atomic. Besides, it need not be a complete lattice.

Theorem 4.9. Let (X, τ_1, τ_2) be an LM-fbts. If $\tau_1 \tau_2 - O_r$ is closed under the order reversing involution defined in L^X then $\tau_1 \tau_2 - L_r$ is a complete lattice and hence an L-bitopology.

Remark 4.10. The converse of the above Theorem 4.5 is not true.

Theorem 4.11. Let $G \subseteq L^X$ be a complete De Morgan algebra. Then for any nontrivial completely distributive lattice M, there exists an LM-fuzzy bitopology τ_i on Xsuch that $G = \tau_1 \tau_2 - L_r$ for some non-zero $r \in M$.

Proof. Let M be any non-trivial completely distributive lattice and $0 \neq r \in M$. Then, define an LM-fuzzy bitopology τ_i on X as follows:

$$\tau_1(A) = \tau_2(A) = \begin{cases} 1 & \text{if } A \in \{\underline{0}, \underline{1}\} \\ r & \text{if } B \in A \setminus \{\underline{0}, \underline{1}\} \\ 0 & \text{otherwise} \end{cases}$$

Clearly, $\tau_1 \tau_2 - O_r = \tau_1 \tau_2 - C_r = \tau_1 \tau_2 - L_r = A.$

Definition 4.12. Let (X, τ_1, τ_2) be an *LM*-fbts, $A \in L^X$ and $r \in M$. Then A is called

(i) $\tau_1 \tau_2$ -r-regular fuzzy open (or $\tau_1 \tau_2$ -r-rfo) set, if $A = \tau_1 - Int(\tau_2 - Cl(A, r), r)$,

(ii) $\tau_1\tau_2$ -r-regular fuzzy closed (or $\tau_1\tau_2$ -r-rfc) set, if A' is $\tau_1\tau_2$ -r-rfo,

(iii) $\tau_1\tau_2$ -r-semi fuzzy open (or $\tau_1\tau_2$ -r-sfo) set, if $A \leq \tau_1 - Cl(\tau_2 - Int(A, r), r)$,

(iv) $\tau_1 \tau_2$ -r-semi fuzzy closed (or $\tau_1 \tau_2$ -r-sfc) set, if A' is $\tau_1 \tau_2$ -r-sfo,

(v) $\tau_1 \tau_2$ -*r*-fuzzy *b*-open (or $\tau_1 \tau_2$ -*r*-fbo) set, if $A \leq (\tau_1 - Int(\tau_2 - Cl(A, r), r)) \vee (\tau_1 - Cl(\tau_2 - Int(A, r), r)),$

(vi) $\tau_1 \tau_2$ -*r*-fuzzy *b*-closed (or $\tau_1 \tau_2$ -*r*-fbc) set, if A' is $\tau_1 \tau_2$ -r-fbo set.

The family of all $\tau_1\tau_2$ -r-regular fuzzy open (resp. $\tau_1\tau_2$ -r-semi fuzzy open, $\tau_1\tau_2$ -r-fuzzy b-open) are denoted by $\tau_1\tau_2 - RO_r$ (resp. $\tau_1\tau_2 - SO_r$, $\tau_1\tau_2 - bO_r$) and the family of all $\tau_1\tau_2$ -r-regular fuzzy closed (resp. $\tau_1\tau_2$ -r-semi fuzzy closed, $\tau_1\tau_2$ -r-fuzzy b-closed) are denoted by $\tau_1\tau_2 - RC_r$ (resp. $\tau_1\tau_2 - SC_r$, $\tau_1\tau_2 - bC_r$).

Theorem 4.13. Let (X, τ_1, τ_2) be an LM-fbts, $A \in L^X$ and $r \in M$. Then the following statements hold:

(1) every $\tau_1\tau_2$ -r-open is $\tau_1\tau_2$ -r-semi fuzzy open,

(2) every $\tau_1\tau_2$ -r-regular fuzzy closed is $\tau_1\tau_2$ -r-semi fuzzy open,

(3) every $\tau_1\tau_2$ -r-semi fuzzy open is $\tau_1\tau_2$ -r-b fuzzy open.

Proof. (1) Let A be an $\tau_1\tau_2$ -r-open set. Then $A = \tau_1\tau_2 - Int(A) \leq \tau_1 - Cl(\tau_2 - Int(A, r), r)$. Thus A is $\tau_1\tau_2$ -r-semi fuzzy open.

(2) Let A be an $\tau_1\tau_2$ -r-regular fuzzy closed set. Then $A = \tau_1 - Cl(\tau_2 - Int(A, r), r)$, implies $A \leq \tau_1 - Cl(\tau_2 - Int(A, r), r)$. Thus A is $\tau_1\tau_2$ -r-semi fuzzy open.

(3) Let A be an $\tau_1\tau_2$ -r-semi fuzzy open. Then $A \leq \tau_1 - Cl(\tau_2 - Int(A, r), r)$, implies $A \leq \tau_1 - Cl(\tau_2 - Int(A, r), r) \lor \tau_1 - Int(\tau_2 - Cl(A, r), r)$. Thus A is $\tau_1\tau_2$ -r-b fuzzy open.

Remark 4.14. $\tau_1\tau_2 - C_r \subseteq \tau_1\tau_2 - SC_r \subseteq \tau_1\tau_2 - bC_r$ and $\tau_1\tau_2 - O_r \subseteq \tau_1\tau_2 - SO_r \subseteq \tau_1\tau_2 - bO_r$.

Theorem 4.15. Let (X, τ_1, τ_2) be an LM-fbts. Then (1) $\tau_1 \tau_2 - RO_0 = \tau_1 \tau_2 - RC_0 = L^X$,

 $(2) \underline{0}, \underline{1} \in \tau_1 \tau_2 - RO_r \cap \tau_1 \tau_2 - RC_r.$

Theorem 4.16. Let (X, τ_1, τ_2) be an LM-fbts. (1) If $A \in \tau_1 \tau_2 - C_r$, then $\tau_1 \tau_2 - Int(A, r) \in \tau_1 \tau_2 - RO_r$. (2) If $A \in \tau_1 \tau_2 - O_r$, then $\tau_1 \tau_2 - Cl(A, r) \in \tau_1 \tau_2 - RC_r$.

Theorem 4.17. Let (X, τ_1, τ_2) be an LM-fbts. Then $\tau_1 \tau_2 - RO_r \cap \tau_1 \tau_2 - RC_r = \tau_1 \tau_2 - L_r$ for every $r \in M$.

Proof. We have $\tau_1\tau_2 - RO_r \subseteq \tau_1\tau_2 - O_r$ and $\tau_1\tau_2 - RC_r \subseteq \tau_i - C_r$. Then $\tau_1\tau_2 - RO_r \cap \tau_1\tau_2 - RC_r \subseteq \tau_1\tau_2 - L_r$. For the reverse implication, let $A \in \tau_1\tau_2 - L_r$. Then $\tau_1 - Int(\tau_2 - Cl(A, r), r) = \tau_1 - Int(A, r) = A$. Again, $\tau_1 - Cl(\tau_2 - Int(A, r), r) = \tau_1 - Cl(A, r) = A$. Thus $A \in \tau_1\tau_2 - RC_r$.

Theorem 4.18. Let (X, τ_1, τ_2) be an LM-fbts. Then

(1) $\tau_1\tau_2 - RC_r \cup \tau_1\tau_2 - RO_r \subseteq \tau_1\tau_2 - SC_r \cap \tau_1\tau_2 - SO_r$,

(2) $\tau_1\tau_2 - RC_r \cup \tau_1\tau_2 - RO_r \subseteq \tau_1\tau_2 - bC_r \cap \tau_1\tau_2 - bO_r$,

(3) $\tau_1\tau_2 - SC_r \cup \tau_1\tau_2 - SO_r \subseteq \tau_1\tau_2 - bC_r \cap \tau_1\tau_2 - bO_r$.

Proof. (2) Let $A \in \tau_1 \tau_2 - RO_r$. Then $A = \tau_1 - Int(\tau_2 - Cl(A, r), r) = A$ implies $(\tau_1 - Int(\tau_2 - Cl(A, r), r)) \land (\tau_1 - Cl(\tau_2 - Int(A, r), r)) \leqslant A$. Thus $A \in \tau_1 \tau_2 - bO_r$. Again, if $A \in \tau_1 \tau_2 - RO_r$, then $A' \in \tau_1 \tau_2 - RC_r \subseteq \tau_1 \tau_2 - C_r$. Thus $\tau_1 \tau_2 - Cl(A', r) = A'$. Consequently, $\tau_1 - Int(\tau_2 - Cl(A', r), r) \leqslant A'$ and $(\tau_1 - Int(\tau_2 - Cl(A', r), r)) \land (\tau_1 - Cl(\tau_2 - Int(A', r), r)) \leqslant A'$. So $A' \in \tau_1 \tau_2 - bC_r$ which implies $A \in \tau_1 \tau_2 - bO_r$. Hence $\tau_1 \tau_2 - RO_r \subseteq (\tau_1 \tau_2 - bO_r \cap \tau_1 \tau_2 - bC_r)$.

Similarly, $\tau_1\tau_2 - RC_r \subseteq (\tau_1\tau_2 - bO_r \cap \tau_1\tau_2 - bC_r)$. The proofs of (1) and (3) are similar to (2).

Theorem 4.19. Let (X, τ_1, τ_2) be an LM-fbts. Then

(1) $\tau_1\tau_2 - RO_r, \tau_1\tau_2 - SC_r$ and $\tau_1\tau_2 - bC_r$ are meet-semilattices,

(2) $\tau_1\tau_2 - RC_r, \tau_1\tau_2 - SO_r$ and $\tau_1\tau_2 - bO_r$ are join-semilattices,

(3) $\tau_1 \tau_2 - RO_r, \tau_1 \tau_2 - RC_r, \tau_1 \tau_2 - SO_r, \tau_1 \tau_2 - SC_r, \tau_1 \tau_2 - bO_r$ and $\tau_1 \tau_2 - bC_r$ are monoids.

Proof. (1) Let $A_1, A_2 \in \tau_1 \tau_2 - RO_r$. Then $\tau_i(A_1), \tau_i(A_2) \ge r$. Thus $\tau_i(A_1 \land A_2) > r$. Also, $\tau_2 - Cl(A_1 \land A_2, r) \ge A_1 \land A_2$ and $\tau_1 - Int(\tau_2 - Cl(A_1 \land A_2, r)) \ge \tau_1 - Int(A_1 \land A_2, r) = A_1 \land A_2$.

Now $A_1 \ge A_1 \land A_2$ and $A_1 = \tau_1 - Int(\tau_2 - Cl(A_1, r), r) \ge \tau_1 - Int(\tau_2 - Cl(A_1 \land A_2, r), r)$. Also $A_2 \ge A_1 \land A_2$ and $A_2 = \tau_1 - Int(\tau_2 - Cl(A_2, r), r) \ge \tau_1 - Int(\tau_2 - Cl(A_1 \land A_2, r), r)$. So $A_1 \land A_2 \ge \tau_1 - Int(\tau_2 - Cl(A_1 \land A_2, r), r)$. Hence $A_1 \land A_2 = \tau_1 - Int(\tau_2 - Cl(A_1 \land A_2, r), r)$. Hence $A_1 \land A_2 = \tau_1 - Int(\tau_2 - Cl(A_1 \land A_2, r), r)$, which shows that $\tau_1 \tau_2 - RO_r$ is a meet-semilattice.

Similarly, $\tau_1 \tau_2 - SC_r$ and $\tau_1 \tau_2 - bC_r$ are meet-semilattices.

(2) Similarly, $\tau_1 \tau_2 - RC_r$, $\tau_1 \tau_2 - SO_r$ and $\tau_1 \tau_2 - bO_r$ are join-semilattices.

(3) Associativity follows from (1) and (2). Again, $\underline{1} \in \tau_1 \tau_2 - RO_r$ and $\underline{0} \in \tau_1 \tau_2 - RC_r$ are the identity elements.

Similarly, for the rest.

Remark 4.20. In general,

(1) $\tau_1\tau_2 - RO_r, \tau_1\tau_2 - RC_r, \tau_1\tau_2 - SO_r, \tau_1\tau_2 - SC_r, \tau_1\tau_2 - bO_r$ and $\tau_1\tau_2 - bC_r$ are not lattices and hence not L-bitopologies,

(2) $\tau_1\tau_2 - RO_r, \tau_1\tau_2 - SC_r$ and $\tau_1\tau_2 - bC_r$ are not a complete meet-semilattices,

(3) $\tau_1\tau_2 - RC_r, \tau_1\tau_2 - SO_r$ and $\tau_1\tau_2 - bO_r$ are not a complete join-semilattices,

(4) The partial ordering in M does not induce any ordering in the collections of $\tau_1\tau_2 - RO_r, \tau_1\tau_2 - RC_r, \tau_1\tau_2 - SO_r, \tau_1\tau_2 - SC_r, \tau_1\tau_2 - bO_r$ and $\tau_1\tau_2 - bC_r$.

Definition 4.21. Let (X, τ_1, τ_2) be an *LM*-fbts, $r \in M$ and $A \in L^X$. Then the $\tau_1 \tau_2$ -*LM*-fuzzy semi closure operator is defined by

$$\tau_1\tau_2 - SCl(A, r) = \bigwedge \{F \in L^X : A \leqslant F, F \in \tau_1\tau_2 - SC_r\}$$

and the $\tau_1 \tau_2$ -LM-fuzzy semi interior operator is defined by

$$\tau_1\tau_2 - SInt(A, r) = \bigvee \{ U \in L^X : U \leqslant A, U \in \tau_1\tau_2 - SO_r \}.$$

Definition 4.22. Let (X, τ_1, τ_2) be an *LM*-fbts and let $r \in M$, $A \in L^X$. Then the $\tau_1 \tau_2$ -*LM*-fuzzy b-closure operator is defined by

$$\tau_1\tau_2 - bCl(A, r) = \bigwedge \{F \in L^X : A \leqslant F, F \in \tau_1\tau_2 - bC_r\}$$

and the $\tau_1 \tau_2$ -LM-fuzzy b-interior operator is defined by

$$\tau_1\tau_2 - bInt(A, r) = \bigvee \{ U \in L^X : U \leqslant A, U \in \tau_1\tau_2 - bO_r \}.$$

Definition 4.23. Let (X, τ_1, τ_2) be an *LM*-fbts, $A, B \in L^X$ and $r \in M$. Then A is called

(i) $\tau_1\tau_2$ -r-generalized fuzzy closed (or $\tau_1\tau_2$ -r-gfc) set, if $\tau_2 - Cl(A, r) \leq B$ whenever $A \leq B$ and $B \in \tau_1 - O_r$,

(ii) $\tau_1 \tau_2$ -r-generalized fuzzy open (or $\tau_1 \tau_2$ -r-gfo) set, if A' is a $\tau_1 \tau_2$ -r-gfc set,

(iii) $\tau_1 \tau_2$ -r-regular generalized fuzzy closed (or $\tau_1 \tau_2$ -r-rgfc) set, if $\tau_2 - Cl(A, r) \leq B$ whenever $A \leq B$ and $B \in \tau_1 - RO_r$,

(iv) $\tau_1\tau_2$ -r-regular generalized fuzzy open (or $\tau_1\tau_2$ -r-rgfo) set, if A' is a $\tau_1\tau_2$ -r-gfc set,

(v) $\tau_1\tau_2$ -r-generalized fuzzy semi-closed (or $\tau_1\tau_2$ -r-gfsc) set, if $\tau_2 - SCl(A, r) \leq B$ whenever $A \leq B$ and $B \in \tau_1 - O_r$,

(vi) $\tau_1 \tau_2$ -r-generalized fuzzy semi-open (or $\tau_1 \tau_2$ -r-gfso) set, if A' is a $\tau_1 \tau_2$ -r-gfsc set,

(vii) $\tau_1\tau_2$ -r-generalized fuzzy b-closed (or $\tau_1\tau_2$ -r-gfbc) set, if $\tau_2 - bCl(A, r) \leq B$ whenever $A \leq B$ and $B \in \tau_1 - O_r$,

(viii) $\tau_1 \tau_2$ -r-generalized fuzzy b-open (or $\tau_1 \tau_2$ -r-gfbo) set, if A' is a $\tau_1 \tau_2$ -r-gfbc set.

The family of all $\tau_1 \tau_2$ -r-generalized fuzzy closed (resp. $\tau_1 \tau_2$ -r-regular generalized fuzzy closed, $\tau_1 \tau_2$ -r-generalized fuzzy semi-closed, $\tau_1 \tau_2$ -r-generalized fuzzy b-closed) are denoted by $\tau_1 \tau_2 - GC_r$ (resp. $\tau_1 \tau_2 - RGC_r$, $\tau_1 \tau_2 - GSC_r$, $\tau_1 \tau_2 - GbC_r$) and

the family of all $\tau_1 \tau_2$ -r-generalized fuzzy open (resp. $\tau_1 \tau_2$ -r-regular generalized fuzzy open, $\tau_1 \tau_2$ -r-generalized fuzzy semi-open, $\tau_1 \tau_2$ -r-generalized fuzzy b-open) are denoted by $\tau_1 \tau_2 - GO_r$ (resp. $\tau_1 \tau_2 - RGO_r$, $\tau_1 \tau_2 - GSO_r$, $\tau_1 \tau_2 - GbO_r$).

Theorem 4.24. Let (X, τ_1, τ_2) be an LM-fbts. Then

(1) $\tau_1\tau_2 - RC_r \subseteq \tau_1\tau_2 - C_r \subseteq \tau_1\tau_2 - GC_r$ and $\tau_1\tau_2 - RO_r \subseteq \tau_1\tau_2 - O_r \subseteq \tau_1\tau_2 - GO_r$, (2) $\tau_1\tau_2 - GC_r \subseteq \tau_1\tau_2 - RGC_r \subseteq \tau_1\tau_2 - GSC_r \subseteq \tau_1\tau_2 - GbC_r$ and $\tau_1\tau_2 - GO_r \subseteq \tau_1\tau_2 - GO_r \subseteq \tau_1\tau_2 - GSO_r \subseteq \tau_1\tau_2 - GbO_r$.

Theorem 4.25. Let (X, τ_1, τ_2) be an LM-fbts. Then

(1) $\tau_1\tau_2 - GO_r, \tau_1\tau_2 - RGO_r, \tau_1\tau_2 - GSC_r$ and $\tau_1\tau_2 - GbC_r$ are meet-semilattices, (2) $\tau_1\tau_2 - GC_r, \tau_1\tau_2 - RGC_r, \tau_1\tau_2 - GSO_r$ and $\tau_1\tau_2 - GbO_r$ are join-semilattices, (2) $\tau_1\tau_2 - GO_r, \tau_1\tau_2 - GC_r, \tau_1\tau_2 - RGO_r, \tau_1\tau_2 - RGC_r, \tau_1\tau_2 - GSO_r, \tau_1\tau_2 - SC_r,$ $\tau_1\tau_2 - GbO_r$ and $\tau_1\tau_2 - GbC_r$ are monoids.

Proof. (1) Let $A_1, A_2 \in \tau_1 \tau_2 - GO_r$. Then $A'_1, A'_2 \in \tau_1 \tau_2 - GC_r$. Thus $A'_1 \vee A'_2 \in \tau_1 \tau_2 - GC_r$. So $(A_1 \wedge A_2)' \in \tau_1 \tau_2 - GC_r$. Hence $(A_1 \wedge A_2) \in \tau_1 \tau_2 - GO_r$. Therefore $\tau_1 \tau_2 - GO_r$ is a meet semi-lattice.

Similarly, $\tau_1 \tau_2 - RGO_r$, $\tau_1 \tau_2 - GSC_r$ and $\tau_1 \tau_2 - GbC_r$ are meet-semilattices.

(2) Let $A_1, A_2 \in \tau_1 \tau_2 - GC_r$ and $B \in \tau_1 \tau_2 - O_r$ such that $A_1 \lor A_2 \leqslant B$. Since $A_1 \leqslant B$ and $A_1 \in \tau_1 \tau_2 - GC_r, \tau_1 \tau_2 - Cl(A_1, r) \leqslant B$. Similarly, $\tau_1 \tau_2 - Cl(A_2, r) \leqslant B$. Then $\tau_1 \tau_2 - Cl(A_1 \lor A_1, r) = \tau_1 \tau_2 - Cl(A_1, r) \lor \tau_1 \tau_2 - Cl(A_2, r) \leqslant B$. Thus $\tau_1 \tau_2 - GC_r$ is a join semi-lattice.

Similarly, $\tau_1 \tau_2 - RGC_r$, $\tau_1 \tau_2 - GSO_r$ and $\tau_1 \tau_2 - GbO_r$ are join-semilattices.

(3) Associativity follows from (1), (2) and $\underline{1} \in \tau_1 \tau_2 - GC_r$ and $\underline{0} \in \tau_1 \tau_2 - GO_r$ are the identity elements.

Similarly, for the rest.

Theorem 4.26. Let (X, τ_1, τ_2) be an LM-fbts.

(1) If $A \in \tau_1 \tau_2 - GSC_r$, then $B \in \tau_1 \tau_2 - GSC_r$ for all B such that $A \leq B \leq \tau_1 \tau_2 - SC_r(A, r)$.

(2) If $A \in \tau_1 \tau_2 - GbC_r$, then $B \in \tau_1 \tau_2 - GbC_r$ for all B such that $A \leq B \leq \tau_1 \tau_2 - bC_r(A, r)$.

Proof. (2) Let A is an $\tau_1\tau_2$ -r-gfbc and consider $B \in L^X$ such that $A \leq B \leq \tau_1\tau_2 - bC_r(A, r)$. Also, let C be a an $\tau_1\tau_2$ -r-fo in L^X such that $B \leq C$. Then clearly, $A \leq C$ and $\tau_1\tau_2 - bC_r(A, r) \leq C$. Again, note that $\tau_1\tau_2 - bC_r(B, r) = \tau_1\tau_2 - bC_r(A, r)$. Thus $\tau_1\tau_2 - bC_r(B, r) \leq C$. So B is an $\tau_1\tau_2$ -r-gfbc.

(i) The proof is similar to (1).

Theorem 4.27. Let (X, τ_1, τ_2) be an LM-fbts.

(1) If $A \in \tau_1 \tau_2 - GSC_r$, then for every $B \in \tau_1 \tau_2 - SO_r, \tau_1 \tau_2 - SC_r(A, r)\overline{q}B$ iff $A\overline{q}B$.

(2) If $A \in \tau_1 \tau_2 - GbC_r$, then for every $B \in \tau_1 \tau_2 - bO_r, \tau_1 \tau_2 - bC_r(A, r)\overline{q}B$ iff $A\overline{q}B$.

Proof. (2) Let $B \in \tau_1 \tau_2 - bO_r$ for some $r \in M$ and $A\overline{q}B$ for some $A \in LX$. Then $A \leq B'$. Since B' is an $\tau_1 \tau_2$ -*r*-fbc set of L^X and A is an $\tau_1 \tau_2$ -*r*-gfbc set, $\tau_1 \tau_2 - bC_r(A, r)\overline{q}B$.

Conversely, let B be a $\tau_1 \tau_2$ -r-fbc set of L^X such that $A \leq B, r \in M$. Then $A\overline{q}B'$. But $\tau_i - bC_r(A, r)\overline{q}B'$. Thus $\tau_1\tau_2 - bC_r(A, r) \leq B$. So A is an $\tau_1\tau_2$ -r-gfbc.

(2) The proof is similar to (1).

Remark 4.28. Let \mathcal{O} be the collection of all $\tau_1 \tau_2 - O_r$, \mathcal{C} be the collection of all $\tau_1 \tau_2 - C_r$ and \mathcal{L} be the collection of all $\tau_1 \tau_2 - L_r$ in an LM-fbts (X, τ_1, τ_2) . Then \mathcal{O} , \mathcal{C} and \mathcal{L} are bounded lattices where the bounds for \mathcal{O} are $\tau_1 \tau_2 - O_0$ and $\tau_1 \tau_2 - O_1$, the bounds of \mathcal{C} are $\tau_1 \tau_2 - C_0$ and $\tau_1 \tau_2 - C_1$ and that of \mathcal{L} are $\tau_1 \tau_2 - L_0$ and $\tau_1 \tau_2 - L_1$.

Remark 4.29. The lattices \mathcal{O}, \mathcal{C} and \mathcal{L} are neither atomic nor dual atomic. For example, let $X = \{a, b, c\}, L = M = I$ and define an LM-fuzzy bitopology on X as follows:

$$\tau_1(A) = \tau_2(A) = \begin{cases} 1 & if \quad A \in \{\underline{0}, \underline{1}\} \\ \alpha & if \quad A = \underline{\alpha}, \alpha \in I \setminus \{0, 1\} \\ 0 & otherwise. \end{cases}$$

Clearly for $\alpha \in I$, $\tau_1 \tau_2 - O_\alpha = \{\underline{0}\} \cup \{\beta : \beta \ge \alpha, \beta \in I\}$. Then it follows that $\mathcal{O} = \mathcal{C} = \mathcal{L} = \{\tau_1 \tau_2 - O_\alpha : \alpha \in I\}$ which is neither atomic nor dual atomic.

Theorem 4.30. Let (X, τ_1, τ_2) be an LM-fbts. Then

(1) \mathcal{O}, \mathcal{C} and \mathcal{L} are dual atomic, if M is atomic,

(2) \mathcal{O}, \mathcal{C} and \mathcal{L} are atomic, if M is dual atomic.

Remark 4.31. Atoms and dual atoms may exist in \mathcal{O}, \mathcal{C} and \mathcal{L} without M being atomic or dual atomic. For example, let $X = \mathbb{R}$, the set of real numbers and L = M = I. Clearly, M is neither atomic nor dual atomic. Now, define an LMfuzzy bitopology on X as follows:

$$\tau_1(A) = \tau_2(A) = \begin{cases} 1 & if \quad A \in \{\underline{0}, \underline{1}\} \\ \alpha & if \quad A = \underline{\alpha}, \alpha \in (\frac{1}{4}, \frac{2}{3}] \\ 0 & otherwise. \end{cases}$$

Then $\mathcal{O} = \{\tau_1 \tau_2 - O_0, \tau_1 \tau_2 - O_1\} \cup \{\tau_1 \tau_2 - O_\alpha : \alpha \in [\frac{1}{4}, \frac{2}{3}]\}$ and $\mathcal{C} = \{\tau_1 \tau_2 - C_0, \tau_1 \tau_2 C_1 \} \cup \{\tau_1 \tau_2 - C_\alpha : \alpha \in [\frac{1}{4}, \frac{2}{3}] \}. \text{ Also } \mathcal{L} = \{\tau_1 \tau_2 - L_0, \tau_1 \tau_2 - L_1\} \cup \{\tau_i - L_\alpha : \alpha \in [\frac{1}{4}, \frac{2}{3}] \}.$

5. Conclusions

As a result of the study, we have identified certain monoids that are subsets of L^X . Some of them are distributive lattices too. Now, let $\tau_1 \tau_2 - \Omega_r = \{\tau_1 \tau_2 - \tau$ $L_{r}, \tau_{1}\tau_{2} - O_{r}, \tau_{1}\tau_{2} - C_{r}, \tau_{1}\tau_{2} - GO_{r}, \tau_{1}\tau_{2} - GC_{r}, \tau_{1}\tau_{2} - RGO_{r}, \tau_{1}\tau_{2} - RGC_{r}, \tau_{1}\tau_{2} - RCC_{r}, \tau_{1}\tau_{2} - RCC_{r$ $SO_r, \tau_1\tau_2 - SC_r, \tau_1\tau_2 - bO_r, \tau_1\tau_2 - bC_r, L^X$. Then $\tau_1\tau_2 - \Omega_r$ is a lattice under set inclusion whose elements are all monoids. The Hasse diagram of this lattice is shown in Figure 1.

FIGURE 1. Hasse diagram of $\tau_1 \tau_2 - \Omega_r$

It is clear that $\tau_1 \tau_2 - \Omega_r$ is associative, complemented but not modular. Thus, by introducing various notions of openness and closedness in LM-fuzzy bitopological spaces, the study associates to each element of M, a lattice of monoids that are subsets of L^X .

Acknowledgements. The authors are highly grateful to referees for their valuable comments and suggestions for improving the paper.

References

- [1] L. Zadeh, fuzzy sets, Information and control 8 (1965) 338–353.
- [2] C. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968) 182–190.
- [3] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz Univ., Poznan, Poland 1985.
- [4] A. Sostak, On a fuzzy topological structure, Rendiconti del Circolo Mathematico di Palermo 11 (1985) 89–103.
- [5] J. Kelly, Bitopological spaces, Proceedings of the London Mathematical Society 13 (3) (1963) 71–89.
- [6] A. Kandil, A. Nouh and S. El-Sheikh, On fuzzy bitopological spaces, Fuzzy Sets and Systems 29 (1995) 353–363.
- [7] B. A. Davey and H. A. Priestly, Introduction to lattices and order, Cambridge University Press 2009.
- [8] L. Y. Ming and L. M. Kang, Fuzzy topology, World Scientific 1997.

- [9] G. Varghese and S. Mathew, On the characterizing lattice of an L-fuzzy topological space, Far East Journal of Mathematical Sciences 39 (2010) 15–27.
- [10] M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems. 90 (1997) 83–88.

<u>FADHIL ABBAS</u> (fadhilhaman@gmail.com) Salzburger Stra β e 195, Linz, Austria