Annals of Fuzzy Mathematics and Informatics Volume 22, No. 2, (October 2021) pp. 111-122 ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.2.111

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

$L M$-fuzzy bitopological spaces

Fadhil Abbas

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 22, No. 2, October 2021

Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 2, (October 2021) pp. 111-122
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.2.111
(O) $\mathbb{H}^{M} \mathbb{M}$
(c) Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

$L M$-fuzzy bitopological spaces

Fadhil Abbas

Received 9 April 2021; Revised 28 April 2021; Accepted 4 May 2021

Abstract

In this paper, we introduce a new class of topology called an LM-fuzzy bitopological spaces. Also we introduces the closure operator $\tau_{1} \tau_{2}-C l(A, r)$, and interior operator $\tau_{1} \tau_{2}-\operatorname{Int}(A, r)$ in $L M$-fuzzy bitopological spaces as an extension of them in mated fuzzy bitopological spaces and establishes the relationship between $\tau_{1} \tau_{2}-C l(A, r)$ and the smooth closure $\tau_{1} \tau_{2}-c l(A, r)$. Furthermore, we introduce different concepts of closed sets and open sets in double fuzzy bitopological spaces are extended to $L M$-fuzzy bitopological spaces and the algebraic structures associated with the families of these sets are investigated. As a result, certain monoids (denoted by $\tau_{1} \tau_{2}-O_{r}, \tau_{1} \tau_{2}-C_{r}, \tau_{1} \tau_{2}-L_{r}, \tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-R C_{r}$, $\tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b O_{r}, \tau_{1} \tau_{2}-b C_{r}, \tau_{1} \tau_{2}-G O_{r}, \tau_{1} \tau_{2}-G C_{r}$, $\tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-G S O_{r}, \tau_{1} \tau_{2}-G S C_{r} \tau_{1} \tau_{2}-G b O_{r}$ and $\left.\tau_{1} \tau_{2}-G b C_{r}\right)$ contained in L^{X} are identified. Finally, the study associates a lattice of monoids to each element of M, which is associative, complemented but not modular.

2020 AMS Classification: 54A40
Keywords: $L M$-fuzzy bitopology, Closure operator, Interior operator, Lattice.
Corresponding Author: Fadhil Abbas (fadhilhaman@gmail.com)

1. Introduction

The concept of fuzzy sets was first presented in 1965 by Zadeh [1]. After that, Chang in 1968 [2] introduced the concept of fuzzy topology. The concept of $L M$ fuzzy topology was introduced by Kubiak [3] and Sostak [4], since that many authors have contributed to the development of the theory of LM-fuzzy topological spaces. Kelly first proposed the concept of a bitopological space in 1963 [5]. In an ideal topological space, he also introduced local function. In 1995, Kandil et al. [6] introduced a concept of fuzzy bitopological spaces.

In this paper, we introduce a new class of topology called an LM-fuzzy bitopological spaces. Also we introduces the closure operator $\tau_{1} \tau_{2}-C l(A, r)$, and interior operator $\tau_{1} \tau_{2}-\operatorname{Int}(A, r)$ in $L M$-fuzzy bitopological spaces as an extension of them in mated fuzzy bitopological spaces and establishes the relationship between $\tau_{1} \tau_{2}-C l(A, r)$ and the smooth closure $\tau_{1} \tau_{2}-c l(A, r)$. Furthermore, we introduce different concepts of closed sets and open sets in double fuzzy bitopological spaces are extended to $L M$ fuzzy bitopological spaces and the algebraic structures associated with the families of these sets are investigated. As a result, certain monoids (denoted by $\tau_{1} \tau_{2}-O_{r}$, $\tau_{1} \tau_{2}-C_{r}, \tau_{1} \tau_{2}-L_{r}, \tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b O_{r}$, $\tau_{1} \tau_{2}-b C_{r}, \tau_{1} \tau_{2}-G O_{r}, \tau_{1} \tau_{2}-G C_{r}, \tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-G S O_{r}$, $\tau_{1} \tau_{2}-G S C_{r} \tau_{1} \tau_{2}-G b O_{r}$ and $\tau_{1} \tau_{2}-G b C_{r}$) contained in L^{X} are identified. Finally, the study associates a lattice of monoids to each element of M, which is associative, complemented but not modular.

2. Preliminaries

Throughout this paper, X denotes a non-empty set, $I=[0,1]$. The constant L-set having the value α is denoted by $\underline{\alpha}$.

Definition 2.1 ([7]). Let L be a poset. Then L is called:
(i) a join-semilattice, if $a \vee b \in L$ for every $a, b \in L$,
(ii) a meet-semilattice, if $a \wedge b \in L$ for every $a, b \in L$.

L is called a lattice, if it is both a join-semilattice and a meet-semilattice.
Definition 2.2 ([8]). Let L be a lattice. Then $a \in L$ is called:
(i) a minimal element of L, if $\nexists b \in L$ such that $b \leqslant a$ and $b \neq a$,
(ii) a maximal element of L, if $\nexists b \in L$ such that $b \geq a$ and $b \neq a$,
(iii) an atom of L, if a is a minimal element in $L \backslash\{0\}$,
(iv) a dual atom of L, if a is a maximal element in $L \backslash\{1\}$.

Definition 2.3 ([8]). A completely distributive lattice L is a called a F-lattice, if L has an order reversing involution ' $: L \longrightarrow L$.

Definition 2.4 ([8]). Let L be a poset. Then L is called:
(i) a complete join-semilattice, if every join for an arbitrary subset of L exists,
(ii) a complete meet-semilattice, if every meet for an arbitrary subset of L exists,
(iii) a complete lattice, if it is both a complete join-semilattice and a complete meet-semilattice.

Definition 2.5. A monoid is a set X with a binary operation $*: X \times X \longrightarrow X$ which is associative and has an identity element.

Definition 2.6 ([7]). A DeMorgan algebra is a structure $A=\left(A, \vee, \wedge, 0,1,{ }^{\prime}\right)$ such that
(i) $(A, \vee, \wedge, 0,1)$ is a bounded distributive lattice,
(ii) ' is a De Morgan involution: $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$ and $\left(a^{\prime}\right)^{\prime}=a$.

Definition $2.7([8])$. For every $A \in L^{X}, A^{\prime}$ is defined by $A^{\prime}(x)=(A(x))^{\prime}$ for every $x \in X$.

Definition 2.8 ([8]). An L-fuzzy point x_{α} is an L-fuzzy set $A \in L^{X}$ such that $A(x)=\alpha \neq 0$ and $A(y)=0$ for $x \neq y$. The set of all L-fuzzy points x_{α} is denoted by $p t\left(L^{X}\right)$.

Definition 2.9 ([8]). Let $A, B \in L^{X}$. Then A quasi coincides with B at x, if $A(x) \not \leq$ $B(x)$. Also, A is said to be quasi coincident with B, if A quasi coincides with B at some $x \in X$ and is denoted by $A \bar{q} B$.
Definition 2.10 ([3, 4]). Let L be an lattice and M is a completely distributive lattice. Then an $L M$-fuzzy topology on a set X is defined to be a mapping $\tau: L^{X} \longrightarrow$ M satisfying:
(i) $\tau(\underline{0})=\tau(\underline{1})=1$,
(ii) $\tau(A \wedge B) \geq \tau(A) \wedge \tau(B)$ for every $A, B \in L^{X}$,
(iii) $\tau\left(\bigvee_{j \in J} A_{j}\right) \geq \bigwedge_{j \in J} \tau\left(A_{j}\right)$ for every $\left\{A_{j}\right\}_{j \in J} \in L^{X}$.

The pair (X, τ) is called an LM-fuzzy topological space (LM-fts, for short). The elements of τ are called $L M$-fuzzy open sets and the complement of $L M$-fuzzy open sets are called LM-fuzzy closed sets.
Definition 2.11 ([9]). Let τ be a map from L^{X} to M. Then for $r \in M$, the r-level decomposition of τ is defined as $\left\{A \in L^{X}: \tau(A) \geq r\right\}$.
Definition 2.12 ([10]). Let (X, τ) be an $L M$-fts. The closure of A denoted by $c l(A)$ is defined as

$$
c l(A)=\bigwedge\left\{F \in L^{X}: A \leqslant F, \tau\left(F^{\prime}\right)>0\right\}
$$

Definition 2.13 ([10]). Let (X, τ) be an $L M$-fts. The interior of A denoted by $\operatorname{int}(A)$ is defined as

$$
\operatorname{int}(A)=\bigvee\left\{U \in L^{X}: A \geq U, \tau(U)>0\right\}
$$

3. LM-FUZZY BITOPOLOGICAL SPACES

In this section, we define the concept of an $L M$-fuzzy bitopological space on set X and we define closure and interior operators in $L M$-fuzzy topological spaces. Also we define a base and subbase of $\tau_{i}, i \in\{1,2\}$.
Definition 3.1. Let $\left(X, \tau_{1}\right)$ and $\left(X, \tau_{2}\right)$ be a two $L M$-fuzzy topological spaces. Then the triple $\left(X, \tau_{1}, \tau_{2}\right)$ is called an $L M$-fuzzy bitopological space on set X ($L M$-fbts, for short).
Definition 3.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts and let $A \in L^{X}$. Then A is called $\tau_{1} \tau_{2}$-LM-fuzzy open set, if $A \subseteq U \cup V$ for every $U \in \tau_{1}$ and $V \in \tau_{2}$. The complement $\tau_{1} \tau_{2}-L M$-fuzzy open set is called $\tau_{1} \tau_{2}-L M$-fuzzy closed set.
Remark 3.3. (1) The union of any family of $\tau_{1} \tau_{2}-L M$-fuzzy open sets is a $\tau_{1} \tau_{2}$ $L M$-fuzzy open set.
(2) The intersection of any family of $\tau_{1} \tau_{2}-L M$-fuzzy open sets is a $\tau_{1} \tau_{2}-L M$-fuzzy open set.
Definition 3.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts and let $A \in L^{X}$. Then $\tau_{1} \tau_{2}$-closure of A denoted by $\tau_{1} \tau_{2}-\operatorname{cl}(A)$ is defied as

$$
\tau_{1} \tau_{2}-c l(A)=\bigwedge\left\{F \in L^{X}: A \leqslant F, \tau_{i}\left(F^{\prime}\right)>0, i \in\{1,2\}\right\}
$$

Definition 3.5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts and let $A \in L^{X}$. Then $\tau_{1} \tau_{2}$-interior of A denoted by $\tau_{1} \tau_{2}-\operatorname{int}(A)$ is defied as

$$
\tau_{1} \tau_{2}-\operatorname{int}(A)=\bigvee\left\{U \in L^{X}: A \geq U, \tau_{i}\left(U^{\prime}\right)>0, i \in\{1,2\}\right\}
$$

Definition 3.6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts. For $r \in M$ the operator $\tau_{1} \tau_{2}-C l$: $L^{X} \times M \longrightarrow L^{X}$ defined by

$$
\tau_{1} \tau_{2}-C l(A, r)=\bigwedge\left\{F \in L^{X}: A \leqslant F, \tau_{i}\left(F^{\prime}\right) \geq r, i \in\{1,2\}\right\}
$$

is called the $\tau_{1} \tau_{2}$-LM-fuzzy closure operator on (X, τ_{1}, τ_{2}).
Definition 3.7. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts. For $r \in M$ the operator $\tau_{1} \tau_{2}-$ Int : $L^{X} \times M \longrightarrow L^{X}$ defined by

$$
\tau_{1} \tau_{2}-\operatorname{Int}(A, r)=\bigvee\left\{U \in L^{X}: A \geq U, \tau_{i}(U) \geq r, i \in\{1,2\}\right\}
$$

is called the $\tau_{1} \tau_{2}$-LM-fuzzy interior operator on $\left(X, \tau_{1}, \tau_{2}\right)$.
Theorem 3.8. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts, let $A, B \in L^{X}$ and let $r, s \in M$. Then
(1) $\tau_{1} \tau_{2}-C l(A, \underline{0})=A=\tau_{1} \tau_{2}-\operatorname{Int}(A, \underline{0})$,
(2) $A \leqslant \tau_{1} \tau_{2}-\operatorname{cl}(A) \leqslant \tau_{1} \tau_{2}-C l(A, r)$,
(3) $\tau_{1} \tau_{2}-C l(A \vee B, r)=\tau_{1} \tau_{2}-C l(A, r) \vee \tau_{1} \tau_{2}-C l(B, r)$,
(4) $\tau_{1} \tau_{2}-C l(A, r) \leqslant \tau_{1} \tau_{2}-C l(A, s)$, if $r \leqslant s$,
(5) $\tau_{1} \tau_{2}-C l\left(\tau_{1} \tau_{2}-C l(A, r), r\right)=\tau_{1} \tau_{2}-C l(A, r)$,
(6) $\tau_{1} \tau_{2}-\operatorname{Int}\left(A^{\prime}, r\right)=\left(\tau_{1} \tau_{2}-C l(A, r)\right)^{\prime}$,
(7) $\tau_{1} \tau_{2}-\operatorname{Int}(A, r) \leqslant \tau_{1} \tau_{2}-\operatorname{int}(A) \leqslant A$,
(8) $\tau_{1} \tau_{2}-\operatorname{Int}(A \wedge B, r)=\tau_{1} \tau_{2}-\operatorname{Int}(A, r) \wedge \tau_{1} \tau_{2}-\operatorname{Int}(B, r)$,
(9) $\tau_{1} \tau_{2}-\operatorname{Int}(A, r) \geq \tau_{1} \tau_{2}-\operatorname{Int}(A, s)$, if $r \leqslant s$,
(10) $\tau_{1} \tau_{2}-\operatorname{Int}\left(\tau_{1} \tau_{2}-\operatorname{Int}(A, r), r\right)=\tau_{1} \tau_{2}-\operatorname{Int}(A, r)$,
(11) if $A=\tau_{1} \tau_{2}-\operatorname{Int}\left(\tau_{1} \tau_{2}-C l(A, r), r\right)$, then $\tau_{1} \tau_{2}-C l\left(\tau_{1} \tau_{2}-\operatorname{Int}\left(A^{\prime}, r\right), r\right)=A^{\prime}$.

Definition 3.9. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts and let $\beta: L^{X} \longrightarrow M$ with $\beta \leqslant$ $\tau_{1} \vee \tau_{2}$. Then β is called a base of τ_{i}, if

$$
\forall A \in L^{X}, \tau_{i}(A)=\bigvee_{\bigvee_{\alpha \in \Lambda} B_{\alpha}=A} \bigwedge_{\alpha \in \Lambda} \beta\left(B_{\alpha}\right)
$$

where

$$
\bigvee_{\bigvee_{\alpha \in \Lambda} B_{\alpha}=A} \bigwedge_{\alpha \in \Lambda} \beta\left(B_{\alpha}\right)
$$

will be denoted by $\beta^{(\sqcup)}(A)$.
Definition 3.10. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts and let $\phi: L^{X} \longrightarrow M$, with $\phi \leqslant$ $\tau_{1} \vee \tau_{2}$. Then ϕ is called a subbase of τ_{i} if $\phi^{(\sqcap)}: L^{X} \longrightarrow M$ is a base of τ_{i} where

$$
\phi^{(\sqcap)}(A)=\bigvee_{(\sqcap)_{\alpha \in J} B_{\alpha}=A} \bigwedge_{\alpha \in J} \phi\left(B_{\alpha}\right)
$$

for every $A \in L^{X}$ with (\sqcap) standing for finite intersection.
Lemma 3.11. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then $\phi: L^{X} \longrightarrow M$ with $\phi \leqslant \tau_{1} \vee \tau_{2}$ is the base of τ_{i} iff $\phi^{(\sqcup)}\left(1_{X}\right)=1$.

4. DIfferent types of $\tau_{1} \tau_{2}$-OPEN SETS AND $\tau_{1} \tau_{2}$-CLOSED SETS

In this section, we introduces different types of closed and open sets in an $L M$ fuzzy bitopological space and studies the interrelations between them. Also, the algebraic structures associated with the collections of these sets are investigated.

Definition 4.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts. For $r \in M$, a fuzzy set A is called
(i) $\tau_{1} \tau_{2}-r$-fuzzy open, if $\tau_{i}(A) \geq r, i \in\{1,2\}$,
(ii) $\tau_{1} \tau_{2}$-r-fuzzy closed, if $\tau_{i}\left(A^{\prime}\right), i \in\{1,2\}$. is $\tau_{1} \tau_{2}$-r-fuzzy open.

The family of all $\tau_{1} \tau_{2}$-r-fuzzy open sets are denoted by $\tau_{1} \tau_{2}-O_{r}$ and the family of all $\tau_{1} \tau_{2}$-r-fuzzy closed sets are denoted by $\tau_{1} \tau_{2}-C_{r}$.

Theorem 4.2. Let $\tau_{i}: L^{X} \longrightarrow M, i \in\{1,2\}$ be a function. Then τ_{i} is an LM-fuzzy bitopology on X iff $\tau_{1} \tau_{2}-O_{r}$ is an L-bitopology on X for every $r \in M$.

Remark 4.3. Clearly, $\tau_{1} \tau_{2}-C l(A, r)$ gives the $\tau_{1} \tau_{2}$--closure of A in the L-bitopology $\tau_{1} \tau_{2}-O_{r}$.

Theorem 4.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) $\tau_{1} \tau_{2}-O_{r}$ and $\tau_{1} \tau_{2}-C_{r}$ are lattices,
(2) $\tau_{1} \tau_{2}-O_{r}$ is a complete join-semilattice and $\tau_{1} \tau_{2}-C_{r}$ is a complete meetsemilattice,
(3) $\tau_{1} \tau_{2}-O_{r}$ and $\tau_{1} \tau_{2}-C_{r}$ are monoids.

Remark 4.5. However, $\tau_{1} \tau_{2}-O_{r}$ need not be a complete meet-semilattice and $\tau_{1} \tau_{2}-C_{r}$ need not be a complete join-semilattice. Let $X=L=I, M=I \times I$ with partial ordering defined by $r_{1} \leq r_{2}$ and $s_{1} \leq s_{2}$ and $\mathbb{V}=\left\{\underline{\alpha}: \alpha=\frac{1}{4}+\frac{1}{n}, n \in \mathbb{N} \backslash\{1\}\right\}$. Now, consider the $L M$-fuzzy bitopology τ_{i} defined by

$$
\tau_{1}(B)=\tau_{2}(B)= \begin{cases}(1,1) & \text { if } B \in\{\underline{0}, \underline{1}\} \\ \left(\alpha, \frac{1}{4}\right) & \text { if } B=\underline{\alpha} \in \mathbb{V} \\ 0 & \text { otherwise }\end{cases}
$$

Then for $r=\left(\frac{1}{4}, \frac{1}{4}\right), \tau_{1} \tau_{2}-O_{r}=\mathbb{V} \cup\{\underline{0}, \underline{1}\}$ which is not closed under arbitrary meet since $\bigwedge_{B \in \mathbb{V}} B=\left(\frac{1}{4}\right) \notin \tau_{1} \tau_{2}-O_{r}$. Hence, $\tau_{1} \tau_{2}-O_{r}$ is not a complete meetsemilattice and consequently, $\tau_{1} \tau_{2}-C_{r}$ is not a complete join-semilattice.

For any $r \in M$, let $\tau_{1} \tau_{2}-L_{r}=\tau_{1} \tau_{2}-O_{r} \cap \tau_{1} \tau_{2}-C_{r}$. Then, $\tau_{1} \tau_{2}-L_{r}$ is a lattice containing $\underline{0}$ and $\underline{1}$ and if $A \in \tau_{1} \tau_{2}-L_{r}$ then $A^{\prime} \in \tau_{1} \tau_{2}-L_{r}$.
Theorem 4.6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then for any $r \in M, \tau_{1} \tau_{2}-L_{r}=$ $\tau_{1} \tau_{2}-O_{r} \cap \tau_{1} \tau_{2}-C_{r}$ is a De Morgan algebra.

Theorem 4.7. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts where L is a chain. Then $\tau_{1} \tau_{2}-L_{r}$ is a Boolean algebra iff $\tau_{1} \tau_{2}-L_{r} \subseteq\left\{\chi_{G}: G \subseteq X\right\}$.

Proof. Suppose $\tau_{1} \tau_{2}-L_{r}$ is a Boolean algebra and let $A \in \tau_{1} \tau_{2}-L_{r}$. If there exists $x \in X$ such that $0<A(x)<1$, then for every $B \in L^{X}$, either $(A \vee B)=\underline{1}$ or $(A \wedge B)=\underline{0}$ which contradicts the existence of complement for A in $\tau_{1} \tau_{2}-L_{r}$. Consequently, $\tau_{1} \tau_{2}-L_{r} \subseteq\left\{\chi_{G}: G \subseteq X\right\}$.

Conversely, suppose $\tau_{1} \tau_{2}-L_{r} \subseteq\left\{\chi_{G}: G \subseteq X\right\}$ By Theorem 4.3, $\tau_{1} \tau_{2}-L_{r}$ is a De-Morgan algebra with an order reversing involution ' . Also, $\underline{0}, \underline{1} \in \tau_{1} \tau_{2}-L_{r}$ with $A \wedge \underline{1}=A$ and $A \vee \underline{0}=A$ for every $A \in \tau_{1} \tau_{2}-L_{r}$.

Remark 4.8. Though $\tau_{1} \tau_{2}-L_{r}$ is a lattice, it is is neither atomic nor dual atomic. Besides, it need not be a complete lattice.

Theorem 4.9. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. If $\tau_{1} \tau_{2}-O_{r}$ is closed under the order reversing involution defined in L^{X} then $\tau_{1} \tau_{2}-L_{r}$ is a complete lattice and hence an L-bitopology.

Remark 4.10. The converse of the above Theorem 4.5 is not true.
Theorem 4.11. Let $G \subseteq L^{X}$ be a complete De Morgan algebra. Then for any nontrivial completely distributive lattice M, there exists an LM-fuzzy bitopology τ_{i} on X such that $G=\tau_{1} \tau_{2}-L_{r}$ for some non-zero $r \in M$.

Proof. Let M be any non-trivial completely distributive lattice and $0 \neq r \in M$. Then, define an $L M$-fuzzy bitopology τ_{i} on X as follows:

$$
\tau_{1}(A)=\tau_{2}(A)= \begin{cases}1 & \text { if } A \in\{\underline{0}, \underline{1}\} \\ r & \text { if } B \in A \backslash\{\underline{0}, \underline{1}\} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\tau_{1} \tau_{2}-O_{r}=\tau_{1} \tau_{2}-C_{r}=\tau_{1} \tau_{2}-L_{r}=A$.
Definition 4.12. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts, $A \in L^{X}$ and $r \in M$. Then A is called
(i) $\tau_{1} \tau_{2}-r$-regular fuzzy open (or $\tau_{1} \tau_{2}-r$-rfo) set, if $A=\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l(A, r), r\right)$,
(ii) $\tau_{1} \tau_{2}$-r-regular fuzzy closed (or $\tau_{1} \tau_{2}-r-r f c$) set, if A^{\prime} is $\tau_{1} \tau_{2}$-r-rfo,
(iii) $\tau_{1} \tau_{2}$-r-semi fuzzy open (or $\tau_{1} \tau_{2}$-r-sfo) set, if $A \leqslant \tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)$,
(iv) $\tau_{1} \tau_{2}$-r-semi fuzzy closed (or $\tau_{1} \tau_{2}-r-s f c$) set, if A^{\prime} is $\tau_{1} \tau_{2}$-r-sfo,
(v) $\tau_{1} \tau_{2}-r$-fuzzy b-open (or $\left.\tau_{1} \tau_{2}-r-f b o\right)$ set, if $A \leqslant\left(\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l(A, r), r\right)\right) \vee$ $\left(\tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)\right)$,
(vi) $\tau_{1} \tau_{2}-r$-fuzzy b-closed (or $\tau_{1} \tau_{2}-r-f b c$) set, if A^{\prime} is $\tau_{1} \tau_{2}$-r-fbo set.

The family of all $\tau_{1} \tau_{2}$-r-regular fuzzy open (resp. $\tau_{1} \tau_{2}$-r-semi fuzzy open, $\tau_{1} \tau_{2}$-rfuzzy b-open) are denoted by $\tau_{1} \tau_{2}-R O_{r}$ (resp. $\tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-b O_{r}$) and the family of all $\tau_{1} \tau_{2}$-r-regular fuzzy closed (resp. $\tau_{1} \tau_{2}$-r-semi fuzzy closed, $\tau_{1} \tau_{2}$-r-fuzzy b-closed) are denoted by $\tau_{1} \tau_{2}-R C_{r}$ (resp. $\tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b C_{r}$).

Theorem 4.13. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts, $A \in L^{X}$ and $r \in M$. Then the following statements hold:
(1) every $\tau_{1} \tau_{2}-r$-open is $\tau_{1} \tau_{2}-r$-semi fuzzy open,
(2) every $\tau_{1} \tau_{2}-r$-regular fuzzy closed is $\tau_{1} \tau_{2}-r$-semi fuzzy open,
(3) every $\tau_{1} \tau_{2}-r$-semi fuzzy open is $\tau_{1} \tau_{2}-r-b$ fuzzy open.

Proof. (1) Let A be an $\tau_{1} \tau_{2}-r$-open set. Then $A=\tau_{1} \tau_{2}-\operatorname{Int}(A) \leqslant \tau_{1}-C l\left(\tau_{2}-\right.$ $\operatorname{Int}(A, r), r)$. Thus A is $\tau_{1} \tau_{2}-r$-semi fuzzy open.
(2) Let A be an $\tau_{1} \tau_{2}$-r-regular fuzzy closed set. Then $A=\tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)$, implies $A \leqslant \tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)$. Thus A is $\tau_{1} \tau_{2}-r$-semi fuzzy open.
(3) Let A be an $\tau_{1} \tau_{2}$-r-semi fuzzy open. Then $A \leqslant \tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)$, implies $A \leqslant \tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right) \vee \tau_{1}-\operatorname{Int}\left(\tau_{2}-C l(A, r), r\right)$. Thus A is $\tau_{1} \tau_{2}-r-b$ fuzzy open.

Remark 4.14. $\tau_{1} \tau_{2}-C_{r} \subseteq \tau_{1} \tau_{2}-S C_{r} \subseteq \tau_{1} \tau_{2}-b C_{r}$ and $\tau_{1} \tau_{2}-O_{r} \subseteq \tau_{1} \tau_{2}-S O_{r} \subseteq$ $\tau_{1} \tau_{2}-b O_{r}$.

Theorem 4.15. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) $\tau_{1} \tau_{2}-R O_{0}=\tau_{1} \tau_{2}-R C_{0}=L^{X}$,
(2) $\underline{0}, \underline{1} \in \tau_{1} \tau_{2}-R O_{r} \cap \tau_{1} \tau_{2}-R C_{r}$.

Theorem 4.16. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts.
(1) If $A \in \tau_{1} \tau_{2}-C_{r}$, then $\tau_{1} \tau_{2}-\operatorname{Int}(A, r) \in \tau_{1} \tau_{2}-R O_{r}$.
(2) If $A \in \tau_{1} \tau_{2}-O_{r}$, then $\tau_{1} \tau_{2}-C l(A, r) \in \tau_{1} \tau_{2}-R C_{r}$.

Theorem 4.17. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then $\tau_{1} \tau_{2}-R O_{r} \cap \tau_{1} \tau_{2}-R C_{r}=$ $\tau_{1} \tau_{2}-L_{r}$ for every $r \in M$.

Proof. We have $\tau_{1} \tau_{2}-R O_{r} \subseteq \tau_{1} \tau_{2}-O_{r}$ and $\tau_{1} \tau_{2}-R C_{r} \subseteq \tau_{i}-C_{r}$. Then $\tau_{1} \tau_{2}-$ $R O_{r} \cap \tau_{1} \tau_{2}-R C_{r} \subseteq \tau_{1} \tau_{2}-L_{r}$. For the reverse implication, let $A \in \tau_{1} \tau_{2}-L_{r}$. Then $\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l(A, r), r\right)=\tau_{1}-\operatorname{Int}(A, r)=A$. Again, $\tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)=$ $\tau_{1}-C l(A, r)=A$. Thus $A \in \tau_{1} \tau_{2}-R C_{r}$.

Theorem 4.18. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) $\tau_{1} \tau_{2}-R C_{r} \cup \tau_{1} \tau_{2}-R O_{r} \subseteq \tau_{1} \tau_{2}-S C_{r} \cap \tau_{1} \tau_{2}-S O_{r}$,
(2) $\tau_{1} \tau_{2}-R C_{r} \cup \tau_{1} \tau_{2}-R O_{r} \subseteq \tau_{1} \tau_{2}-b C_{r} \cap \tau_{1} \tau_{2}-b O_{r}$,
(3) $\tau_{1} \tau_{2}-S C_{r} \cup \tau_{1} \tau_{2}-S O_{r} \subseteq \tau_{1} \tau_{2}-b C_{r} \cap \tau_{1} \tau_{2}-b O_{r}$.

Proof. (2) Let $A \in \tau_{1} \tau_{2}-R O_{r}$. Then $A=\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l(A, r), r\right)=A$ implies $\left(\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l(A, r), r\right)\right) \wedge\left(\tau_{1}-C l\left(\tau_{2}-\operatorname{Int}(A, r), r\right)\right) \leqslant A$. Thus $A \in \tau_{1} \tau_{2}-b O_{r}$. Again, if $A \in \tau_{1} \tau_{2}-R O_{r}$, then $A^{\prime} \in \tau_{1} \tau_{2}-R C_{r} \subseteq \tau_{1} \tau_{2}-C_{r}$. Thus $\tau_{1} \tau_{2}-C l\left(A^{\prime}, r\right)=$ A^{\prime}. Consequently, $\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A^{\prime}, r\right), r\right) \leqslant A^{\prime}$ and $\left(\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A^{\prime}, r\right), r\right)\right) \wedge$ $\left(\tau_{1}-C l\left(\tau_{2}-\operatorname{Int}\left(A^{\prime}, r\right), r\right)\right) \leqslant A^{\prime}$. So $A^{\prime} \in \tau_{1} \tau_{2}-b C_{r}$ which implies $A \in \tau_{1} \tau_{2}-b O_{r}$. Hence $\tau_{1} \tau_{2}-R O_{r} \subseteq\left(\tau_{1} \tau_{2}-b O_{r} \cap \tau_{1} \tau_{2}-b C_{r}\right)$.

Similarly, $\tau_{1} \tau_{2}-R C_{r} \subseteq\left(\tau_{1} \tau_{2}-b O_{r} \cap \tau_{1} \tau_{2}-b C_{r}\right)$.
The proofs of (1) and (3) are similar to (2).
Theorem 4.19. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) $\tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-S C_{r}$ and $\tau_{1} \tau_{2}-b C_{r}$ are meet-semilattices,
(2) $\tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}$ and $\tau_{1} \tau_{2}-b O_{r}$ are join-semilattices,
(3) $\tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b O_{r}$ and $\tau_{1} \tau_{2}-b C_{r}$ are monoids.

Proof. (1) Let $A_{1}, A_{2} \in \tau_{1} \tau_{2}-R O_{r}$. Then $\tau_{i}\left(A_{1}\right), \tau_{i}\left(A_{2}\right) \geq r$. Thus $\tau_{i}\left(A_{1} \wedge A_{2}\right)>r$. Also, $\tau_{2}-C l\left(A_{1} \wedge A_{2}, r\right) \geq A_{1} \wedge A_{2}$ and $\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A_{1} \wedge A_{2}, r\right)\right) \geq \tau_{1}-\operatorname{Int}\left(A_{1} \wedge\right.$ $\left.A_{2}, r\right)=A_{1} \wedge A_{2}$.

Now $A_{1} \geq A_{1} \wedge A_{2}$ and $A_{1}=\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A_{1}, r\right), r\right) \geq \tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A_{1} \wedge\right.\right.$ $\left.\left.A_{2}, r\right), r\right)$. Also $A_{2} \geq A_{1} \wedge A_{2}$ and $A_{2}=\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A_{2}, r\right), r\right) \geq \tau_{1}-\operatorname{Int}\left(\tau_{2}-\right.$ $\left.C l\left(A_{1} \wedge A_{2}, r\right), r\right)$. So $A_{1} \wedge A_{2} \geq \tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A_{1} \wedge A_{2}, r\right), r\right)$. Hence $A_{1} \wedge A_{2}=$ $\tau_{1}-\operatorname{Int}\left(\tau_{2}-C l\left(A_{1} \wedge A_{2}, r\right), r\right)$ which shows that $\tau_{1} \tau_{2}-R O_{r}$ is a meet-semilattice.

Similarly, $\tau_{1} \tau_{2}-S C_{r}$ and $\tau_{1} \tau_{2}-b C_{r}$ are meet-semilattices.
(2) Similarly, $\tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}$ and $\tau_{1} \tau_{2}-b O_{r}$ are join-semilattices.
(3) Associativity follows from (1) and (2). Again, $\underline{1} \in \tau_{1} \tau_{2}-R O_{r}$ and $\underline{0} \in$ $\tau_{1} \tau_{2}-R C_{r}$ are the identity elements.

Similarly, for the rest.
Remark 4.20. In general,
(1) $\tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b O_{r}$ and $\tau_{1} \tau_{2}-b C_{r}$ are not lattices and hence not L-bitopologies,
(2) $\tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-S C_{r}$ and $\tau_{1} \tau_{2}-b C_{r}$ are not a complete meet-semilattices,
(3) $\tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}$ and $\tau_{1} \tau_{2}-b O_{r}$ are not a complete join-semilattices,
(4) The partial ordering in M does not induce any ordering in the collections of $\tau_{1} \tau_{2}-R O_{r}, \tau_{1} \tau_{2}-R C_{r}, \tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b O_{r}$ and $\tau_{1} \tau_{2}-b C_{r}$.

Definition 4.21. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts, $r \in M$ and $A \in L^{X}$. Then the $\tau_{1} \tau_{2}$-LM-fuzzy semi closure operator is defined by

$$
\tau_{1} \tau_{2}-S C l(A, r)=\bigwedge\left\{F \in L^{X}: A \leqslant F, F \in \tau_{1} \tau_{2}-S C_{r}\right\}
$$

and the $\tau_{1} \tau_{2}-L M$-fuzzy semi interior operator is defined by

$$
\tau_{1} \tau_{2}-S \operatorname{Int}(A, r)=\bigvee\left\{U \in L^{X}: U \leqslant A, U \in \tau_{1} \tau_{2}-S O_{r}\right\}
$$

Definition 4.22. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts and let $r \in M, A \in L^{X}$. Then the $\tau_{1} \tau_{2}-L M$-fuzzy b-closure operator is defined by

$$
\tau_{1} \tau_{2}-b C l(A, r)=\bigwedge\left\{F \in L^{X}: A \leqslant F, F \in \tau_{1} \tau_{2}-b C_{r}\right\}
$$

and the $\tau_{1} \tau_{2}-L M$-fuzzy b-interior operator is defined by

$$
\tau_{1} \tau_{2}-b \operatorname{Int}(A, r)=\bigvee\left\{U \in L^{X}: U \leqslant A, U \in \tau_{1} \tau_{2}-b O_{r}\right\}
$$

Definition 4.23. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an $L M$-fbts, $A, B \in L^{X}$ and $r \in M$. Then A is called
(i) $\tau_{1} \tau_{2}-r$-generalized fuzzy closed (or $\tau_{1} \tau_{2}-r-g f c$) set, if $\tau_{2}-C l(A, r) \leqslant B$ whenever $A \leqslant B$ and $B \in \tau_{1}-O_{r}$,
(ii) $\tau_{1} \tau_{2}$-r-generalized fuzzy open (or $\tau_{1} \tau_{2}-r-g f o$) set, if A^{\prime} is a $\tau_{1} \tau_{2}$-r-gfc set,
(iii) $\tau_{1} \tau_{2}-r$-regular generalized fuzzy closed (or $\tau_{1} \tau_{2}-r$-rgfc) set, if $\tau_{2}-C l(A, r) \leqslant B$ whenever $A \leqslant B$ and $B \in \tau_{1}-R O_{r}$,
(iv) $\tau_{1} \tau_{2}$-r-regular generalized fuzzy open (or $\tau_{1} \tau_{2}-r$-rgfo) set, if A^{\prime} is a $\tau_{1} \tau_{2}-\mathrm{r}-\mathrm{gfc}$ set,
(v) $\tau_{1} \tau_{2}-r$-generalized fuzzy semi-closed (or $\tau_{1} \tau_{2}-r$-gfsc) set, if $\tau_{2}-S C l(A, r) \leqslant B$ whenever $A \leqslant B$ and $B \in \tau_{1}-O_{r}$,
(vi) $\tau_{1} \tau_{2}$-r-generalized fuzzy semi-open (or $\tau_{1} \tau_{2}-r$-gfso) set, if A^{\prime} is a $\tau_{1} \tau_{2}$-r-gfsc set,
(vii) $\tau_{1} \tau_{2}$-r-generalized fuzzy b-closed (or $\tau_{1} \tau_{2}-r-g f b c$) set, if $\tau_{2}-b C l(A, r) \leqslant B$ whenever $A \leqslant B$ and $B \in \tau_{1}-O_{r}$,
(viii) $\tau_{1} \tau_{2}-r$-generalized fuzzy b-open (or $\tau_{1} \tau_{2}-r$-gfbo) set, if A^{\prime} is a $\tau_{1} \tau_{2}$-r-gfbc set.

The family of all $\tau_{1} \tau_{2}$-r-generalized fuzzy closed (resp. $\tau_{1} \tau_{2}$-r-regular generalized fuzzy closed, $\tau_{1} \tau_{2}$-r-generalized fuzzy semi-closed, $\tau_{1} \tau_{2}$-r-generalized fuzzy b-closed) are denoted by $\tau_{1} \tau_{2}-G C_{r}$ (resp. $\tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-G S C_{r}, \tau_{1} \tau_{2}-G b C_{r}$) and
the family of all $\tau_{1} \tau_{2}$-r-generalized fuzzy open (resp. $\tau_{1} \tau_{2}$-r-regular generalized fuzzy open, $\tau_{1} \tau_{2}$-r-generalized fuzzy semi-open, $\tau_{1} \tau_{2}$-r-generalized fuzzy b-open) are denoted by $\tau_{1} \tau_{2}-G O_{r}\left(\right.$ resp. $\left.\tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-G S O_{r}, \tau_{1} \tau_{2}-G b O_{r}\right)$.

Theorem 4.24. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) $\tau_{1} \tau_{2}-R C_{r} \subseteq \tau_{1} \tau_{2}-C_{r} \subseteq \tau_{1} \tau_{2}-G C_{r}$ and $\tau_{1} \tau_{2}-R O_{r} \subseteq \tau_{1} \tau_{2}-O_{r} \subseteq \tau_{1} \tau_{2}-G O_{r}$,
(2) $\tau_{1} \tau_{2}-G C_{r} \subseteq \tau_{1} \tau_{2}-R G C_{r} \subseteq \tau_{1} \tau_{2}-G S C_{r} \subseteq \tau_{1} \tau_{2}-G b C_{r}$ and $\tau_{1} \tau_{2}-G O_{r} \subseteq$ $\tau_{1} \tau_{2}-R G O_{r} \subseteq \tau_{1} \tau_{2}-G S O_{r} \subseteq \tau_{1} \tau_{2}-G b O_{r}$.

Theorem 4.25. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) $\tau_{1} \tau_{2}-G O_{r}, \tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-G S C_{r}$ and $\tau_{1} \tau_{2}-G b C_{r}$ are meet-semilattices,
(2) $\tau_{1} \tau_{2}-G C_{r}, \tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-G S O_{r}$ and $\tau_{1} \tau_{2}-G b O_{r}$ are join-semilattices,
(2) $\tau_{1} \tau_{2}-G O_{r}, \tau_{1} \tau_{2}-G C_{r}, \tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-G S O_{r}, \tau_{1} \tau_{2}-S C_{r}$,
$\tau_{1} \tau_{2}-G b O_{r}$ and $\tau_{1} \tau_{2}-G b C_{r}$ are monoids.
Proof. (1) Let $A_{1}, A_{2} \in \tau_{1} \tau_{2}-G O_{r}$. Then $A_{1}^{\prime}, A_{2}^{\prime} \in \tau_{1} \tau_{2}-G C_{r}$. Thus $A_{1}^{\prime} \vee A_{2}^{\prime} \in$ $\tau_{1} \tau_{2}-G C_{r}$. So $\left(A_{1} \wedge A_{2}\right)^{\prime} \in \tau_{1} \tau_{2}-G C_{r}$. Hence $\left(A_{1} \wedge A_{2}\right) \in \tau_{1} \tau_{2}-G O_{r}$. Therefore $\tau_{1} \tau_{2}-G O_{r}$ is a meet semi-lattice.

Similarly, $\tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-G S C_{r}$ and $\tau_{1} \tau_{2}-G b C_{r}$ are meet-semilattices.
(2) Let $A_{1}, A_{2} \in \tau_{1} \tau_{2}-G C_{r}$ and $B \in \tau_{1} \tau_{2}-O_{r}$ such that $A_{1} \vee A_{2} \leqslant B$. Since $A_{1} \leqslant B$ and $A_{1} \in \tau_{1} \tau_{2}-G C_{r}, \tau_{1} \tau_{2}-C l\left(A_{1}, r\right) \leqslant B$. Similarly, $\tau_{1} \tau_{2}-C l\left(A_{2}, r\right) \leqslant B$. Then $\tau_{1} \tau_{2}-C l\left(A_{1} \vee A_{1}, r\right)=\tau_{1} \tau_{2}-C l\left(A_{1}, r\right) \vee \tau_{1} \tau_{2}-C l\left(A_{2}, r\right) \leqslant B$. Thus $\tau_{1} \tau_{2}-G C_{r}$ is a join semi-lattice.

Similarly, $\tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-G S O_{r}$ and $\tau_{1} \tau_{2}-G b O_{r}$ are join-semilattices.
(3) Associativity follows from (1), (2) and $\underline{1} \in \tau_{1} \tau_{2}-G C_{r}$ and $\underline{0} \in \tau_{1} \tau_{2}-G O_{r}$ are the identity elements.

Similarly, for the rest.
Theorem 4.26. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts.
(1) If $A \in \tau_{1} \tau_{2}-G S C_{r}$, then $B \in \tau_{1} \tau_{2}-G S C_{r}$ for all B such that $A \leqslant B \leqslant$ $\tau_{1} \tau_{2}-S C_{r}(A, r)$.
(2) If $A \in \tau_{1} \tau_{2}-G b C_{r}$, then $B \in \tau_{1} \tau_{2}-G b C_{r}$ for all B such that $A \leqslant B \leqslant$ $\tau_{1} \tau_{2}-b C_{r}(A, r)$.

Proof. (2) Let A is an $\tau_{1} \tau_{2}$-r-gfbc and consider $B \in L^{X}$ such that $A \leqslant B \leqslant \tau_{1} \tau_{2}-$ $b C_{r}(A, r)$. Also, let C be a an $\tau_{1} \tau_{2}$-r-fo in L^{X} such that $B \leqslant C$. Then clearly, $A \leqslant C$ and $\tau_{1} \tau_{2}-b C_{r}(A, r) \leqslant C$. Again, note that $\tau_{1} \tau_{2}-b C_{r}(B, r)=\tau_{1} \tau_{2}-b C_{r}(A, r)$. Thus $\tau_{1} \tau_{2}-b C_{r}(B, r) \leqslant C$. So B is an $\tau_{1} \tau_{2}-\mathrm{r}$-gfbc.
(i) The proof is similar to (1).

Theorem 4.27. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts.
(1) If $A \in \tau_{1} \tau_{2}-G S C_{r}$, then for every $B \in \tau_{1} \tau_{2}-S O_{r}, \tau_{1} \tau_{2}-S C_{r}(A, r) \bar{q} B$ iff $A \bar{q} B$.
(2) If $A \in \tau_{1} \tau_{2}-G b C_{r}$, then for every $B \in \tau_{1} \tau_{2}-b O_{r}, \tau_{1} \tau_{2}-b C_{r}(A, r) \bar{q} B$ iff $A \bar{q} B$.
Proof. (2) Let $B \in \tau_{1} \tau_{2}-b O_{r}$ for some $r \in M$ and $A \bar{q} B$ for some $A \in L X$. Then $A \leqslant B^{\prime}$. Since B^{\prime} is an $\tau_{1} \tau_{2}-r$-fbc set of L^{X} and A is an $\tau_{1} \tau_{2}-r$-gfbc set, $\tau_{1} \tau_{2}-b C_{r}(A, r) \bar{q} B$.

Conversely, let B be a $\tau_{1} \tau_{2}-r$-fbc set of L^{X} such that $A \leqslant B, r \in M$. Then $A \bar{q} B^{\prime}$. But $\tau_{i}-b C_{r}(A, r) \bar{q} B^{\prime}$. Thus $\tau_{1} \tau_{2}-b C_{r}(A, r) \leqslant B$. So A is an $\tau_{1} \tau_{2}-r$-gfbc.
(2) The proof is similar to (1).

Remark 4.28. Let \mathcal{O} be the collection of all $\tau_{1} \tau_{2}-O_{r}, \mathcal{C}$ be the collection of all $\tau_{1} \tau_{2}-C_{r}$ and \mathcal{L} be the collection of all $\tau_{1} \tau_{2}-L_{r}$ in an $L M$-fbts $\left(X, \tau_{1}, \tau_{2}\right)$. Then \mathcal{O}, \mathcal{C} and \mathcal{L} are bounded lattices where the bounds for \mathcal{O} are $\tau_{1} \tau_{2}-O_{0}$ and $\tau_{1} \tau_{2}-O_{1}$, the bounds of \mathcal{C} are $\tau_{1} \tau_{2}-C_{0}$ and $\tau_{1} \tau_{2}-C_{1}$ and that of \mathcal{L} are $\tau_{1} \tau_{2}-L_{0}$ and $\tau_{1} \tau_{2}-L_{1}$.

Remark 4.29. The lattices \mathcal{O}, \mathcal{C} and \mathcal{L} are neither atomic nor dual atomic. For example, let $X=\{a, b, c\}, L=M=I$ and define an $L M$-fuzzy bitopology on X as follows:

$$
\tau_{1}(A)=\tau_{2}(A)= \begin{cases}1 & \text { if } A \in\{\underline{0}, \underline{1}\} \\ \alpha & \text { if } A=\underline{\alpha}, \alpha \in I \backslash\{0,1\} \\ 0 & \text { otherwise } .\end{cases}
$$

Clearly for $\alpha \in I, \tau_{1} \tau_{2}-O_{\alpha}=\{\underline{0}\} \cup\{\beta: \beta \geq \alpha, \beta \in I\}$. Then it follows that $\mathcal{O}=\mathcal{C}=\mathcal{L}=\left\{\tau_{1} \tau_{2}-O_{\alpha}: \alpha \in I\right\}$ which is neither atomic nor dual atomic.

Theorem 4.30. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an LM-fbts. Then
(1) \mathcal{O}, \mathcal{C} and \mathcal{L} are dual atomic, if M is atomic,
(2) \mathcal{O}, \mathcal{C} and \mathcal{L} are atomic, if M is dual atomic.

Remark 4.31. Atoms and dual atoms may exist in \mathcal{O}, \mathcal{C} and \mathcal{L} without M being atomic or dual atomic. For example, let $X=\mathbb{R}$, the set of real numbers and $L=M=I$. Clearly, M is neither atomic nor dual atomic. Now, define an $L M$ fuzzy bitopology on X as follows:

$$
\tau_{1}(A)=\tau_{2}(A)= \begin{cases}1 & \text { if } A \in\{\underline{0}, \underline{1}\} \\ \alpha & \text { if } A=\underline{\alpha}, \alpha \in\left(\frac{1}{4}, \frac{2}{3}\right] \\ 0 & \text { otherwise } .\end{cases}
$$

Then $\mathcal{O}=\left\{\tau_{1} \tau_{2}-O_{0}, \tau_{1} \tau_{2}-O_{1}\right\} \cup\left\{\tau_{1} \tau_{2}-O_{\alpha}: \alpha \in\left[\frac{1}{4}, \frac{2}{3}\right]\right\}$ and $\mathcal{C}=\left\{\tau_{1} \tau_{2}-C_{0}, \tau_{1} \tau_{2}-\right.$ $\left.C_{1}\right\} \cup\left\{\tau_{1} \tau_{2}-C_{\alpha}: \alpha \in\left[\frac{1}{4}, \frac{2}{3}\right]\right\}$. Also $\mathcal{L}=\left\{\tau_{1} \tau_{2}-L_{0}, \tau_{1} \tau_{2}-L_{1}\right\} \cup\left\{\tau_{i}-L_{\alpha}: \alpha \in\left[\frac{1}{4}, \frac{2}{3}\right]\right\}$.

5. Conclusions

As a result of the study, we have identified certain monoids that are subsets of L^{X}. Some of them are distributive lattices too. Now, let $\tau_{1} \tau_{2}-\Omega_{r}=\left\{\tau_{1} \tau_{2}-\right.$ $L_{r}, \tau_{1} \tau_{2}-O_{r}, \tau_{1} \tau_{2}-C_{r}, \tau_{1} \tau_{2}-G O_{r}, \tau_{1} \tau_{2}-G C_{r}, \tau_{1} \tau_{2}-R G O_{r}, \tau_{1} \tau_{2}-R G C_{r}, \tau_{1} \tau_{2}-$ $\left.S O_{r}, \tau_{1} \tau_{2}-S C_{r}, \tau_{1} \tau_{2}-b O_{r}, \tau_{1} \tau_{2}-b C_{r}, L^{X}\right\}$. Then $\tau_{1} \tau_{2}-\Omega_{r}$ is a lattice under set inclusion whose elements are all monoids. The Hasse diagram of this lattice is shown in Figure 1.

Figure 1. Hasse diagram of $\tau_{1} \tau_{2}-\Omega_{r}$

It is clear that $\tau_{1} \tau_{2}-\Omega_{r}$ is associative, complemented but not modular. Thus, by introducing various notions of openness and closedness in $L M$-fuzzy bitopological spaces, the study associates to each element of M, a lattice of monoids that are subsets of L^{X}.

Acknowledgements. The authors are highly grateful to referees for their valuable comments and suggestions for improving the paper.

References

[1] L. Zadeh, fuzzy sets, Information and control 8 (1965) 338-353.
[2] C. Chang, Fuzzy topological space, J. Math. Anal. Appl. 24 (1968) 182-190.
[3] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz Univ., Poznan, Poland 1985.
[4] A. Sostak, On a fuzzy topological structure, Rendiconti del Circolo Mathematico di Palermo 11 (1985) 89-103.
[5] J. Kelly, Bitopological spaces, Proceedings of the London Mathematical Society 13 (3) (1963) 71-89.
[6] A. Kandil, A. Nouh and S. El-Sheikh, On fuzzy bitopological spaces, Fuzzy Sets and Systems 29 (1995) 353-363.
[7] B. A. Davey and H. A. Priestly, Introduction to lattices and order, Cambridge University Press 2009.
[8] L. Y. Ming and L. M. Kang, Fuzzy topology, World Scientific 1997.
[9] G. Varghese and S. Mathew, On the characterizing lattice of an L-fuzzy topological space, Far East Journal of Mathematical Sciences 39 (2010) 15-27.
[10] M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems. 90 (1997) 83-88.

FADHIL ABBAS (fadhilhaman@gmail.com)
Salzburger Stra β e 195, Linz, Austria

