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Abstract. In this paper, we have introduced and studied some new
notions of R1 separation axiom in fuzzy soft topological spaces by us-
ing quasi-coincident relation for fuzzy soft points. We have observed that
all these notions satisfy good extension property. We have shown that
these notions are preserved under the one-one, onto and FSP continuous
mapping. Moreover, we have obtained some other properties of this new
concept.

2020 AMS Classification: 03E72, 08A72

Keywords: Soft set, Fuzzy set, Fuzzy soft set, Fuzzy soft topological spaces,
Quasi-coincidence, Fuzzy soft R1 separations, Initial soft topology, Final soft topol-
ogy.

Corresponding Author: Md. Ruhul Amin (ruhulbru1611@gmail.com)

1. Introduction

In 1999, the Russian researcher Molodtsov [1] introduced the concept of a soft set
and pointed out several directions, e.g., game theory, Riemann integration, theory
of measurement, smoothness of functions and so on. Maji et al. [2] presented some
new definitions on soft sets and discussed in detail the application of soft set theory
in decision making problems. Chen et al. [3] studied the parametrization reduction
of soft sets. Ahmat and Kharal [4] presented some more properties of fuzzy soft
sets and introduced the notion of a mapping on fuzzy soft sets. Şenel [5, 6] repre-
sented the relation between soft topological space and soft ditopological space and
also introduced a new approach to Hausdorff space theory via the soft sets. Aktas
and Cagman [7] defined the notion of soft groups and derived some properties. In
2010, Nazmul and Samanta [8] defined soft topological groups, normal soft topolog-
ical groups and homomorphisms. Furthermore, Shabir and Naz [9] introduced the
concept of soft topological space and studied neighborhoods and separation axioms.
B. Pazar Varol et al. [10] interpreted categories related to categories of topological
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spaces as special categories of soft sets. Also, Tripathy [11], Acharjee [12] and Deb-
nath [13] developed fuzzy soft bitopological spaces. In 2011, Tanay et al. [14] gave
the topological structure of fuzzy soft sets.

2. Preliminaries

Now we recall some definitions and concepts which will be used in our work.

Definition 2.1 ([1]). A pair (F,E) is said to be a soft set over the initial universe
X, if F is a mapping from E to P (X), where P (X) is the collection of subsets of X.

Definition 2.2 ([1]). Let A ⊆ E. Then a pair (F,A) is called a soft set over X,
provided that F is a mapping given by F : A −→ P (X) such that F (e) = ∅, if
e /∈ A and F (e) 6= ∅, if e ∈ A, where X is an initial universe set and E be the set
of parameters, P (X) be the set of all subsets of X. Here F is called an approximate
function of the soft set (F,A) and the value F (e) is a set called e-element of the soft
set. In other words, the soft set is a parameterized family of subsets of the set X.

Definition 2.3 ([15]). Let X be an initial universe set and let E be a set of pa-
rameters. Let IX(I = [0, 1]) denotes the set of all fuzzy sets of X. Let A ⊆ E.
A pair (F,A) is called a fuzzy soft set over X, provided that F is a mapping given
by F : A −→ IX such that F (e) = OX , if e /∈ A and F (e) = Ox, if e ∈ A, where
Ox = 0 for all x ∈ X. Here F is called approximate function of the fuzzy soft set
(F,A) and the value F (e) is a fuzzy set called e-element of the fuzzy soft set (F,A).
Thus a fuzzy soft set (F,A) over X can be represented by the set of ordered pairs
(F,A) = {(e, F (e)) : e ∈ A,F (e) ∈ IX}. In other words, the fuzzy soft set is a
parameterized family of fuzzy subsets of the set X.

Definition 2.4 ([16]). A soft set (F,E) is said to be a soft point over X, if there
exist t ∈ E and x ∈ X such that

F (t) =

{
{x} if t = e
∅ if t ∈ E − {e}.

In this case, x is called the support point of the soft point, x is called the support set
of the soft point and e is called the expressive parameter.

Definition 2.5 ([17]). Let f ∈ S.
(i) If f(e) = ∅ for all e ∈ E, then f is called the null soft point and denoted by

eΦ.
(ii) If f(e) = U for all e ∈ E, then f is called the universal soft point and denoted

by eẼ .
(iii) If there is only one parameter e ∈ E in f , then f is denoted by efi .
(iv) If there is only one parameter e ∈ E in f and f(e) = {u}, then f is denoted

by ef .

Definition 2.6 ([15]). The fuzzy soft set fA ∈ FSS(X,E) is called a fuzzy soft
point, if there exist x ∈ X and e ∈ E such that µefA(x) = α (0 ≤ α ≤ 1) and

µefA(y) = 0∀y ∈ X−{x}, and this fuzzy soft point is denoted by xeα or fe. The class

of all fuzzy soft points of X is denoted by FSP (X,E).
124
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Definition 2.7 ([18]). A fuzzy soft point xeα over X is a fuzzy soft set over X
defined as follows:

xeα(é) =

{
xα if é = e
0 if é ∈ E − {e}.

Where, xα is the fuzzy point in X with support x and value α, α ∈ (0, 1]. The set
of all fuzzy soft points in X is denoted by FSP (X,E).

The fuzzy soft point xeα is said to belong to a fuzzy soft set fE , denoted by xeα ∈ fE ,
if α ≤ f(e)(x). Every non-null fuzzy soft set fE can be expressed as the union of all
the fuzzy soft points belonging to fE . The complement of a fuzzy soft point xeα is
a fuzzy soft set over X.

Definition 2.8 ([2]). Let (F,A) and (G,B) be two soft sets over a common universe
X and over a common parameter E. Then the union of two soft sets (F,A) and
(G,B) over X is the soft set (H,C), where C = A ∪B, is defined by:

H(e) =

 F (e) if e ∈ A−B
G(e) if e ∈ B −A
F (e) ∪G(e) if e ∈ B ∩A,

for each e ∈ C. It is denoted by (H,C) = (F,A) ∪ (G,B).

Definition 2.9 ([2]). Let (F,A) and (G,B) be two soft sets over a common universe
X and over a common parameter E. The intersection of two soft sets (F,A) and
(G,B) over X is the soft set (H,C), where C = A ∩ B, is defined by H(e) =
F (e) ∩G(e), for each e ∈ C. It is denoted by (H,C) = (F,A) ∩ (G,B).

Definition 2.10 ([14]). The fuzzy soft complement of a fuzzy soft set (F,A), denoted
by (F,A)c and is defined as (F,A)c = (F c, A), where F c(e) = 1 − F (e), for every
e ∈ A. Clearly ((F,A)c)c = (F,A) and (1E)c = 0E and (0E)c = 1E .

Definition 2.11 ([19]). The fuzzy soft sets (F,E) and (G,E) in (X,E) are said to
be fuzzy soft quasi-coincident, denoted by (F,E)q(G,E), if there exist e ∈ E, x ∈ X
such that F (e)(x) +G(e)(x) > 1.

If (F,E) is not fuzzy soft quasi-coincident with (G,E), then we write (F,E)q̄(G,E),
i.e., (F,E)q̄(G,E) if and only if F (e)(x) +G(e)(x) ≤ 1, i.e., F (e)(x) ≤ Gc(e)(x) for
all x ∈ X and e ∈ E.

A fuzzy soft point xeα is said to be soft quasi-coincident with fuzzy soft set (F,E),
denoted by xeαq(F,E), if there exist e ∈ E, x ∈ X such that α+ F (e)(x) > 1 and if
xeαq̄(F,E), then α+ F (e)(x) ≤ 1.

Definition 2.12 ([15]). A fuzzy soft topology τ on (X,E) is a family of fuzzy soft
sets over (X,E), satisfying the following properties:

(i) 0E , 1E ∈ τ ,
(ii) if (F,A), (G,B) ∈ τ , then (F,A) ∩ (G,B) ∈ τ ,
(iii) if (F,A)α ∈ τ ∀α ∈ λ, then

⋃
α∈Λ(F,A)α ∈ τ .

If τ is a fuzzy soft topology on (X,E), the triple (X, τ,E) is called a fuzzy soft
topological space. Each member of τ is called a fuzzy soft open set in (X, τ,E). A
fuzzy soft set (F,E) over X is called a fuzzy soft closed, if (F,E)c ∈ τ .
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Definition 2.13 ([20]). The Cartesian product of two fuzzy soft sets (F,A) and
(G,B) is defined as a fuzzy soft set (H,C) = (F,A)× (G,B), where C = A×B and
H : C −→ (X,E) is defined by H(e, é) = F (e)×G(é) for all (e, é) ∈ C, where

F (e)×G(é) = {x/min {F (e)(x), G(é)(x)} : x ∈ X}.
Definition 2.14 ([21]). Let FA ∈ FSS(X,E) and GB ∈ FSS(Y,K). Then, the
fuzzy soft product of FA and GB , denoted by FA×GB , is a fuzzy soft set over X×Y
and is defined by (FA × GB)(e, k) = FA(e) × GB(k) ∀(e, k) ∈ E × K and for all
(x, y) ∈ X × Y, we have

(FA ×GB)(e, k)(x, y) = (FA(e)×GB(k))(x, y) = min {FA(e)(x), GB(k)(y)}.
Definition 2.15. Let {(Xi, Ei), i ∈ Λ} be any family of soft sets and let X and E
denote the Cartesian product of these soft sets, i.e., X = Πi∈ΛXi and E = Πi∈ΛEi.
Note that (X,E) consists of all soft points P = 〈(xi)eiα , i ∈ Λ and α ∈ (0, 1)〉,
where xi ∈ X and ei ∈ Ei. Recall that for each j0 ∈ Λ, we define the projection
(Pq)j0 from the product soft set (X,E) to the soft co-ordinate space (Xj0 , Ej0), i.e.,

(Pq)j0 : (X,E) −→ (Xj0 , Ej0) by (Pq)j0((xi)
ei
α ) = (xj0)

ej0
α . These projections are

used to define the soft product topology.

Definition 2.16 ([22]). The soft mappings (Pq)i, i ∈ {1, 2} is called a soft pro-
jection mapping from FSS(X1, A1) × FSS(X2, A2) to FSS(Xi, Ai) and is defined
by (Pq)i((F1, A1) × (F2, A2)) = Pi(F1 × F2)qi(A1×A2) = (Fi, Ai), where (F1, A1) ∈
FSS(X1, A1) and (F2, A2) ∈ FSS(X2, A2) and also Pi : X1 × X2 −→ Xi and
qi : A1 ×A2 −→ Ai are projection mapping is classical meaning.

Definition 2.17 ([22]). Let FSS(X,E) and FSS(Y,K) be the collection of all the
fuzzy soft sets over X and Y , respectively and E, K be the parameters sets for X and
Y , respectively. Let u : X −→ Y and p : E −→ K be two maps. Then the fuzzy soft
mapping from X to Y is a fup and is denoted by fup : FSS(X,E) −→ FSS(Y,K).

(i) Let (F,A) ∈ FSS(X,E). Then the image of (F,A) under the fuzzy soft
mapping fup is a fuzzy soft set over Y , denoted by fup(F,A) and is defined as

fup(F,A)(k)(y) =

 sup{u(x) = y} sup{p(e) = k} FA(e)(x)
if u−1(y) 6= ∅ and p−1(k) 6= ∅

0 otherwise,

∀y ∈ Y, k ∈ K.
(ii) Let (G,B) ∈ FSS(Y,K). Then the inverse image of (G,B) under the fuzzy

soft mapping fup is a fuzzy soft set over X, denoted by f−1
up (G,B) and is defined as

f−1
up (G,B)(e)(x) = (G,B)(p(e))(u(x)) ∀e ∈ E, x ∈ X.

Definition 2.18 ([23]). Let (f, τ̃) be a soft topological space and g⊆̃f . Then the
collection

τ̃g = {h∩̃g : h ∈ τ̃}
is called a soft subspace topology on g and (g, τ̃g) is called a soft topological subspace
of (f, τ̃).

Definition 2.19 ([23]). A soft topological property is said to be hereditary, if
whenever a soft topological space (f, τ̃) has that property, then so does every soft
topological subspace of it.
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Definition 2.20. Let X be a non-empty set and T be a soft topology on (X,E),
where E is a parameters set. Let τ = ω(T ) be the set of all fuzzy soft lower semi-
continuous mappings from (X,T,E) to IX (The family of all fuzzy sets in X). Then

ω(T ) = {(G,E) ∈ FSS(X,E) : (G,E)−1(α, 1] ∈ T} for each α ∈ I1.

It can be shown that ω(T ) is a fuzzy soft topology on (X,E).
Let P be the property of a soft topological space (X,T,E) and FSP be its topo-

logical analogue. Then FSP is called a ôgood extensionö of P , if the statement
(X,T,E) has P , i.e., (X,ω(T ), E) has FSP holds good for every soft topological
space (X,T,E).

Definition 2.21 ([21]). Let {(Xi, τi), i ∈ Λ} be a family of fuzzy soft topological
spaces relative to the parameters sets Ei respectively. Then their product is defined
as the fuzzy soft topological space (X, τ,E); where X = Πi∈ΛXi,E = Πi∈ΛEi
and τ is the fuzzy soft topology over X which is initial with respect to the family
{(PXi, qEi), i ∈ Λ}, PXi : Πi∈ΛXi −→ Xi and qEi : Πi∈ΛEi −→ Ei, i ∈ Λ are the
projection maps i.e τ is generated by

{(PXi, qEi)−1(F,Ai) : i ∈ Λ, (F,Ai) ∈ τi}.

Definition 2.22. Let {(Xi, τi), i ∈ Λ} be a family of fuzzy soft topological spaces
relative to the parameters sets Ei respectively, X be a non-empty set with parameters
set E and for each i ∈ Λ, (fup)i : (Xi, τi) −→ X be a soft mappings. Then the fuzzy
soft topology τ over X is said to be final with respect to the family {(fup)i; i ∈ Λ},
if τ has as subbase the set

S = {(fup)i(F,Ai) : i ∈ Λ, (F,Ai) ∈ τi},

i.e., the fuzzy soft topology τ over X is generated by S.

Definition 2.23 ([22]). Let fp : FSS(X,A) −→ FSS(Y,B) and gq : FSS(Y,B) −→
FSS(Z,C) be two fuzzy soft mappings.Then the composition of fp and gq is denoted
by fpogq and defined by fpogq = fogpoq.

Definition 2.24 ([24]). A fuzzy soft topological space (X, τ,E) is said to be fuzzy
soft R1 (FSR1,for short), if for every xeα, y

e
β ∈ FSP (X,E)with xeαq̄ȳ

e
β implies there

exist Oxeα , Oyeβ ∈ τ such that Oxeα q̄Oyeβ .

3. Main results

Definition 3.1. A fuzzy soft topological space (X, τ,E) is called a:
(i) FSR1(i) space ,if for any pair of fuzzy soft points xer, y

e
s in (X,E) with x 6= y,

whenever there exists (H,E) ∈ τ with H(e)(x) 6= H(e)(y) ∀e ∈ E, then there exist
(F,E), (G,E) ∈ τ such that xerq(F,E), yesq(G,E) and (F,E) ∩ (G,E) = ∅.

(ii) FSR1(ii) space, if for any pair of fuzzy soft points xer, y
e
s in (X,E) with x 6= y,

whenever there exists (H,E) ∈ τ with H(e)(x) 6= H(e)(y) ∀e ∈ E, then there exist
(F,E), (G,E) ∈ τ such that xer ∈ (F,E), yes ∈ (G,E) and (F,E)q̄(G,E).

(iii) FSR1(iii) space, if for any pair of fuzzy soft points xer, y
e
s in (X,E) with

x 6= y, whenever there exists (H,E) ∈ τ with H(e)(x) 6= H(e)(y) ∀e ∈ E, then there
exist (F,E), (G,E) ∈ τ such that xerq(F,E), yesq(G,E) and (F,E)q̄(G,E).
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3.1. Subspaces in fuzzy soft R1 topological spaces. In this section, we show
that our notions satisfy hereditary property.

Theorem 3.2. Let (X, τ,E) be a fuzzy soft topological space, A ⊆ X, tA = {(FA, E) =
(F,E)∩A : (F,E) ∈ τ}, then (X, τ,E) is FSR1(j) ⇒ (A, tA, E) is FSR1(j), where
j = i, ii, iii.

Proof. Let (X, τ,E) be a fuzzy soft topological space and (X, τ,E) is FSR1(j). We
have to prove that (A, tA, E) is FSR1(j). Let xer, y

e
s be fuzzy soft points in (A,E)

with x 6= y. Then xer, y
e
s are also fuzzy soft points in (X,E) as A ⊆ X with x 6= y.

Consider (M,E) ∈ tA with M(e)(x) 6= M(e)(y). Here (M,E) can be written as
(FA, E) = (F,E) ∩ A, where (F,E) ∈ τ. Then F (e)(x) 6= F (e)(y). Since (X, τ,E)
is FSR1(j) fuzzy soft topological space, there exist (G,E), (H,E) ∈ τ such that
xerq(G,E), yesq(H,E) and (G,E)∩ (H,E) = ∅. From the definition of tA, we obtain
(GA, E) = ((G,E) ∩A), (HA, E) = ((H,E) ∩A) ∈ tA.

Now, we have the following implications:
yesq(H,E) ⇒ H(e)(y) +s > 1 ∀y ∈ X, e ∈ E

⇒ H(e)(y) ∩A(y)+s > 1 y ∈ A ⊆ X
⇒ ((H,E) ∩A)(e)(y) +s > 1
⇒ (HA, E)(e)(y) + s > 1
⇒ yesq(HA, E).

Also, we obtain the following implications:
xerq(G,E) ⇒ G(e)(x) + r > 1, x ∈ X, e ∈ E

⇒ G(e)(x) ∩A(x) +r > 1, x ∈ A ⊆ X
⇒ ((G,E) ∩A)(e)(x) +r > 1
⇒ (GA, E)(e)(x) + r > 1
⇒ xerq(GA, E).

Further, we have
(G,E) ∩ (H,E) = ∅

⇒ (G ∩H)(e)(x) = 0 ∀x ∈ X, e ∈ E
⇒ min (G(e)(x), H(e)(x)) = 0
⇒ min (((G,E) ∩A)(e)(x), ((H,E) ∩A)(e)(x)) = 0 x ∈ A ⊆ X
⇒ min ((GA, E)(e)(x), (HA, E)(e)(x)) = 0
⇒ ((GA, E) ∩ (HA, E))(e)(x) = 0
⇒ (GA, E) ∩ (HA, E) = ∅.

Thus It follows that there exists (GA, E), (HA, E) ∈ tA such that

xerq(GA, E), yesq(HA, E) and (GA, E) ∩ (HA, E) = ∅.
So (A, tA, E) is FSR1(j). Hence the prove is complete. �

3.2. Productivity andpProjectivity in fuzzy soft R1 topological spaces. In
this section, we show that our notions satisfy productive and projective properties.

Theorem 3.3. Let (Xi, τi, Ei), i ∈ Λ be a fuzzy soft topological spaces and X =
Πi∈ΛXi, E = Πi∈ΛEi and τ be the fuzzy soft topology on (X,E). Then for all i ∈ Λ,
(Xi, τi, Ei) is FSR1(j) if and only if (X, τ,E) is FSR1(j), where j = i, ii, iii.

Proof. Let (Xi, τi, Ei) be FSR1(j) space for all i ∈ Λ. We have to prove that (X, τ,E)
is FSR1(j). Let xer, y

e
s be fuzzy soft points in (X,E) with x 6= y and (H,E) ∈ τ
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with H(e)(x) 6= H(e)(y). But we have H(e)(x) = min {Hi(ei)(xi) : i ∈ Λ},
H(e)(y) = min {Hi(ei)(yi) : i ∈ Λ}. Then there is at least one (Hi, Ei) ∈ τi
and (xi)

ei
r , (yi)

ei
s are fuzzy soft points with xi 6= yi for some i ∈ Λ with Hi(ei)(xi) 6=

Hi(ei)(yi). Since (Xi, τi, Ei) is FSR1(j), there exist (Fi, Ei)(Gi, Ei) ∈ τi such that
(xi)

ei
r q(Fi, Ei), (yi)

ei
s q(Gi, Ei) and (Fi, Ei) ∩ (Gi, Ei) = ∅. But we have

PXi(x) = xi,

PXi(y) = yi,

qEi(e) = ei.

Now, we have the following implications:
(xi)

ei
r q(Fi, Ei) ⇒ Fi(ei)(xi) + r > 1 ∀xi ∈ Xi, ei ∈ Ei

⇒ Fi(qEi(e))(PXi(x)) + r > 1 ∀x ∈ X, e ∈ E
⇒ (FioqEi)(e)(PXi(x)) + r > 1
⇒ (FioqEioPXi)(e)(x) + r > 1
⇒ xerq(FioqEioPXi, E).

Further, we have
(yi)

ei
s q(Gi, Ei) ⇒ Gi(ei)(yi) + s > 1 ∀yi ∈ Xi, ei ∈ Ei

⇒ Gi(qEi(e))(PXi(y)) + s > 1 ∀y ∈ X, e ∈ E
⇒ (GioqEi)(e)(PXi(y)) + s > 1
⇒ (GioqEioPXi)(e)(y) + s > 1
⇒ yesq(GioqEioPXi, E).

Also, we obtain the following implications:
(Fi, Ei) ∩ (Gi, Ei) = ∅

⇒ (Fi ∩Gi)(ei)(xi) = 0 ∀xi ∈ Xi, ei ∈ Ei
⇒ min (Fi(ei)(xi), Gi(ei)(xi)) = 0
⇒ min (Fi(qEi(e))(PXi(x)), Gi(qEi(e))(PXi(x))) = 0 ∀x ∈ X, e ∈ E
⇒ min ((FioqEioPXi)(e)(x), (GioqEioPXi)(e)(x)) = 0
⇒ ((FioqEioPXi) ∩ (GioqEioPXi))(e)(x) = 0
⇒ (FioqEioPXi, Ei) ∩ (GioqEioPXi, Ei) = ∅.

Thus it follows that there exist (FioqEioPXi, E), (GioqEioPXi, E) ∈ τi such that

xerq(FioqEioPXi, E), yesq(GioqEioPXi, E)

and

(FioqEioPXi, Ei) ∩ (GioqEioPXi, Ei) = ∅.
So (X, τ,E) is FSR1(j).

Conversely, let (X, τ,E) be a fuzzy soft topological space and (X, τ,E) is FSR1(j).
We have to prove that (Xi, τi, Ei), i ∈ Λ is FSR1(j). Let ai be a fixed element in
Xi. Let Ai = {x ∈ X = Πi∈ΛXi : xj = ajfor some i 6= j}. Then Aiis a subset of X.
Thus (Ai, τAi , Ei) is a subspace of (X, τ,E). Since (X, τ,E) is FSR1(i), (Ai, τAi , Ei)
is FSR1(j). Now we have (Ai, Ei) is homeomorphic image of (Xi, Ei). So it is clear
that for all i ∈ Λ, (Xi, τi, Ei) is FSR1(j) space. Hence the proof is complete. �

3.3. Mappings in fuzzy soft R1 topological spaces. In this section, we show
that our notions satisfy order preserving property.
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Theorem 3.4. Let (X, τ1, E) and (Y, τ2,K) be two fuzzy soft topological spaces.
Let u : X −→ Y ,p : E −→ K be one-one, onto, fuzzy soft open and fuzzy soft
continuous maps and hence a mapping fup : FSS(X,E) −→ FSS(Y,K) be a one-
one, onto and fuzzy soft open and continuous map, then (X, τ1, E) is FSR1(j) ⇒
(Y, τ2,K) is FSR1(j), where j = i, ii, iii.

Proof. Let (X, τ1, E) be a fuzzy soft topological space and (X, τ1, E) is FSR1(j).
We have to prove that (Y, τ2,K) is FSR1(j). Let x́kr , ýks be fuzzy soft points in
(Y,K) with x́ 6= ý and let (H,K) ∈ τ2, e ∈ E with H(k)(x́) 6= H(k)(ý). Since
fup is onto and so u,p are onto, then there exist fuzzy soft points xer, y

e
s in (X,E)

with fup(x
e
r) = x́er, fup(y

e
s) = ýes and x́er 6= ýes as fup is one-one. Since fup is soft

continuous, f−1
up (H,K) ∈ τ1 with (f−1

up (H,K))(k)(x) 6= (f−1
up (H,K))(k)(y). Again,

since (X, τ1, E) is FSR1(i), then there exist (F,E), (G,E) ∈ τ1 such that

xerq(F,E), yesq(G,E) and (F,E) ∩ (G,E) = ∅.

As fup is open, fup(F,E) ∈ τ2.
Now, we have the following implication:

fup(F,E)(e)(x́) = sup{u(x) = x́} sup{p(é) = e}F (e)(x)
⇒ fup(F,E)(e)(x́) = F (e)(x) for some x

and
fup(G,E)(e)(ý) = sup{u(y) = ý} sup{p(é) = e}G(e)(y)

⇒ fup(G,E)(e)(ý) = G(e)(y) for some y.
Now, we get the following implications:

xerq(F,E) ⇒ F (e)(x) + r > 1 ∀x ∈ X, e ∈ E
⇒ fup(F,E)(e)(x́) + r > 1
⇒ x́erqfup(F,E).

Further, we have the following implications:
yesq(G,E) ⇒ G(e)(y) + s > 1 ∀y ∈ X, e ∈ E

⇒ fup(G,E)(e)(ý) + s > 1
⇒ ýesqfup(G,E).

Also, we obtain the following implications:
(F,E)∩ (G,E) = ∅ ⇒ min (F (e)(x), G(e)(y)) = 0 ∀x, y ∈ X, e ∈ E

⇒ min (fup(F,E)(e)(x́), fup(G,E)(e)(ý)) = 0
⇒ fup(F,E)(e)(x́) ∩ fup(G,E)(e)(ý) = 0
⇒ fup(F,E) ∩ fup(G,E) = ∅.

Thus it follows that there exist fup(F,E), fup(G,E) ∈ τ2 such that

x́erqfup(F,E), ýesqfup(G,E) and fup(F,E) ∩ fup(G,E) = ∅.

So (Y, τ2,K) is FSR1(j) space. Hence the proof is thus complete. �

Theorem 3.5. Let (X, τ1, E) and (Y, τ2,K) be two fuzzy soft topological spaces. Let
u : X −→ Y , p : E −→ K be one-one, onto, soft open and soft continuous maps,
i.e., a fuzzy soft mapping fup : FSS(X,E) −→ FSS(Y,K) be a one-one, onto, soft
open and fuzzy soft continuous map. If (Y, τ2,K) is FSR1(j), then (X, τ1, E) is
FSR1(j), where j = i, ii, iii.

Proof. Let (Y, τ2,K) be a fuzzy soft topological space and (Y, τ2,K) is FSR1(j). We
have to prove that (X, τ1, E) is FSR1(j). Let xer, y

e
s be fuzzy soft points in (X,E)
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with x 6= y and let (H,E) ∈ τ1 with H(e)(x) 6= H(e)(y) ∀e ∈ E. Since fup is
one-one, i.e., u, p are one-one, there exist fuzzy soft points xer, y

e
s in (X,E) with

fup(x
e
r) = x́er, fup(y

e
s) = ýes and x́er 6= ýes as fup is one-one. Then x́kr , ýks are fuzzy

soft points in (Y,K). As fup is soft open, fup(H,E) ∈ τ2 with (fup(H,E))(e)(x́) 6=
(fup(H,E))(e)(ý). Again, since (Y, τ2,K) is FSR1(i), there exist (F,K), (G,K) ∈ τ2
such that x́krq(F,K), ýks q(G,K) and (F,K) ∩ (G,K) = ∅. As fup is fuzzy soft
continuous, f−1

up (F,K), f−1
up (G,K) ∈ τ1.

Now, by definition of fuzzy soft inverse mapping, we have

f−1
up (F,K)(e)(x) = (F,K)(p(e))(u(x))

and
f−1
up (G,K)(e)(y) = (G,K)(p(e))(u(y)),

∀x, y ∈ X, e ∈ E, where p(e) = k ∀k ∈ K and u(x) = x́, u(y) = ý ∀x́, ý ∈ Y .
Now, we have the following implications:

x́krq(F,K) ⇒ F (k)(x́) + r > 1 ∀x́ ∈ Y, k ∈ K
⇒ (F,K)(p(e))(u(x)) + r > 1 ∀x ∈ X, e ∈ E
⇒ f−1

up (F,K)(e)(x) + r > 1

⇒ xerqf
−1
up (F,K).

Further, we get the following implications:
ýks q(G,K) ⇒ G(k)(ý) + s > 1 ∀ý ∈ Y, k ∈ K

⇒ (G,K)(p(e))(u(y)) + s > 1 ∀y ∈ X, e ∈ E
⇒ f−1

up (G,K)(e)(y) + s > 1

⇒ yesqf
−1
up (G,K).

Also, we obtain following implications:
(F,K) ∩ (G,K) = ∅
⇒ min (F (k)(x́), G(k)(ý)) = 0 ∀x́, ý ∈ Y, k ∈ K
⇒ min ((F,K)(p(e))(u(x)), (G,K)(p(e))(u(y))) = 0 ∀x, y ∈ X, e ∈ E
⇒ min (f−1

up (F,K)(e)(x), f−1
up (G,K)(e)(y)) = 0

⇒ f−1
up (F,K)(e)(x) ∩ f−1

up (G,K)(e)(y) = 0

⇒ f−1
up (F,K) ∩ f−1

up (G,K) = ∅.
Thus it follows that there exist f−1

up (F,K), f−1
up (G,K) ∈ τ1 such that

xerqf
−1
up (F,K), yesqf

−1
up (G,K) and f−1

up (F,K) ∩ f−1
up (G,K) = ∅.

So (X, τ1, E) is FSR1(j) space. Hence the proof is complete. �

4. Conclusion

The main result of this paper is introducing some new concepts of fuzzy soft R1

topological spaces using quasi-coincidence sense. We discuss some features of this
concepts and present their subspaces and hereditary properties. We hope that in-
terested members of the scientific community will find useful applications such as
decision making problem, game theory, artificial intelligence for these theories in
near future.
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