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Abstract. Our aim of the research is to study two aspects: First, we
define new concept (called an interval-valued soft set) which combines an
interval-valued set with a soft set, and discuss with its algebraic structures
and give some examples. Second, we investigate basic topological struc-
tures based on interval-valued soft set, for example, subspace, base and
subbase, neighborhood, closure and interior, and give some examples.
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1. Introduction

In the real world, there are many complicated problems in dealing with eco-
nomics, engineering, medical science, social science, etc., being highly dependent on
the task of modeling uncertain data. To solve successfully undefinable or complex
problems, some researchers had proposed various concepts, for example, probabil-
ities, fuzzy sets [1], interval-valued fuzzy sets [2, 3], rough sets [4], intuitionistic
fuzzy sets [5], interval-valued intuitionistic fuzzy sets [6] and vague sets [7]. How-
ever, to overcome the inherent difficulties of each of these concepts, Molodtsov [8]
introduced the notion of soft sets which has rich potential for practical applications
in several domains as a tool for dealing with uncertainties. After that time, Maji
et al. [9] proposed some basic operations on soft sets and studied some of their
properties (See [10, 11, 12] for the further researches). Aktaş and Çağman [13],
Feng et al. [14], U. Acar et al. [15], and Sun et al. [16] applied soft sets to group
theory, semiring theory, ring theory and module theory, respectively. Jun [17] dealt
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with soft BCK/BCI-algebras (Refer to [18, 19] for the more researches). Majum-
dar and Samanta [20] defined similarity measure based on soft sets and found some
of its properties. Çağman and Enginoglu [21] proposed a uni-int decision making
method. Also They [22] dealt with the soft max-min decision making method. On
the other hand, Many researchers [23, 24, 25, 26, 27, 28, 29, 30, 31] introduced
and studied topological structures via soft sets over a universe set with a fixed set
of parameters. Recently, Debnath and Tripathy [32] introduced the notion of soft
bitopological spaces and dealt with separation axioms in a soft bitopological space.
Also, few researchers [33, 34, 35, 36, 37, 38] investigated soft topological groups,
rings and modules.

Topology is an important area of mathematics with many applications in the
domains of computer and physical science. Recently, Kim et al. [39] studied topo-
logical structures based on interval-valued sets as the generalization of classical sets
and the special case of interval-valued fuzzy sets introduced by Zadeh [2].

We intend to study in the following two aspects: First, as a new tool to solve
complex problems, we define an interval-valued soft set that combines a soft set
and an interval-valued set, and study their algebraic structures. Second, we study
topological structures based on interval-valued soft sets. In order to accomplish our
aim, this paper is composed of five sections. In Section 2, we recall some definitions
of interval-valued sets introduced by Yao [40] and three results obtained by Kim et al.
[39]. Also, we recall some operations on soft sets. In Section 3, we define an interval-
valued soft set and obtain its several properties. In Section 4, we introduce the
concept of interval-valued soft topological spaces and find some of their properties,
and give some examples. In Section 5, we define an interval-valued soft neighborhood
of two types and interval-valued soft closure (interior), and deal with some of their
properties.

2. Preliminaries

In this section, we recall basic concepts and three results related to interval-valued
sets introduced by Yao [40] and Kim et al. [39]. Also, we recall operations for soft
sets in [8, 9]. Throughout this section and the next sections, let X, Y, Z, · · · be
non-empty universe sets, let E, E′, E′′, · · · be non-empty sets of parameters and
let 2X be the power set of X.

Definition 2.1 ([39, 40]). The form

[A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+}
is called an interval-valued set (briefly, IVS) or interval set in X, if A−, A+ ⊂ X
and A− ⊂ A+. In this case, A− [resp. A+] represents the set of minimum [resp.
maximum] memberships of elements of X to A. In fact, A− [resp. A+] is a minimum
[resp. maximum] subset of X agreeing or approving for a certain opinion, view,
suggestion or policy. [∅,∅] [resp. [X,X]] is called the interval-valued empty [resp.

whole] set in X and denoted by ∅̃ [resp. X̃]. We will denote the set of all IVSs in
X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for a classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
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if A = [A−, A+] ∈ IV S(X), then

χ
A

= [χ
A−
, χ

A+ ]

is an interval-valued fuzzy set in X introduced by Zadeh [2], where χ
A

denotes the
characteristic function of A. Thus we can consider an interval-valued fuzzy set as
the generalization of an IVS.

Definition 2.2 ([39, 40]). Let A, B ∈ IV S(X). Then
(i) we say that A contained in B, denoted by A ⊂ B, if A− ⊂ B− and A+ ⊂ B+,
(ii) we say that A equals to B, denoted by A = B, if A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted Ac, is an interval-valued set in X defined by:

Ac = [(A+)c, (A−)c],

(iv) the union of A and B, denoted by A∪B, is an interval-valued set in X defined
by:

A ∪B = [A− ∪B−, A+ ∪B+],

(v) the intersection of A and B, denoted by A∩B, is an interval-valued set in X
defined by:

A ∩B = [A− ∩B−, A+ ∩B+].

The followings are (i1), (i2), (i3), (k1), (k2) and (k3) in [40].

Result 2.3. Let A, B, C ∈ IV S(X). Then

(1) ∅̃ ⊂ A ⊂ X̃,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ⊂ A ∪B and B ⊂ A ∪B,
(4) A ∩B ⊂ A and A ∩B ⊂ B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

The followings are (I1)–(I8) in [40].

Result 2.4. Let A, B, C ∈ IV S(X). Then
(1) (Idempotent laws) A ∪A = A, A ∩A = A,
(2) (Commutative laws) A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws) A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ ∅̃ = A, A ∩ ∅̃ = ∅̃,

(8b) A ∪ X̃ = X̃, A ∩ X̃ = A,

(8c) X̃
c = ∅̃, ∅̃c = X̃,

(8d) A ∪Ac 6= X̃, A ∩Ac 6= ∅̃ in general (See Example 3.7 in [39]).

Definition 2.5 ([39]). Let (Aj)j∈J be a family of members of IV S(X). Then
135
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(i) the intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj , is an IVS in X defined by:⋂

j∈J
Aj = [

⋂
j∈J

A−j ,
⋂
j∈J

A+
j ],

(ii) the union of (Aj)j∈J , denoted by
⋃
j∈J Ãj , is an IVS in X defined by:⋃

j∈J
Aj = [

⋃
j∈J

A−j ,
⋃
j∈J

A+
j ].

Result 2.6 (Proposition 3.9, [39]). Let A ∈ IV S(X) and let (Aj)j∈J be a family of
members of IV S(X). Then

(1) (
⋂
j∈J Aj)

c =
⋃
j∈J A

c
j , (

⋃
j∈J Aj)

c =
⋂
j∈J A

c
j ,

(2) A ∩ (
⋃
j∈J Aj) =

⋃
j∈J(A ∩Aj), A ∪ (

⋂
j∈J Aj) =

⋂
j∈J(A ∪Aj).

Definition 2.7 ([39]). Let a ∈ X and let A ∈ IV S(X). Then the form [{a}, {a}]
[resp. [∅, {a}]] is called an interval-valued [resp. vanishing] point in X and denoted
by a

IV P
[resp. a

IV V P
]. We denote the set of all interval-valued points in X as

IVP (X).
(i) We say that a

IV P
belongs to A, denoted by a

IV P
∈ A, if a ∈ A−.

(ii) We say that a
IV V P

belongs to A, denoted by a
IV V P

∈ A, if a ∈ A+.

Result 2.8 (Proposition 3.11, [39]). Let A ∈ IV S(X). Then

A = A
IV P
∪A

IV V P
,

where A
IV P

=
⋃
a
IV P
∈A aIV P and A

IV V P
=
⋃
a
IV V P

∈A aIV V P .

In fact, A
IV P

= [A−, A−] and A
IV V P

= [∅, A+]

For a set X, let IV S∗(X) = {A ∈ IV S(X) : A− = A+}. Then from the above
Result, A = A

IV P
for each A ∈ IV S∗(X).

Result 2.9 (Theorem 3.14, [39]). Let (Aj)j∈J ⊂ IV S(X) and let a ∈ X.
(1) a

IV P
∈
⋂
Aj [resp. a

IV V P
∈
⋂
Aj] if and only if a

IV P
∈ Aj [resp. a

IV V P
∈

Aj], for each j ∈ J .
(2) a

IV P
∈
⋃
Aj [resp. a

IV V P
∈
⋃
Aj] if and only if there exists j ∈ J such that

a
IV P
∈ Aj [resp. a

IV V P
∈ Aj.

Result 2.10 (Theorem 3.15, [39]). Let A, B ∈ IV S(X). Then
(1) A ⊂ B if and only if a

IV P
∈ A⇒ a

IV P
∈ B [resp. a

IV V P
∈ A⇒ a

IV V P
∈ B]

for each a ∈ X.
(2) A = B if and only if a

IV P
∈ A⇔ a

IV P
∈ B [resp. a

IV V P
∈ A⇔ a

IV V P
∈ B]

for each a ∈ X.

Definition 2.11 ([39]). Let τ be a non-empty family of IVSs on X. Then τ is called
an interval-valued topology (briefly, IVT) on X, if it satisfies the following axioms:

(IVO1) ∅̃, X̃ ∈ τ ,
(IVO2) A ∩B ∈ τ for any A, B ∈ τ ,
(IVO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ .

In this case, the pair (X, τ) is called an interval-valued topological space (briefly,
IVTS) and each member of τ is called an interval-valued open set (briefly, IVOS)
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in X. An IVS A is called an interval-valued closed set (briefly, IVCS) in X, if Ac ∈ τ .

It is obvious that {∅̃, X̃} is an IVT on X, and is called the interval-valued in-
discrete topology on X and denoted by τ

IV,0
. Also IV S(X) is an IVT on X, and

is called the interval-valued discrete topology on X and denoted by τ
IV,1

. The pair
(X, τ

IV,0
) [resp. (X, τ

IV,1
)] is called the interval-valued indiscrete [resp. discrete]

space.

We denote the set of all IVTs on X as IV T (X). For an IVTS X, we denote the
set of all IVOSs [resp. IVCSs] in X as IV O(X) [resp. IV C(X)].

Definition 2.12 ([39]). Let τ1, τ2 ∈ IV T (X). Then we say that τ1 is contained
in τ2 or τ1 is coarser than τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2, i.e., A ∈ τ2 for each
A ∈ τ1.

It is obvious that τ
IV,0
⊂ τ ⊂ τ

IV,1
for each τ ∈ IV T (X).

Definition 2.13 ([8, 24]). An FA is called a soft set over X, if FA : A → 2X is a
mapping such that FA(e) = ∅ for each e /∈ A, where A ⊂ X.

In other words, a soft set over X is a parametrized family of subsets of X. For
each e ∈ A, FA(e) may be considered as the set of e-approximate elements of the
soft set FA. It is clear that a soft set is not a set. We will denote the set of all soft
sets over X as SS(X).

It was well-known [8] that every Zadeh’s fuzzy set A may be considered as the
soft set F[0,1].

Definition 2.14 ([9, 24]). Let FA, FB) ∈ SS(X). Then we say that:
(i) FA is a soft subset of FB , denoted by FA⊂̃FB , if A ⊂ B and FA(e) ⊂ FB(e)

for each e ∈ A,
(ii) FA is a soft super set of FB , denoted by FA⊃̃FB , if FB⊂̃FA,
(iii) FA and FB are soft equal, if FA⊂̃FB and FA⊃̃FB .

Definition 2.15 ([9]). Let E = {e1, e2, · · · , en} be a set of parameters. Then the
NOT set of E, denoted by eE, is defined by:

eE = {qe1, qe2, · · · , qen}},
where qei = not ei for each i.

Result 2.16 (Proposition 2.1, [9]). Let A, B ⊂ E. Then
(1) e(eA) = A,
(2) e(A ∪B) =eA∪eB,
(3) e(A ∩B) =eA∩eB.

Definition 2.17 ([9]). Let FA ∈ SS(X). Then the complement of FA, denoted by

F
′

A, is defined by:

F
′

A = F
′

eA,

where F
′

eA :eA→ 2X is a mapping given by F
′

eA(α) = X − FA(qα) for each α ∈eA.

It is obvious that (F
′

A)
′

= FA.
137
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Definition 2.18 ([9, 10]). Let FA ∈ SS(X). Then FA is called:
(i) a null soft set or a relative null soft set (with respect to A), denoted by ∅A, if

FA(e) = ∅ for each e ∈ A,
(ii) an absolute soft set or a relative whole soft set (with respect to A), denoted

by XA, if FA(e) = X for each e ∈ A.

3. Interval-valued soft sets

In this section, we define an interval-valued soft set and some operations between
interval-valued soft sets, and deal with some of their properties. In this section,
unless otherwise stated, A, B, C, · · · represent a subset of E.

Definition 3.1. An FA = [F−A , F
+
A ] is called an interval-valued soft set (briefly,

IVSS) over X, if FA : A → IV S(X) is a mapping such that FA(e) = ∅̃ for each
e /∈ A, i.e. , F−A , F

+
A ∈ SS(X) such that F−A (e) ⊂ F+

A (e) for each e ∈ A.
In other words, an IVSS over X is a parametrized family of IVSs of X. For

each e ∈ A, FA(e) = [F−A (e), F+
A (e)] may be considered as an interval-valued set of

e-approximate elements of the IVSS FA. We denote the set of all IVSSs over X as
IV SS(X).

it is obvious that if FA ∈ SS(X), then [FA, FA] ∈ IV SS(X). Then we can see
that an IVSS is the generalization of a soft set. Moreover, if FA ∈ IV SS(X), then
clearly, χ

FA
is an interval-valued fuzzy soft set (briefly, IVFSS) over X introduced

by Yang et al. [41]. Thus an IVSS is the special case of an IVFSS.

Example 3.2. (1) Let X be the set of houses under consideration and let E be the
set of parameters, where each parameter is a word or a sentence. Consider E given
by:

E = {expensive, beautiful, wooden, cheap, in the surroundings,
modern, in good repair, in bad repair}.

In this case, to define an IVSS FA over X means to point out the IVSs composed
of the minimal subset and the maximal subsets of expensive houses, beautiful
houses, and so on. Then we can think that the IVSS FA describes the IVS of the
“attractiveness of the houses” which a newly married couple would like to buy.

Now consider the universe set X and the set of parameters E given by:

X = {h1, h2, h3, h4, h5, h6} and E = {e1, e2, e3, e4, e5, e6, e7, e8},
where
e1 stands for the parameter expensive,
e2 stands for the parameter beautiful,
e3 stands for the parameter wooden,
e4 stands for the parameter cheap,
e5 stands for the parameter in the surroundings,
e6 stands for the parameter modern,
e7 stands for the parameter in good repair,
e8 stands for the parameter in bad repair.
Let A ⊂ E such that A = {e1, e2, e3, e4, e5} and let FA : A → IV S(X) be the

mapping given by:

FA(e1) = [{h2, h4}, {h2, h4, h5}],
138
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FA(e2) = [{h1, h3}, {h1, h3, h4}],
FA(e3) = [{h3, h4, h5}, {h3, h4, h5}],

FA(e4) = [{h1, h3}, {h1, h3}],
FA(e5) = [{h1}, {h1, h2}].

Then clearly, FA is an IVSS over X. Moreover, we can see that the IVSS FA
is a parametrized family {FA(ei), i = 1, 2, 3, 4, 5} of IVSs of X and gives us
a collection of interval-valued approximate description of an object. consider the
mapping FA which is “[houses (.),houses (.)]”, where dot (.) is to be filled up by
a parameter ei ∈ A. Thus FA(e1) means “[houses (expensive),houses (expensive)]”
whose functional-value is the IVS [{h2, h4}, {h2, h4, h5}]. So we can consider the
IVSS FA as a collection of interval-valued approximations as below:

FA = {expensive houses = [{h2, h4}, {h2, h4, h5}],
beautiful houses = [{h1, h3}, {h1, h3, h4}],
wooden houses = [{h3, h4, h5}, {h3, h4, h5}],
cheap houses = [{h1, h3}, {h1, h3}],
in the surroundings = [{h1}, {h1, h2}]},

where each interval-valued approximation is composed of two parts:
(i) a predicate p and
(ii) an approximate IVS v (or simply, to be called an IVS v).

For example, for the interval-valued approximation

“expensive houses = [{h2, h4}, {h2, h4, h5}]”,
(i) the predicate name is expensive houses and
(ii) an approximate IVS or IVS is [{h2, h4}, {h2, h4, h5}].

(2) Let (X, τ) be an IVTS proposed by Kim et al. [39]. Then for each x ∈ X, we
have two the families T (x) and TV (x) of open neighborhoods and open vanishing
neighborhoods of x (See [39] for the concept of an interval-valued neighborhood)
given by:

T (x) = {U = [U−, U+] ∈ τ : x ∈ U−} and TV (x) = {U = [U−, U+] ∈ τ : x ∈ U+}.
Then for a fixed x ∈ X, we may consider T (x)τ and TV (x)τ as IVSSs over τ ,
where T (x)τ , TV (x)τ : τ → IV S(X).

(3) Let A = [A−, A+] be an interval-valued fuzzy set in X (See [2, 3]). Consider
the family F[0,1]×[0,1]((α, β)) of [α, β]-level sets for A defined as:

F[0,1]×[0,1]([α, β]) = {[{x ∈ X}, {x ∈ X}] : A−(x) ≥ α, A+(x) ≥ β},
where α, β ∈ [0, 1] such that α ≤ β.
Then we can easily check that for each x ∈ X,

A(x) = sup[α,β]∈[0,1]×[0,1], [{x},{x}]∈F[0,1]×[0,1]([α,β])
[α, β].

Thus every interval-valued fuzzy set can be considered as the IVSS F[0,1]×[0,1].

Definition 3.3. Let FA, FB ∈ IV SS(X). Then we say that:
(i) FA is an interval-valued soft subset of FB , denoted by FA ⊂ FB , if A ⊂ B

and FA(e) ⊂ FB(e) for each e ∈ A,
(ii) FA(e) is an interval-valued soft super set of FB(e), denoted by FA ⊃ FB , if

FB ⊂ FA,
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(iii) FA and FB are interval-valued soft equal, if FA ⊂ FB and FA ⊃ FB .

Example 3.4. Let A = {e1, e3, e5} ⊂ E, B = {e1, e2, e3, e5} ⊂ E. Consider two
IVSSs FA and FB over X given by:

FA(e1) = [{h2, h4}, {h1, h2, h4}], FA(e3) = [{h3, h4, h5}, {h3, h4, h5}],
FA(e5) = [{h1}, {h1, h4}],

FB(e1) = [{h2, h4}, {h1, h2, h4}], FB(e2) = [{h1, h3}, {h1, h3, h5}],
FB(e3) = [{h3, h4, h5}, {h3, h4, h5}], FB(e5) = [{h1}, {h1, h4}],

where X = {h1, h2, h3, h4, h5, h6}.
Then clearly, FA(ei) ⊂ FB(ei) for i = 1, 2, 3, 4, 5, 6. Thus FA ⊂ FB .

Definition 3.5. Let FA ∈ IV SS(X). Then the complement of FA, denoted by

F
′

A, is the mapping F
′

A :eA→ IV S(X) defined by: for each α ∈eA,

F
′

A(α) = X̃ − FeA(qα) = [X − F+
A (qα), X − F−A (qα)].

It is obvious that (F
′

A)
′

= FA. In fact, F
′

A = F
′

eA.

Definition 3.6. Let FA ∈ IV SS(X). Then FA is called:
(i) a relative null interval-valued soft set (with respect to A), denoted by ∅̃A, if

FA(e) = ∅̃ for each e ∈ A,

(ii) a relative whole interval-valued soft set (with respect to A), denoted by X̃A,

if FA(e) = X̃ for each e ∈ A.
We denote the set of all IVSSs over X with respect to the fixed parameter set A

as IV SSA(X).

Example 3.7. (1) Consider the IVSS FA given in Example 3.2. Then
FcA = {not expensive houses = [{h1, h3, h6}, {h1, h3, h5, h6}],

not beautiful houses = [{h2, h5, h6}, {h2, h4, h5, h6}],
not wooden houses = [{h1, h2, h6}, {h1, h2, h6}],
not cheap houses = [{h2, h4, h5, h6}, {h2, h4, h5, h6}],
not in the surroundings = [{h3, h4, h5, h6}, {h2, h3, h4, h5, h6}]}.

(2) Let X be the universe set and let A be the set of parameters given by:

X = {h1, h2, h3, h4, h5} and A = {brick, muddy, steel, stone},
where X denotes the set of wooden houses under consideration.
Let FA : A→ IV S(X) be the mapping defined as follows:

FA(brick)=the IVS of the brick built houses,
FA(muddy)=the IVS of the muddy built houses,
FA(steel)=the IVS of the steel built houses,
FA(stone)=the IVS of the stone built houses.

Then we can easily see that

FA(brick) = FA(muddy) = FA(steel) = FA(stone) = ∅̃.
Thus FA is a null interval-valued soft set.

(2) Let X and A be the universe set and the set of parameters given in (2),
respectively and let B =eA, i,e., B = {not brick, not muddy, not steel, not stone}.
Consider the mapping FB : B → IV S(X) defined as follows:
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FB(not brick)=the IVS of the houses not built by brick,
FB(not muddy)=the IVS of the not muddy built houses,
FB(not steel)=the IVS of the houses not built by steel,
FB(not stone)=the IVS of the houses not built by stone.

Then we can easily see that

FB(not brick) = FB(not muddy) = FB(not steel) = FB(stone) = X̃.

Thus FB is an absolute interval-valued soft set.

Definition 3.8. Let FA, FB ∈ IV SS(X). Then
(i) FA AND FB , denoted by FA∧FB , is the mapping FA∧FB : A×B → IV S(X)

defined as follows: for each (e, f) ∈ A×B,

(FA ∧ FB)(e, f) = FA(e) ∩ FB(f),

(ii) FA OR FB , denoted by FA∨FB , is the mapping FA∨FB : A×B → IV S(X)
defined as follows: for each (e, f) ∈ A×B,

(FA ∨ FB)(e, f) = FA(e) ∪ FA(f).

Example 3.9. Let X be the universe set and let A, B be the sets of parameters
given by:

X = {h1, h2, h3, h4, h5, h6, h7, h8, h9, h10},
A = {very costly, costly, cheap}, B = {beautiful, in the surroundings, cheap}.

Let us consider two mappings FA : A→ IV S(X) and FB : B → IV S(X) defined
as follows:

FA(very costly) = [{h2, h4, h7}, {h2, h4, h7, h8}],
FA(costly) = [{h1, h3}, {h1, h3, h5}],
FA(cheap) = [{h6, h9}, {h6, h9, h10}],
FB(beautiful) = [{h2, h3}, {h2, h3, h7}],
FB(in the surroundings) = [{h5, h6}, {h5, h6, h8}],
FB(cheap) = [{h6, h9}, {h6, h9, h10}].

Then we have
A×B = {(very costly,beautiful), (very costly, in the surroundings),

(very costly, cheap), (costly,beautiful),
(costly, in the surroundings), (costly, cheap),
(cheap,beautiful), (cheap, in the surroundings), (cheap, cheap)}.

Thus we get

FA ∧ FB = HA×B ,

where HA×B(very costly,beautiful) = [{h2}, {h2, h7}],
HA×B(very costly, in the surroundings) = [∅, {h8}],
HA×B(very costly, cheap) = ∅̃,
HA×B(costly,beautiful) = [{h3}, {h3}],
HA×B(costly, in the surroundings) = [∅, {h5}],
HA×B(costly, cheap) = ∅̃,
HA×B(cheap,beautiful) = ∅̃,
HA×B(cheap, in the surroundings) = [{h6, {h6}],
HA×B(cheap, cheap) = [{h6, h9}, {h6, h9, h10}].
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Also, we can check that

FA ∨ FB = KA×B ,

where KA×B(very costly,beautiful) = [{h2, h3, h4, h7}, {h2, h3, h4, h7, h8}],
KA×B(very costly, in the surroundings) = [{h2, h4, h5, h6, h7}, {h2, h4, h5, h6, h7, h8}],
KA×B(very costly, cheap) = [{h2, h4, h6, h7, h9}, {h2, h4, h6, h7, h8, h9, h10}],
KA×B(costly,beautiful) = [{h1, h2, h3}, {h1, h2, h3, h5, h7}],
KA×B(costly, in the surroundings) = [{h1, h3, h5, h6}, {h1, h3, h5, h6, h8}],
KA×B(costly, cheap) = [{h1, h3, h6, h9}, {h1, h3, h5, h6, h9, h10}],
KA×B(cheap,beautiful) = [{h2, h3, h6, h9}, {h2, h3, h6, h9, h10}],
KA×B(cheap, in the surroundings) = [{h5, h6, h9}, {h5, h6, h8, h9, h10}],
KA×B(cheap, cheap) = [{h6, h9}, {h6, h9, h10}].

We obtain the similar result to Proposition 2.2 in [9].

Proposition 3.10. Let FA, FB ∈ IV SS(X). Then

(1) (FA ∨ FB)
′

= F
′

A ∧ F
′

B,

(2) (FA ∧ FB)
′

= F
′

A ∨ F
′

B.

Proof. (1) Let FA ∨ FB = KA×B . Then clearly, we have

(FA ∨ FB)
′

= K
′

A×B = K
′

e(A×B).

On the other hand,
F
′

A ∧ F
′

B = F
′

eA ∧ F
′

eB

= JeA×eB , [where J(x, y) = F
′

A(x) ∩ F
′

B(y)]
= Je(A×B).

Now let (qα, qβ) ∈e(A×B). Then we get

K
′

e(A×B)(qα, qβ) = [X −K+(α, β), X −K−(α, β)]

= [X − (F+
A (α) ∪ F+

B (β)), X − (F−A (α) ∪ F−B (β))]

= [(X − F+
A (α)) ∩ (X − F+

B (β)), (X − F−A (α)) ∩ (X − F−B (β))]

= F
′

A(qα) ∩ F
′

B(qβ)
= Je(A×B)(qα, qβ).

Thus K
′

e(A×B)(qα, qβ) = Je(A×B)(qα, qβ). So the result holds.

(2) The proof is similar to (1). �

Definition 3.11 (See [9]). Let FA, FB ∈ IV SS(X). Then
(i) the union of FA and FB , denoted by FA ∪ FB , is the mapping FA ∪ FB :

A ∪B → IV S(X) defined as: for each e ∈ A ∪B,

(FA ∪ FB)(e) =

 FA(e) if e ∈ A−B
FB(e) if e ∈ B −A
FA(e) ∪ FB(e) if e ∈ A ∩B,

(ii) the restricted union of FA and FB , denoted by FA ∪R FB , is the mapping
FA ∪ FB : A ∩B → IV S(X) defined as: for each e ∈ A ∩B,

(FA ∪R FB)(e) = FA(e) ∪ FB(e),
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(iii) the intersection of FA and FB , denoted by FA∩FB , is the mapping FA∩FB :
A ∩B → IV S(X) defined as: for each e ∈ A ∩B,

(FA ∩ FB)(e) = FA(e) or FB(e) (as both are same set),

(iv) the restricted intersection of FA and FB , denoted by FA ∩R FB , is the
mapping FA ∩R FB : A ∩B → IV S(X) defined as: for each e ∈ A ∩B,

(FA ∩R FB)(e) = FA(e) ∩ FB(e),

(v) the extended intersection of FA and FB , denoted by FA∩EFB , is the mapping
FA ∩E FB : A ∪B → IV S(X) defined as: for each e ∈ C = A ∪B,

(FA ∩E FB)(e) =

 FA(e) if e ∈ A−B
FB(e) if e ∈ B −A
FA(e) ∩ FB(e) if e ∈ A ∩B.

We write FA∪FB = FA∪B , FA∪RFB = FA∪RB , FA∩FB = FA∩B , FA∩RFB =
FA∩RB and FA ∩E FB = FA∩EB , respectively.

Definition 3.12. Let FA ∈ IV SS(X) such that A ∩ B 6= ∅. Then the relative
complement of FA, denoted by FrA, is the mapping FrA : A → IV S(X) defined as:
each e ∈ A,

FrA(e) = (FA(e))c = [F−A (e), F+
A (e)]c.

The following is the similar result to Proposition 2.3 in [9].

Proposition 3.13. Let FA, FB ∈ IV SS(X). Then
(1) FA ∪ FA = FA, FA ∩ FA = FA,

(2) FA ∪ ∅̃A = (F, A), FA ∩ ∅̃A = ∅̃A,

(3) FA ∪ X̃A = X̃A, FA ∩ X̃A = FA.

Proof. The proofs are straightforward. �

The following is the similar result to Theorem 4.1 in [10].

Proposition 3.14. Let FA, FB ∈ IV SS(X) such that A ∩B 6= ∅. Then
(1) (FA ∪R FB)r = FrA ∩R FrB,
(2) (FA ∩R FB)r = FrA ∪R FrB.

Proof. (1) Let e ∈ A∩B 6= ∅. Then clearly, (FA ∪RFB)(e) = FA(e)∪FB(e). Thus
by Definition 3.12 (ii) and Result 2.4 (6), we have

(FA ∪R FB)r(e) = (FA(e) ∪ FB(e))c = (FA(e)))c ∩ (FB(e))c = (FrA ∩R FrB)(e).

So (FA ∪R FB)r(e) = (FrA ∩R FrB)(e). Hence (FA ∪R FB)r = FrA ∩R FrB .
(2) The proof is similar to (1). �

Also we have the similar results to Propositions 2.5 and 2.6 in [9].

Proposition 3.15. Let FA, FB , FC ∈ IV SS(X). Then
(1) FA ∪ (FB ∪ FC) = (FA ∪ FB) ∪ FC ,
(2) FA ∩ (FB ∩ FC) = (FA ∩ FB) ∩ FC ,
(3) FA ∪ (FB ∩ FC) = (FA ∪ FB) ∩ (FA ∪ FC),
(2) FA ∩ (FB ∪ FC) = (FA ∩ FB) ∪ (FA ∩ FC).
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Proof. The proofs are straightforward. �

Proposition 3.16. Let FA, FB , FC ∈ IV SS(X). Then
(1) FA ∨ (FB ∨ FC) = (FA ∨ FB) ∨ FC ,
(2) FA ∧ (FB ∧ FC) = (FA ∧ FB) ∧ FC .

Proof. The proofs are straightforward. �

The following is the similar result to Theorem 4.2 in [10].

Proposition 3.17. Let FA, FB ∈ IV SS(X) such that A ∩B 6= ∅. Then

(1) (FA ∪ FB)
′

= F
′

A ∩E F
′

B,

(2) (FA ∩E FB)
′

= F
′

A ∪ F
′

B.

Proof. (1) Let FA ∪ FB = FA∪B and e ∈ A ∪B. Then clearly,

FA∪B(e) =

 FA(e) if e ∈ A−B
FB(e) if e ∈ B −A
FA(e) ∪ FB(e) if e ∈ A ∩B.

Thus by Result 2.16 (2) and Definition 3.5, (FA∪FB)
′

= F
′

A∪B and F
′

A∪B :eA∪eB →
IV S(X) is the mapping defined by: for each qe ∈eA∩eB,

F
′

A∪B(qe) = (FA∪B(e))c

= (FA(e) ∪ FB(e))c

= (FA(e))c ∩ (FB(e))c [By Result 2.4 (6)]

= F
′

A(qe) ∩ F
′

B(qe).
So we get

F
′

A∪B(qe) =


F
′

A(qe) if qe ∈eA∪eB
F
′

B(qe) if qe ∈eB−eA
F
′

A(qe) ∩ FcB(qe) if qe ∈eA∩eB.
On the other hand, by Result 2.16 (2) and Definitions 3.5 and 3.11 (v),

F
′

A ∩E F
′

B :eA∪eB → IV S(X) is the mapping defined by: for each qe ∈eA∪eB,

(F
′

A ∩E F
′

B)(qe) =


F
′

A(qe) if qe ∈eA∪eB
F
′

B(qe) if qe ∈eB−eA
F
′

A(qe) ∩ FcB(qe) if qe ∈eA∩eB.

Hence F
′

A∪B(qe) = (F
′

A ∩E F
′

B)(qe). Therefore (FA ∪ FB)
′

= F
′

A ∩E F
′

B .
(2) The proof id similar to (1). �

Now let IV SSE(X) be the set of all IVSSs over X with respect to E. Then
we will denote the members of IV SSE(X) as A, B, C, · · · . In fact, A, B, C :
E → IV S(X). In particular, the interval-valued soft empty [resp. whole] set over

X respect to E, denoted by ∅̃E [resp. X̃E ], is the IVS in X defined by ∅̃E(e) = ∅̃
[resp. X̃E(e) = X̃] for each e ∈ E.

Definition 3.18 (See Definitions 3.3 and 3.12 (ii)). Let A, B ∈ IV SSE(X). Then
we say that

(i) A is an interval-valued soft subset of B, denoted by A ⊂ B, if A(e) ⊂ B(e)
for each e ∈ E,
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(ii) A and B are interval-valued soft equal, denoted by A = B, if A ⊂ B and
B ⊂ A,

(iii) the interval-valued soft complement of A, denoted by Ac, is the mapping
Ac : E → IV S(X) defined as: for each e ∈ E,

Ac(e) = (A(e))c.

From the above definition, we can easily get the similar properties to Results 2.3
and 2.4.

Proposition 3.19. Let A, B, C ∈ IV SSE(X). Then

(1) ∅̃E ⊂ A ⊂ X̃E ,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ⊂ A ∪B and B ⊂ A ∪B,
(4) A ∩B ⊂ A and A ∩B ⊂ B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

Proposition 3.20. Let A, B, C ∈ IV SSE(X). Then
(1) (Idempotent laws) A ∪A = A, A ∩A = A,
(2) (Commutative laws) A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws) A∪ (B∪C) = (A∪B)∪C, A∩ (B∩C) = (A∩B)∩C,
(4) (Distributive laws) A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C),

A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C),
(5) (Absorption laws) A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ ∅̃E = A, A ∩ ∅̃E = ∅̃E ,

(8b) A ∪ X̃E = X̃E , A ∩ X̃E = A,

(8c) X̃
c
E = ∅̃E , ∅̃cE = X̃E ,

(8d) A ∪Ac 6= X̃E , A ∩Ac 6= ∅̃E in general (See Example 3.21).

Example 3.21. Let the universe set X and the set of parameters E be given by:

X = {h1, h2, h3, h4, h5, h6} and E = {e1, e2, e3}.

Consider the IVSS A over X given by:

A(e1) = [{h1, h2}, {h1, h2, h3}], A(e2) = [{h1}, {h1, h5, h6}],

A(e3) = [{h1, h3, h4}, {h1, h3, h4}].
Then clearly, we have

Ac(e1) = [{h4, h5, h6}, {h3, h4, h5, h6}].

Thus we can easily check that

(A ∪Ac)(e1) 6= X̃E(e1) and (A ∩Ac)(e1) 6= ∅̃E(e1).

Definition 3.22 (See Definition 3.11)). Let (Aj)j∈J ⊂ IV SSE(X), where J is an
arbitrary index set. Then we say that
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(i) the interval-valued soft union of (Aj)j∈J , denoted by
⋃
j∈J Aj , is the mapping⋃

j∈J Aj : E → IV S(X) defined as: for each e ∈ E,⋃
j∈J

Aj

 (e) =
⋃
j∈J

Aj(e),

(ii) the interval-valued soft intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj , is the

mapping
⋂
j∈J Aj : E → IV S(X) defined as: for each e ∈ E,⋂

j∈J
Aj

 (e) =
⋂
j∈J

Aj(e).

Example 3.23. (1) Let X = R, E = {0, 1} and let N be the set of all positive
integers. For each n ∈ N, consider the mapping An : E → IV S(X) defined by: for
each e ∈ E,

An(e) =

{
[(0, n) , (0, n+ 1)] if e = 0
[(−1− n, 0) , (−n, 0)] if e = 1.

Then clearly, An ∈ IV SSE(X) for each n ∈ N. Moreover, we can easily check that⋃
n∈N An, where

⋃
n∈N An : E → IV S(X) is the mapping defined as follows: for

each e ∈ E, (⋃
n∈N

An

)
(e) =

{
[(0,∞) , (0,∞)] if e = 0
[(−∞, 0) , (−∞, 0)] if e = 1.

(2) Let X = R, E = {0, 1, 2}. For each n ∈ N, consider the mapping An : E →
IV S(X) defined by: for each e ∈ E,

An(e) =



[(
− 1
n , 1 + 1

n

)
,
[
− 1
n , 1 + 1

n

)]
if e = 0[(

1− 1
n , 2 + 1

n

)
,
[
1− 1

n , 2 + 1
n

)]
if e = 1[(

2− 1
n , 3 + 1

n

)
,
[
2− 1

n , 3 + 1
n

)]
if e = 2.

Then clearly, An ∈ IV SSE(X) for each n ∈ N. Moreover, we can easily check that⋂
n∈N An, where

⋂
n∈N An : E → IV S(X) is the mapping defined as follows: for

each e ∈ E,

(⋂
n∈N

An

)
(e) =


[(0, 1) , [0, 1)] if e = 0

[(1, 2) , [1, 2)] if e = 1

[(2, 3) , [2, 3)] if e = 2.

Proposition 3.24. Let A ∈ IV SSE(X) and let (Aj)j∈J ⊂ IV SSE(X), where J is
an arbitrary index set. Then

(1) A ∩ (
⋃
j∈J Aj) =

⋃
j∈J(A ∩Aj), A ∪ (

⋂
j∈J Aj) =

⋂
j∈J(A ∪Aj),

(2) (
⋂
j∈J Aj)

c =
⋃
j∈J Ac

j, (
⋃
j∈J Aj)

c =
⋂
j∈J Ac

j .

Proof. The proofs are straightforward from Definitions 3.18 and 3.22. �
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From Propositions 3.20 and 3.23, we can see that (IV SSE(X),∪,∩,c , ∅̃E , X̃E)
forms a Boolean algebra except the property (8d).

Definition 3.25. Let A ∈ IV SSE(X). Then A is called an:
(i) interval-valued soft point (briefly, IVSP) with the value a

IV P
= [{a}, {a}] ∈

IV S(X) and the support e ∈ E , denoted by e
a
IV P

, if for each f ∈ E,

e
a
IV P

(f) =

{
a
IV P

if e = f
∅̃ if e 6= f.

(ii) interval-valued soft vanishing point (briefly, IVSVP) with the value a
IV V P

=
[∅, {a}] ∈ IV S(X) and the support e ∈ E , denoted by e

a
IV V P

, if for each f ∈ E,

e
a
IV V P

(f) =

{
a
IV V P

if e = f
∅̃ if e 6= f.

Definition 3.26. Let A ∈ IV SSE(X).
(i) We say that ea

IV P
belongs to A, denoted by ea

IV P
∈ A, if a

IV P
∈ A(e), i.e,

a ∈ A−(e).
(ii) We say that ea

IV V P
belongs to A, denoted by ea

IV V P
∈ A, if a

IV V P
∈ A(e),

i.e, a ∈ A+(e).

Proposition 3.27. Let A ∈ IV SSE(X). Then

A = A
IV SP

∪A
IV SV P

,

where A
IV SP

=
⋃
ea
IV V P

∈A eaIV V P
and A

IV SV P
=
⋃
ea
IV SV P

∈A eaIV SV P
.

In fact, A
IV SP

(e) = [A−(e), A−(e)] and A
IV SV P

(e) = [∅, A+(e)] for each e ∈ E.

Proof. The proof is straightforward. �

Example 3.28. (1) Let X = {a, b, c} and let E = {e, f}. Then we have the
following IVSPs and IVSVPs in X:

e
a
IV P

, e
b
IV P

, e
c
IV P

, f
a
IV P

, f
b
IV P

, f
c
IV P

and

ea
IV V P

, e
b
IV V P

, ec
IV V P

, fa
IV V P

, f
b
IV V P

, fc
IV V P

.

(2) Let A be the IVSS over X given in Example 3.21:

A(e1) = [{h1, h2}, {h1, h2, h3}], A(e2) = [{h1}, {h1, h5, h6}],

A(e3) = [{h1, h3, h4}, {h1, h3, h4}].
Then clearly, we have

A
IV SP

(e1) = [{h1, h2}, {h1, h2}], A
IV SV P

(e1) = [∅, {h1, h2, h3}],
A
IV SP

(e2) = [{h1}, {h1}], A
IV SV P

(e1) = [∅, {h1, h5, h6}],
A
IV SP

(e3) = [{h1, h3, h4}, {h1, h3, h4}], A
IV SV P

(e1) = [∅, {h1, h3, h4}].
Thus A = A

IV SP
∪A

IV SV P
.

Let IV SS∗(X) = {A ∈ IV SS(X) : A− = A+}. Then from Proposition 3.27,
A = A

IV P
for each A ∈ IV SS∗(X).
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Theorem 3.29. Let (Aj)j∈J ⊂ IV SSE(X) and let a ∈ X, e ∈ E.
(1) ea

IV SP
∈
⋂
j∈J Aj [resp. ea

IV SV P
∈
⋂
j∈J Aj]

if and only if e
a
IV SP

∈ Aj [resp. e
a
IV SV P

∈ Aj] for each j ∈ J .

(2) e
a
IV SP

∈
⋃
j∈J Aj [resp. e

a
IV SV P

∈
⋃
j∈J Aj]

if and only if there exists j ∈ J such that ea
IV SP

∈ Aj [resp. ea
IV SV P

∈ Aj].

Proof. The proof is straightforward. �

Theorem 3.30. Let A, B ∈ IV SSE(X). Then
(1) A ⊂ B if and only if ea

IV SP
∈ A⇒ ea

IV SP
∈ B

[resp. e
a
IV SV P

∈ A⇒ e
a
IV SV P

∈ B] ∀a ∈ X, ∀e ∈ E.

(2) A = B if and only if e
a
IV SP

∈ A⇔ e
a
IV SP

∈ B

[resp. e
a
IV SV P

∈ A⇔ e
a
IV SV P

∈ B] ∀a ∈ X, ∀e ∈ E.

Proof. (1) Suppose A ⊂ B and let e
a
IV SP

∈ A for each a ∈ X and e ∈ E. Then

a
IV SP

∈ A(e), i.e., a ∈ A−(e). Since A ⊂ B, A(e) ⊂ B(e). Thus a ∈ B−(e), i.e.,
a
IV SP

∈ B(e). So e
a
IV SP

∈ B. Also the proof of the second part is similar. The

proof of the converse is true.
(2) The proof is straightforward from Definition 3.3 and (1). �

Theorem 3.31. Let A ∈ IV SSE(X). Then ea
IV SP

∈ A if and only if ea
IV SP

/∈ Ac.

Proof. Suppose e
a
IV SP

∈ A. Then clearly, a ∈ A−(e). Thus a 6∈ A−(e)c. Since

A−(e) ⊂ A+(e), A+(e)c ⊂ A−(e)c. So a 6∈ A+(e)c = (Ac)−(e). Hence ea
IV SP

/∈ Ac.

The proof of the converse is similar. �

Proposition 3.32. Let (Aj)j∈J ⊂ IV SSE(X) and let A =
⋃
j∈J Aj. Then

(1) A
IV SP

=
⋃
j∈J Aj

IV SP
,

(2) A
IV SV P

=
⋃
j∈J Aj

IV SV P
.

Proof. (1) For each j ∈ J , let e ∈ E. Then clearly, Aj(e) = [Aj(e)
−, Aj(e)

+]. Thus
we have we have

A(e) = (
⋃
j∈J

Aj)(e) = [
⋃
j∈J

Aj(e)
−,
⋃
j∈J

Aj(e)
+].

Now let ea
IV SP

∈ A. Then ea
IV SP

∈
⋃
j∈J Aj . Thus a ∈

⋃
j∈J Aj(e)

−. So there is

j0 ∈ J such that a ∈ Aj0(e)−. Hence ea
IV SP

∈ Aj0IV SP , i.e., A
IV SP

⊂
⋃
j∈J Aj

IV SP
.

Conversely, suppose e
a
IV SP

∈
⋃
j∈J Aj

IV SP
. Then there is j0 ∈ J such that

ea
IV SP

∈ Aj0IV SP . Thus a ∈ Aj0(e)−. So a ∈
⋃
j∈J Aj(e)

−. Hence e
a
IV SP

∈ A
IV SP

,

i.e.,
⋃
j∈J Aj

IV SP
⊂ A

IV SP
. Therefore A

IV SP
=
⋃
j∈J Aj

IV SP
.

(2) The proof is similar to that of (1). �

4. Interval-valued soft topological spaces

In this section, we define an interval-valued soft topology and obtain some of its
properties, and give some examples.
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Definition 4.1. Let τ be a family of IVSSs over X with respect to E. Then τ is
called an interval-valued soft topology (briefly, IVST) on X with respect to E, if it
satisfies the following axioms:

[IVSO1] ∅̃E , X̃E ∈ τ ,
[IVSO2] A ∩B ∈ τ for any A, B ∈ τ ,
[IVSO3]

⋃
j∈J Aj ∈ τ for each (Aj)j∈J ⊂ τ .

The triple (X, τ,E) is called an interval-valued soft topological space (briefly,
IVSTS). Every member of τ is called an interval-valued soft open set (briefly, IV-
SOS) and the complement of an IVSOS is called an interval-valued soft closed
set (briefly, IVSCS) in X, and the set of all IVSOSs [resp. IVSCSs] in X is de-

noted by IV SO(X) [resp. IV SC(X)]. It is obvious that {∅̃E , X̃E}, IV SSE(X) ∈
IV STE(X), where IV STE(X) denotes the set of all IVSTSs on X with respect to E.

In this case, {∅̃E , X̃E} [resp. IV SSE(X)] is called an interval-valued soft indiscrete
[resp. discrete] topology on X and denoted by τ̃

0
[resp. τ̃

1
].

It is obvious that if τ ∈ IV STE(X), then χτ = {χ
U

: U ∈ τ} is an interval-valued
fuzzy soft topology (briefly, IVFST) on X defined by Ali et al. [42]. Thus an IVFST
is the generalization of an IVST.

Example 4.2. (1) Let X = N, E = {0, 1} and let τ be the collection of IVSSs over
X given by:

τ = {∅̃E , X̃E} ∪An : n ∈ N},
where An : E → IV S(X) defined by: for each e ∈ E,

An(e) =

{
[{n+ 1, n+ 2, · · · }, {n, n+ 1, n+ 2, · · · }] if e = 0
[∅, {n}] if e = 1.

Then we can easily see that (X, τ,E) is an IVSTS.
(2) Let (X,T ) be a classical topological space and let E be a nonempty set of

parameters. Consider the following family

τ = {AU ∈ IV S(X) : U ∈ T},
where AU : E → IV S(X) defined as follows: for each e ∈ E,

AU (e) = [U,U ].

Then clearly, τ ∈ IV STE(X).
(3) Let (X,T ) be an interval-valued topological space (briefly, IVTS) proposed by

Kim et al. [39] and let E be a nonempty set of parameters. Consider the following
family

τ = {AU ∈ IV S(X) : U ∈ T},
where AU : E → IV S(X) defined as follows: for each e ∈ E,

AU (e) = U = [U−, U+].

Then clearly, τ ∈ IV STE(X).
(4) Let X = {h1, h2, h4, h5, h6, h7, h8, h9, h10} be the universe set of houses and

let E = {e1, e2, e3, e4, e5, e6, e7, e8, e9} be the set of parameters, where
e1 stands for the parameter verycostly,
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e2 stands for the parameter costly,
e3 stands for the parameter cheap,
e4 stands for the parameter beautiful,
e5 stands for the parameter in the surroundings,
e6 stands for the parameter wooden,
e7 stands for the parameter modern,
e7 stands for the parameter in good repair,
e8 stands for the parameter in bad repair.

Consider the IVSSs A, B,C, D given by:
A(e1) = [{h2, h4}, {h2, h4, h7, h8}] , A(e2) = [{h1, h3}, {h1, h3, h5}] ,
A(e3) = [{h6}, {h6, h9}] , A(e) = ∅̃ for each e ∈ E \ {e1, e2, e3},
B(e3) = [{h6, h9}, {h6, h9, h10}] , B(e4) = [{h2, h3}, {h2, h3, h7}] ,
B(e5) = [{h5, h6}, {h5, h6, h8}] , B(e) = ∅̃ for each e ∈ E \ {e3, e4, e5},
B(e3) = [{h6, h9}, {h6, h9, h10}] , B(e4) = [{h2, h3}, {h2, h3, h7}] ,
C(e3) = [{h6}, {h6, h9}] , C(e) = ∅̃ for each e ∈ E \ {e3},
D(e1) = [{h2, h4}, {h2, h4, h7, h8}] , D(e2) = [{h1, h3}, {h1, h3, h5}] ,
D(e3) = [{h6, h9}, {h6, h9, h10}] , D(e4) = [{h2, h3}, {h2, h3, h7}] ,
D(e5) = [{h5, h6}, {h5, h6, h8}] , A(e) = ∅̃ for each e ∈ E \ {e1, e2, e3, e4, e5}.

Then we can check that τ = {∅̃E ,A,B,C,D, X̃E} ∈ IV STE(X).

Remark 4.3. Let τ ∈ IV STE(X). Then there are two soft topologies over X with
respect to E given by:

τ− = {U− ∈ 2X : U ∈ τ}, τ+ = {U+ ∈ 2X : U ∈ τ}.

Thus we can consider (X, τ−, τ+, E) as soft bi-topological space in the sense of Kelly
[43] (Refer to [23, 24, 27, 30] for soft topological spaces).

From Definition 4.1 and Propositions 3.20 and 3.24, we get the following.the above
comments, we have the following.

Proposition 4.4. Let (X, τ,E) be an IVSTS and let

τ c = {Uc ∈ IV SS(X) : U ∈ τ}.

Then τ c has the following properties:

(1) ∅̃E , X̃E ∈ τ c,
(2) A ∪B ∈ τ c for any A, B ∈ τ c,
(3)

⋂
j∈J Aj ∈ τ c for each (Aj)j∈J ⊂ τ c.

Proposition 4.5. Let (X, τ,E) be an IVSTS and for each e ∈ E, let

τe = {U(e) ∈ IV S(X) : U ∈ τ}.

Then τe is an interval-valued topology (briefly, IVT) on X introduced by Kim et al.
[39].

Proof. Since ∅̃E , X̃E ∈ τ , ∅̃E(e) = ∅̃, X̃E(e) = X̃. Then ∅̃, X̃ ∈ τe. Suppose
A(e), B(e) ∈ τe. Then clearly, (A ∩ B)(e) = A(e) ∩ B)(e) and A ∩ B ∈ τ . Thus
A(e) ∩ B)(e) ∈ τe. Finally, suppose (Aj(e))j∈J ⊂ τe. Then we get

⋃
j∈J Aj(e) =(⋃

j∈J Aj

)
(e) and

⋃
j∈J Aj ∈ τ. Thus

⋃
j∈J Aj(e) ∈ τe. So τe is an IVT on X �
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Remark 4.6. (1) From Proposition 4.5 and Remark 4.2 (1) in [39], the following
two families of subsets of X:

τ−e = {A− ∈ 2X : A ∈ τe} and τ+e = {A+ ∈ 2X : A ∈ τe}
are classical topologies on X.

(2) The converse of Proposition 4.5 does not hold in general (See Example 4.7
(2)).

Proposition 4.5 shows that corresponding to each parameter e ∈ E, we get an
IVT τe on X. Then an IVST on X with respect to E gives a parametrized family
of IVTs on X.

Example 4.7. (1) Let X = {h1, h2, h3} and let E = {e1, e2}. Consider the family
τ of IVSSs over X given by:

τ = {∅̃E , X̃E ,A,B,C,D},
where A(e1) = [∅, {h2}], A(e2) = [∅, {h1}],

B(e1) = [{h2}, {h2, h3}], B(e2) = [{h1}, {h1, h2}],
C(e1) = [{h1, h2}, X], C(e2) = [{h1}, X],
D(e1) = [{h1}, {h1, h2}], D(e2) = [{h1}, {h1, h3}].

Then clearly, (X, τ,E) is an IVSTS. Thus we can easily see that

τe1 = {∅̃, X̃, [∅, {h2}], [{h2}, {h2, h3}], [{h1, h2}, X], [{h1}, {h1, h2}]}
and

τe2 = {∅̃, X̃, [∅, {h1}], [{h1}, {h1, h2}], [{h1}, X], [{h1}, {h1, h3}]}
are IVTs on X. Furthermore, we have four classical topologies on X from Remark
4.5 (1):

τ−e1 = {∅, X, {h1}, {h2}, {h1, h2}}, τ+e1 = {∅, X, {h2}, {h1, h2}, {h2, h3}},

τ−e2 = {∅, X, {h1}}, τ+e2 = {∅, X, {h1}, {h1, h2}, {h1, h3}}.
(2) Let X = {h1, h2, h3} and let E = {e1, e2}. Consider the family τ of IVSSs

over X given by:

τ = {∅̃E , X̃E ,A,B,C,D},
where A(e1) = [{h2}, {h2}], A(e2) = [{h1}, {h1}],

B(e1) = [{h2, h3}, {h2, h3}], B(e2) = [{h1, h2}, {h1, h2}],
C(e1) = [{h1, h2}, {h1, h2}], C(e2) = [{h1, h2}, {h1, h2}],
D(e1) = [{h2}, {h2}], D(e2) = [{h1, h3}, {h1, h3}].

Then we have (B ∪C)(e1) = X̃. Thus B ∪C /∈ τ . So τ /∈ IV STE(X). But we can
easily check that the following two families:

τe1 = {∅̃, X̃, [{h2}, {h2}], [{h1, h2}, {h1, h2}], [{h2, h3}, {h2, h3}],

τe2 = {∅̃, X̃, [{h1}, {h1}], [{h1, h2}, {h1, h2}], [{h1, h3}, {h1, h3}]
are IVTs on X. Moreover, we get four classical topologies on X:

τ−e1 = τ+e1 = {∅, X, {h2}, {h1, h2}, {h2, h3}},

τ−e2 = τ+e2 = {∅, X, {h1}, {h1, h2}, , {h1, h3}}.

Proposition 4.8. If τ1, τ2 ∈ IV STE(X), then τ1 ∩ τ2 ∈ IV STE(X).
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Proof. Since τ1, τ2 ∈ IV STE(X), ∅̃E , X̃E ∈ τ1 ∩ τ2. Then τ1 ∩ τ2 satisfies the
axiom [IVSO1]. Let A, B ∈ τ1 ∩ τ2. Then clearly, A, B ∈ τ1 and A, B ∈ τ2. Thus
A ∩B ∈ τ1 and A ∩B ∈ τ2. So A ∩B ∈ τ1 ∩ τ2. Hence τ1 ∩ τ2 satisfies the axiom
[IVSO2]. Finally, let (Aj)j∈J ⊂ τ1 ∩ τ2. Then clearly, Aj ∈ τ1 and Aj ∈ τ2 for each
j ∈ J . Thus

⋃
j∈J Aj ∈ τ1 and

⋃
j∈J Aj ∈ τ2. So

⋃
j∈J Aj ∈ τ1 ∩ τ2. Hence τ1 ∩ τ2

satisfies the axiom [IVSO3]. Therefore τ1 ∩ τ2 ∈ IV STE(X). �

Corollary 4.9.
⋂
j∈J τj ∈ IV STE(X) for any (τ

j
)j∈J ⊂ IV STE(X).

Remark 4.10. The interval-valued soft union of two IVVSTs need not be an IVST
(See Example 4.11).

Example 4.11. Let X = {h1, h2, h3} and let E = {e1, e2}. Consider two family τ1
and of τ2 IVSSs over X given by:

τ1 = {∅̃E , X̃E ,A,B,C,D},

τ2 = {∅̃E , X̃E ,E,F,G,H},
where A(e1) = [{h1}, {h1, h2}], A(e2) = [{h2}, {h2, h3}],

B(e1) = [{h2}, {h2, h3}], B(e2) = [{h2}, {h1, h2}],
C(e1) = [∅, {h2}], C(e2) = [{h2}, {h2}],
D(e1) = [{h1, h2}, X], D(e2) = [{h2}, X],
E(e1) = [{h1}, {h1}], E(e2) = [{h3}, {h2, h3}],
F(e1) = [{h2}, {h1, h2}], F(e2) = [{h3}, {h3}],
G(e1) = [∅, {h1}], G(e2) = [{h3}, {h3}],
H(e1) = [{h1, h2}, {h1, h2}], H(e2) = [{h3}, {h2, h3}].

Then clearly, τ1 ∪ τ2 = {∅̃E , X̃E ,A,B,C,D,E,F,G,H}. Thus we have

(B ∪G)(e1) = [{h2}, X].

So B ∪G /∈ τ1 ∪ τ2. Hence τ1 ∪ τ2 /∈ IV STE(X).

Definition 4.12. Let τ1, τ2 ∈ IV STE(X) Then we say that:
(i) τ1 is coarser than τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2,
(ii) τ1 is strictly coarser than τ2 or τ2 is strictly finer than τ1, if τ1 ⊂ τ2 and

τ1 6= τ2,
(iii) τ1 is comparable with τ2, if either τ1 ⊂ τ2 or τ2 ⊂ τ1.

It is obvious that τ̃
0
⊂ τ ⊂ τ̃

1
for each τ ∈ IV STE(X) and (IV STE(X),⊂) forms

a meet lattice with the smallest element τ̃
0

and τ̃
1

from Corollary 4.9.

Definition 4.13. Let A, B ∈ IV SSE(X). Then the difference of A and B,
denoted by A−B, is the mapping A−B : E → IV S(X) defined by: for each e ∈ E,

(A−B)(e) = A(e)−B(e) = A(e) ∩Bc(e) = [A−(e) ∩B+(e), A+(e) ∩B−(e)].

Lemma 4.14. Let A, B, C ∈ IV SSE(X). If A−B = A ∩C, then B = A ∩Cc.

Proof. Suppose A−B = A ∩C and let e ∈ E. Then we have

B = A− (A−B) = A− (A ∩C).

Thus we get
B(e) = A(e) ∩ (A ∩C)c(e)
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= [A−(e), A+(e)] ∩ ([A+(e), A−(e)] ∪ [C+(e), C−(e)]
= [A−(e), A+(e)] ∩ [A+(e) ∪ C+(e), A−(e) ∪ C−(e)]
= [A−(e) ∩ (A+(e) ∪ C+(e)), A+(e) ∩ (A−(e) ∪ C−(e))]
= (A ∩Cc)(e).

So B = A ∩Cc. �

Proposition 4.15. Let A ∈ IV SSE(X) and let τ ∈ IV STE(X). Then the following
family

τ
A

= {A ∩U : U ∈ τ}
is an IVST on A.

Proof. Clearly, ∅̃E , X̃E ∈ τ . Then by Proposition 3.20 (8a) and (8b), A∩ ∅̃E = ∅̃E
and A ∩ X̃E = A. Thus ∅̃E , A ∈ τ

A
. So τ

A
satisfies the axiom [IVSO1]. Let

B, C ∈ τ
A

. Then there are U, V ∈ τ such that B = A ∩ U and C = A ∩ V.
Thus by Proposition 3.20 (1) and (2), B ∩ C = A ∩ (U ∩V) and U ∩V ∈ τ . So
B ∩ C ∈ τ

A
. Hence τ

A
satisfies the axiom [IVSO2]. Now let (Aj)j∈J ⊂ τ

A
. Then

there is Uj ∈ τ such that Aj = A ∩Uj for each j ∈ J . Thus by Proposition 3.24
(1), we have

⋃
j∈J Aj = A ∩ (

⋃
j∈J Uj). So

⋃
j∈J Aj ∈ τA . Hence τ

A
satisfies the

axiom [IVSO3]. Therefore τ
A

is an IVST on A. �

In Proposition 4.15, τ
A

is called an interval-valued soft relative topology (briefly,
IVSRT) on A and the pair (A, τ

A
, E) called an interval-valued soft subspace of

(X, τ,E). Every member of τ
A

is called an interval-valued soft open set in A and
an IVSS B is called an interval-valued soft closed set in A, if A − B ∈ τ

A
, where

B ⊂ A.

Example 4.16. (1) Let X = {h1, h2, h3} and let E = {e1, e2}. Consider the IVST
τ given by:

τ = {∅̃E , X̃E ,U1,U2,U3,U4},
where U1(e1) = [{h1, h2}, X], U1(e2) = [{h1}, {h1, h2}],

U2(e1) = [{h2}, {h2, h3}], U2(e2) = [{h1, h3}, X],
U3(e1) = [∅, {h2}], U3(e2) = [{h1}, {h1, h2}],
U4(e1) = [{{h1, h2}, X], U4(e2) = [{h1, h3}, X}].

Let A be an IVSS over X with respect to E given by:

A(e1) = [{h1, h3}, {h1, h3}], A(e2) = [{h1}, {h1, h3}].

Then we have

τ
A

= {∅̃E ,A,A ∩U1,A ∩U2,A ∩U3,A ∩U4},

where (A ∩U1)(e1) = [{h1}, {h1, h3}], (A ∩U1)(e2) = [{h1}, {h1}],
(A ∩U2)(e1) = [∅, {h3}], (A ∩U2)(e2) = [{h1}, {h1, h3}],
(A ∩U3)(e1) = ∅̃, (A ∩U3)(e2) = [{h1}, {h1}],
(A ∩U4)(e1) = (A ∩U4)(e2) = [{h1}, {h1, h3}].

(2) Every interval-valued soft subspace of an interval-valued soft discrete space is
an interval-valued soft discrete space.

(3) Every interval-valued soft subspace of an interval-valued soft indiscrete space
is an interval-valued soft indiscrete space.
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Proposition 4.17. Let (X, τ,E) be an IVSTS and let A ∈ IV SSE(X). Then
(A(e), τ

A
(e)) is an interval-valued subspace of (X, τe) for each e ∈ E proposed by

Lee et al. [44].

Proof. From Propositions 4.5 and 4.15, it is clear that τ
A

(e) is an IVT on A(e) for
each e ∈ E. Let e ∈ E. Then we have

τ
A

(e) = {(A ∩U)(e) : U ∈ τ} = {A(e) ∩U(e) : U ∈ τ}
= {A(e) ∩U(e) : U(e) ∈ τe}.

Thus (A(e), τ
A

) is an interval-valued subspace of (X, τe) for each e ∈ E. �

Corollary 4.18. Let (X, τ,E) be an IVSTS and let A ∈ IV SSE(X). Then for
each e ∈ E,

(A−(e), τ
A

(e)−), (A+(e), τ
A

(e)+)

are classical subspaces of (X, τ−e ) and (X, τ+e ) respectively, where

τ
A

(e)− = {A−(e) ∩ U−(e) : U−(e) ∈ τ−e },

τ
A

(e)+ = {A+(e) ∩ U+(e)+ : U+(e) ∈ τ+e }.

Proof. The proof is clear from Propositions 4.5 and 4.17, and Remark 4.6 (1). �

Example 4.19. Let (A, τ
A
, E) be the interval-valued subspace of the IVTS (X, τ,E)

given in Example 4.16. Then we have two interval-valued relative topologies on A(e1)
and A(e2), respectively:

τ
A

(e1) = {∅̃, X̃, [{h1}, {h1, h3}], [∅, {h3}]},

τ
A

(e2) = {∅̃, X̃, [{h1}, {h1}], [{h1}, {h1, h3}]}.
Moreover, we can check that

(A(e1)−, τ
A

(e1)−), (A(e1)+, τ
A

(e1)+), (A(e2)−, τ
A

(e2)−), (A(e2)+, τ
A

(e2)+)

are classical subspces of (X, τ−e1), (X, τ+e1), (X, τ−e2), (X, τ+e2) respectively, where

τ
A

(e1)− = {∅, X, {h1}}, τA(e1)+ = {∅, X, {h3, {h1, h3}},

τ
A

(e2)− = {∅, X, {h1}}, τA(e2)+ = {∅, X, {h1, {h1, h3}}.

Proposition 4.20. Let (A, τ
A
, E) be an IVSTS (X, τ,E) and let B ∈ τ

A
. If A ∈ τ ,

then B ∈ τ.

Proof. Let B ∈ τ
A

. Then clearly, there is U ∈ τ such that B = A∩U. Since A ∈ τ ,
A ∩U ∈ τ. Thus B ∈ τ. �

Theorem 4.21. Let (A, τ
A
, E) be an IVSTS (X, τ,E) and let B ∈ IV SS(X). Then

B is interval-valued soft closed in A if and only if there is an IVSCS C in X such
that B = A ∩C.

Proof. Suppose B is an interval-valued soft closed in A. Since A−B ∈ τ
A
, there is

U ∈ τ such that A−B = A ∩U. Then by Lemma 4.15, B = A ∩Uc and Uc ∈ τ c.
Thus the necessary condition holds.

Conversely, suppose there is an IVSCS C in X such that B = A ∩ C and let
e ∈ E. Then clearly, Cc ∈ τ . Moreover, by Lemma 4.14, we have A−B = A ∩Cc.
Thus A−B ∈ τ

A
. So B is an interval-valued soft closed in A. �
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Definition 4.22. Let (X, τ,E) be an IVSTS and let β, σ ⊂ τ . Then
(i) β is called an interval-valued soft base (briefly, IVSB) for τ , if U = ∅̃E or

there is β
′ ⊂ β such that U =

⋃
{B : B ∈ β′} for any U ∈ τ .

(ii) σ is called an interval-valued soft subbase (briefly, IVSSB) for τ , if the family
of all finite intersections of members of σ is an IVSB for τ .

Example 4.23. Let X = {a, b, c} and let E = {e}. Consider the family β of IVSSs
over X given by:

β = {X̃E ,A,B},
where A(e) = [{a, b}, X], B(e) = [{b, c}, X].
Assume that β is an IVSB for an IVST τ . Then clearly, β ⊂ τ. Thus A, B ∈ τ. So
A ∩B ∈ τ and (A ∩B)(e) = [{a, b}, X] ∩ [{b, c}, X] = [{b}, X]. But for any β

′ ⊂ β,

[{b}, X] 6= (
⋃
β
′
)(e). Hence β is not an IVSB for τ .

Proposition 4.24. Let β be an IVSB for an IVSTS (X, τ,E). Then for each e ∈ E,
βe is an IVB for the IVT τe defined by Kim et al. [39], where βe = {B(e) : B ∈ β}.

Proof. The proof is obvious from Proposition 4.5 and Definition 4.22. �

Theorem 4.25. Let β be a family of IVSSs over X with respect to E. Then β is
an IVSB for some IVST τ on X if and only if it satisfies the following conditions:

(1) X̃E =
⋃
{B : B ∈ β},

(2) if B1, B2 ∈ β and e
a
IV P
∈ B1 ∩B2 [resp. e

a
IV V P

∈ B1 ∩B2], then there is

B ∈ β such that ea
IV P
∈ B [resp. ea

IV V P
∈ B] and B ⊂ B1 ∩B2.

Proof. Suppose β is an IVSB for an IVST τ on X. Since X̃E ∈ τ , X̃E =
⋃
{B : B ∈

β}. Suppose B1, B2 ∈ β and ea
IV P
∈ B1 ∩ B2. Then clearly, B1, B2 ∈ τ. Thus

B1 ∩B2 ∈ τ. So there is a β
′ ⊂ β such that B1 ∩B2 =

⋃
{B : B ∈ β′}. Hence by

Theorem 3.29 (2), there is B ∈ β such that e
a
IV P
∈ B and B ⊂ B1 ∩B2. The proof

of the second part is similar.
Conversely, suppose β is a family of IVSSs over X with respect to E satisfying

the conditions (1)and (2). Let τ ⊂ IV SSE(X) be given by:

τ = {∅̃E}
⋃
{U : U =

⋃
β′⊂β

{B : B ∈ β
′
}}.

Then clearly, ∅̃E , X̃E ∈ τ . From the definition of τ , it is clear that
⋃
j∈J Uj ∈ τ

for any (Uj)j∈J ⊂ τ . Suppose U1, U2 ∈ τ and e
a
IV P
∈ U1 ∩U2 [resp. e

a
IV V P

∈
U1∩U2]. Then by the condition (2) and Theorem 3.29 (2), there is B ∈ β such that
e
a
IV P
∈ B [resp. e

a
IV V P

∈ B] and B ⊂ B1 ∩B2. Thus U1 ∩U2 can be expressed as

the union of members of a subcollection of β. So U1∩U2 ∈ τ . Hence τ ∈ IV STE(X)
and β is an IVSB for τ . This completes the proof. �

Example 4.26. (1) Let X = {a, b, c} and let E = {e1, e2}. Consider the family β
of IVSSs over X given by:

β = {∅̃E ,A,B,C},
where A(e1) = [{a}, {a, b}], A(e12) = [{b}, {b, c}],

B(e1) = [{a, c}, X], B(e12) = [{b, c}, {b, c}],
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C(e1) = [{a, b}, {a, b}], C(e12) = [{b}, {b, c}].
Then we can easily check that β satisfies the conditions of Theorem 4.25. Thus β is

an IVSB for an IVST τ on X. In fact, τ = {∅̃E ,A,B,C, X̃E}.

The following provides a characterization for an IVST τ2 to be finer than an IVST
τ1 in terms of IVSBs for τ1 and τ2.

Theorem 4.27. Let (X, τ1, E), (X, τ2, E) be two IVSTSs and let β, β
′

be IVSBs
for τ1 and τ2 respectively. Then τ2 is finer than τ1 if and only if for each B ∈ β
such that ea

IV P
∈ B [resp. ea

IV V P
∈ B], there is B

′ ∈ β
′

such that ea
IV P

∈ B
′

[resp. e
a
IV V P

∈ B
′
] and B

′ ⊂ B.

Proof. Suppose τ2 is finer than τ1 and let B ∈ β such that e
a
IV P
∈ B [resp. e

a
IV V P

∈
B]. Then clearly, B ∈ τ2. Since β

′
is an IVSB for τ2, by Theorem 3.29 (2), there is

B
′ ∈ β′ such that e

a
IV P
∈ B

′
[resp. e

a
IV V P

∈ B
′
] and B

′ ⊂ B.

Conversely, suppose the necessary condition holds and let U ∈ τ1 such that
e
a
IV P

∈ U [resp. e
a
IV V P

∈ U]. Since β is an IVSB for τ1, there is B ∈ β such

that e
a
IV P
∈ B [resp. e

a
IV V P

∈ B] and B ⊂ U. Then by the condition (2), there is

B
′ ∈ β′ such that ea

IV P
∈ B

′
[resp. ea

IV V P
∈ B

′
] and B

′ ⊂ B. Thus B
′ ⊂ U. So

U is the union of members of a collection of B
′
. Hence U ∈ τ2. Therefore τ2 is finer

than τ1. �

Definition 4.28. Let (X, τ1, E), (X, τ2, E) be two IVSTSs and let β1, β2 be IVSBs
for τ1 and τ2 respectively. Then β1 and β2 are said to be equivalent, if τ1 = τ2.

The following is an immediate consequence of Theorem 4.27.

Corollary 4.29. Let (X, τ1, E), (X, τ2, E) be two IVSTSs and let β1, β2 be IVSBs
for τ1 and τ2 respectively. Then β1 and β2 are equivalent if and only if the followings
hold:

(1) for each B1 ∈ β1 such that e
a
IV P
∈ B1 [resp. e

a
IV V P

∈ B1], there is B2 ∈ β2
such that ea

IV P
∈ B2 [resp. ea

IV V P
∈ B2] and B2 ⊂ B1,

(1) for each B2 ∈ β2 such that e
a
IV P
∈ B2 [resp. e

a
IV V P

∈ B2], there is B1 ∈ β1
such that e

a
IV P
∈ B1 [resp. e

a
IV V P

∈ B1] and B1 ⊂ B2.

Note that every IVST has an IVSB since the IVST itself forms an IVSB. The
following gives a condition for one to check to see if a subcollection of an IVST τ is
an IVSB for τ .

Proposition 4.30. Let (X, τ1, E) be an IVSTS. Suppose β ⊂ τ such that for each
U ∈ τ with e

a
IV P

∈ U [resp. e
a
IV V P

∈ U], there is B ∈ β such that e
a
IV P

∈ B

[resp. ea
IV V P

∈ B] and B ⊂ U. Then β is an IVSB for τ .

Proof. Let ea
IV P

∈ X̃E [resp. ea
IV V P

∈ X̃E ]. Since X̃E ∈ τ, there is B ∈ β such

that ea
IV P

∈ B [resp. ea
IV V P

∈ B] and B ⊂ X̃E . Then X̃E =
⋃
{B : B ∈ β}.

Thus β satisfies the condition (1) of Theorem 4.25. Suppose B1, B2 ∈ β and
e
a
IV P
∈ B1 ∩ B2 [resp. e

a
IV V P

∈ B1 ∩ B2]. Since B1, B2 ∈ τ, B1 ∩B2 ∈ τ. Then
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there is B ∈ β such that ea
IV P

∈ B [resp. ea
IV V P

∈ B] and B ⊂ B1 ∩ B2. Thus

β satisfies the condition (2) of Theorem 4.25. So by Theorem 4.25, β is an IVSB

for some IVST τ
′

on X. From Theorem 4.27, it is clear that τ
′

is finer than τ , i.e.,
τ ⊂ τ

′
. Furthermore, it can be easily seen that τ

′ ⊂ τ holds. Hence τ = tau
′
. This

completes the proof. �

One advantage of the notion of an IVSSB is that we can define an IVST on X by

simply choosing an arbitrary collection IVSSs in X whose union is X̃E .

Proposition 4.31. Let σ ⊂ IV SSE(X) such that X̃E =
⋃
{S : S ∈ σ}. Then there

is a unique IVST τ on X such that σ is an IVSSB for τ .

Proof. Let β = {B ∈ IV SSE(X) : B =
⋃
{B : B ∈ σf}, σf is a finite subset of σ}.

Let τ = {U ∈ IV SSE(X) : U = ∅̃E or ∃ β′ ⊂ β such that U =
⋃
{B : B ∈ β′}.

It is obvious that ∅̃E , X̃E ∈ τ. Let (Uj)j∈J ⊂ τ , where J is an index set. Then
there is j ∈ J such that βj ⊂ β and Uj =

⋃
{B : B ∈ βj}. Thus

⋃
j∈J Uj =⋃

j∈J(
⋃

B∈βj B). So
⋃
j∈J Uj ∈ τ. Suppose U1, U2 ∈ τ such that e

a
IV P
∈ U1 ∩U2

[resp. e
a
IV V P

∈ U1 ∩U2]. Then there are B1, B2 ∈ β such that e
a
IV P
∈ B1 ∩B2

[resp. e
a
IV V P

∈ B1 ∩B2], B1 ⊂ U1 and B2 ⊂ U2. Since each of B1 and B2 is the

intersection of a finite number of members of σ, B1 ∩B2 ∈ β. Thus there is β
′ ⊂ β

such that U1∩U2 =
⋃

B∈β′ B. So U1∩U2 ∈ τ . Hence τ ∈ IV STE(X). It is obvious
that τ is the unique IVST having σ as an IVSSB. �

Example 4.32. Let X = {a, b, c, d, e} and let E = {e1, e2}. Consider the family σ
of IVSSs over X given by:

σ = {S1,S2,S3,S4},
where S1(e1) = [{a}, {a}], S1(e2) = [{b}, {b}],

S2(e1) = [{a, b, c}, {a, b, c}], S2(e2) = [{b, c, d}, {b, c, d}],
S3(e1) = [{b, c, d}, {b, c, d}], S3(e2) = [{c, d, e}, {c, d, e}],
S4(e1) = [{c, e}, {c, e}], S4(e2) = [{a, d}, {a, d}].

Then from Proposition 4.31, we can easily check that σ is an IVSSB for the unique
IVST τ . Let β be the collection of all finite intersections of members of σ. Then we
have

β = {S1,S2,S3,S4,B1,B2},
where B1(e1) = [{b, c}, {b, c}], S1(e2) = [{c, d}, {c, d}],

B2(e1) = [{c}, {c}], B2(e2) = [{d}, {d}].
Thus we get

τ = {∅̃E ,U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12,U13, X̃E},
where U1 = S1, U2 = S2, U3 = S3, U4 = S4, U5 = B1, U6 = B2,

U7(e1) = [{a, b, c, d}, {a, b, c, d}], U7(e2) = [{b, c, d, e}, {b, c, d, e}],
U8(e1) = [{a, c, e}, {a, c, e}], U8(e2) = [{a, b, d}, {a, b, d}],
U9(e1) = [{a, b, c}, {a, b, c}], U9(e2) = [{b, c, d}, {b, c, d}],
U10(e1) = [{a, b, c, e}, {a, b, c, e}], U10(e2) = [{a, b, c, d}, {a, b, c, d}],
U11(e1) = [{a, c}, {a, c}], U11(e2) = [{b, d}, {b, d}],
U12(e1) = [{b, c, d, e}, {b, c, d, e}], U9(e2) = [{a, c, d, e}, {a, c, d, e}],
U13(e1) = [{b, c, e}, {b, c, e}], U13(e2) = [{a, c, d}, {a, c, d}].
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5. Interval-valued soft neighborhoods, interval-valued soft closures
and interiors

In this section, we introduce the concept of interval-valued soft neighborhoods
of IVPs of two types and find their various properties and give some examples.
Also, we define interval-valued soft closures and interiors, and deal with some of
their properties. Moreover, we show that there is a unique IVST on X from the
interval-valued soft closure [resp. interior] operator.

Definition 5.1. Let (X, τ,E) be an IVSTS and let N ∈ IV SSE(X). Then

(i) N is called an interval-valued soft neighborhood (briefly, IVSN) of ea
IV P
∈ X̃E ,

if there exists a U ∈ τ such that

e
a
IV P
∈ U ⊂ N, i.e., a ∈ U−(e) ⊂ N−(e),

(ii) N is called an interval-valued soft vanishing neighborhood (briefly, IVSVN) of

e
a
IV V P

∈ X̃E , if there exists a U ∈ τ such that

ea
IV V P

∈ U ⊂ N, i.e., a ∈ U+(e) ⊂ N+(e).

We will denote the set of all IVSNs [resp. IVSVNs] of e
a
IV P

[resp. e
a
IV V P

] by

N(e
a
IV P

) [resp. N(e
a
IV V P

)].

For each e ∈ E, let NIV SN,e = N(ea
IV P

(e)) [resp. NIV SV N,e = N(ea
IV V P

(e))].

Then we can ewasily see that NIV SN,e = N(a
IV P

) [resp. NIV SV N,e = N(a
IV V P

)]
with respect to the IVT τe on X (See Proposition 4.5).

Example 5.2. Let X = {a, b, c, d}, let E = {e, f}. Consider IVST τ on X given
by:

τ = {∅̃E ,A1,A2,A3,A4, X̃E},
where A1(e) = [{b}, {b, d}], A1(f) = [{a}, {a, c}],

A2(e) = [{a, c}, {a, b, c}], A2(f) = [{a, b}, {a, b, d}],
A3(e) = [∅, {b}], A3(f) = [{a}, {a}],
A4(e) = [{a, b, c}, X], A3(f) = [{a, b}, X].

Let N ∈ IV SSE(X) given by:

N(e) = [{b}, {a, b, d}], N(f) = [{a, c}, {a, c, d}].
Then we can easily see that

N ∈ N(e
b
IV P

), N ∈ N(e
b
IV V P

), N ∈ N(f
a
IV P

).

From Proposition 4.5, we have two IVTs on X:

τe = {∅̃,A1(e),A2(e),A3(e),A4(e), X̃},

τf = {∅̃,A1(f),A2(f),A3(f),A4(f), X̃}.
Then we can see that N(e) ∈ N(b

IV P
) ∩N(b

IV V P
) and N(f) ∈ N(a

IV P
).

Proposition 5.3. Let (X, τ,E) be an IVSTS and let e
a
IV P
∈ X̃E.

[IVSN1] If N ∈ N(ea
IV P

), then e
b
IV P
∈ N.

[IVSN2] If N ∈ N(e
a
IV P

) and N ⊂M, then M ∈ N(e
a
IV P

).
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[IVSN3] If N, M ∈ N(ea
IV P

), then N ∩M ∈ N(ea
IV P

).

[IVSN4] If N ∈ N(ea
IV P

), then there exists M ∈ N(ea
IV P

) such that N ∈
N(e

b
IV P

) for each e
b
IV P
∈M.

Proof. The proofs of [IVSN1] and [IVSN2] are easy.
[IVSN3] Suppose N, M ∈ N(e

a
IV P

). Then there are U, V ∈ τ such that

ea
IV P
∈ U ⊂ N and ea

IV P
∈ V ⊂M.

Let W = U ∩V. Then clearly, W ∈ τ and e
a
IV P
∈W ⊂ U ∩V. Thus N ∩M ∈

N(ea
IV P

).

[IVSN4] The proof is easy from Definition 5.1 and [IVSN2]. �

Proposition 5.4. Let (X, τ,E) be an IVSTS and let e
a
IV P
∈ X̃E.

[IVSVN1] If N ∈ N(e
a
IV V P

), then e
a
IV V P

∈ N.

[IVSVN2] If N ∈ N(e
a
IV V P

) and N ⊂M, then M ∈ N(e
a
IV V P

).

[IVSVN3] If N, M ∈ N(ea
IV V P

), then N ∩M ∈ N(ea
IV V P

).

[IVSVN4] If N ∈ N(e
a
IV V P

), then there exists M ∈ N(e
a
IV V P

) such that N ∈
N(e

b
IV V P

) for each e
b
IV V P

∈M .

Proof. The proof is similar to one of Proposition 5.3. �

Proposition 5.5. Let (X, τ,E) be an IVSTS and let us define two families:

τ
IV SP

= {U ∈ IV SSE(X) : U ∈ N(e
a
IV P

) for each e
a
IV P
∈ U}

and

τIV SV P = {U ∈ IV SSE(X) : U ∈ N(e
a
IV V P

) for each e
a
IV V P

∈ U}.

Then we have
(1) τ

IV SP
, τ

IV SV P
∈ IV STE(X),

(2) τ ⊂ τ
IV SP

and τ ⊂ τ
IV SV P

.

Proof. (1) We only prove that τ
IV SV P

∈ IV STE(X).

[IVSO1] From the definition of τ
IV SV P

, we have ∅̃E , X̃e ∈ τIV SV P .
[IVSO2] Let U ,V ∈ IV SSE(X) such that U, V ∈ τ

IV SV P
and let e

a
IV SV P

∈
U∩V. Then clearly, U, V ∈ N(e

a
IV SV P

). Thus by [IVSVN3], U∩V ∈ N(e
a
IV SV P

).

So U ∩V ∈ τ
IV SV P

.
[IVSO3] Let (Uj)j∈J be any family of IVSSs in τ

IV SV P
, let U =

⋃
j∈J Uj and let

e
a
IV V P

∈ U. Then by Theorem 3.29 (2), there is j0 ∈ J such that e
a
IV SV P

∈ Uj0 .

Since Uj0 ∈ τIV SV P , Uj0 ∈ N(e
a
IV SV P

) by the definition of τ
IV SV P

. Since Uj0 ⊂ U,

U ∈ N(ea
IV SV P

) by [IVSVN2]. So by the definition of τ
IV SV P

, U ∈ τ
IV SV P

.

(2) Let U ∈ τ . Then clearly, U ∈ N(e
a
IV SP

) and U ∈ N(e
a
IV SV P

) for each

ea
IV SP

∈ V and ea
IV SV P

∈ V, respectively. Thus U ∈ τ
IV SP

and U ∈ τ
IV SV P

. So

the results hold. �

Remark 5.6. (1) From the definitions of τ
IV SP

and τ
IV SV P

, we can easily have:

τ
IV SP

= τ ∪ {[U−, S] ∈ IV SSE(X) : U+ ⊂ S, U ∈ τ}
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and

τ
IV SV P

= τ∪{S ∈ IV SSE(X) : ∅ 6= S− ⊂ X\U+, S+ = S−∪U+, U = [∅, U+] ∈ τ}.
In fact, if U− 6= ∅ for each U ∈ τ , then τ

IV SV P
= τ .

(2) From Proposition 4.5 and Proposition 5.5 in [39], we can easily see that for
each τ ∈ IV STE(X) and e ∈ E,

τ
IV SP ,e = τ

IV P
, τ

IV SV P ,e = τ
IV V P

, where

τ
IV SP ,e = {U(e) ∈ IV S(X) : U ∈ τ

IV P
},

τ
IV SV P ,e = {U(e) ∈ IV S(X) : U ∈ τ

IV V P
}.

Furthermore, from Remark 4.6 (1) and Remark 5.6 (1) in [39], we can have four
ordinary topologies on X given by:

τ−
IV SP ,e = {U− ∈ 2X : U ∈ τ

IV P
}, τ+

IV SP ,e = {U+ ∈ 2X : U ∈ τ
IV P
}

and

τ−
IV SV P ,e = {U− ∈ 2X : U ∈ τ

IV V P
}, τ+

IV SV P ,e = {U+ ∈ 2X : U ∈ τ
IV V P

}.

Example 5.7. (1) Let X = {a, b, c, d}, E = {e} and consider the family τ of IVSSs
over X given by:

τ = {∅̃E , X̃E ,A1,A2,A3,A4,A5,A6,A7},
where A1(e) = [{a, b}, {a, b, c}], A2(e) = [{c}, {b, c}], A3(e) = [∅, {a, c}],

A4(e) = [{a, b, c}, {a, b, c}], A5(e) = [∅, {b, c}], A6(e) = [∅, {c}],
A7(e) = [{c}, {a, b, c}].

Then we can easily check that (X, τ,E) is an IVSTS. Thus from Remark 5.6 (1), we
have:

τ
IV SP

= τ ∪ {A8,A9,A10,A11,A12,A13,A14,A15,A16,A17},
τ
IV SV P

= τ ∪ {A18,A19,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29},
where A8(e) = [{a, b}, X], A9(e) = [{c}, {b, c, d}],A10(e) = [{c}, X],

A11(e) = [∅, {a, b, c}], A12(e) = [∅, {a, c, d}],A13(e) = [∅, X],
A14(e) = [{a, b, c}, X], A15(e) = [∅, {b, c, d}],
A16(e) = [∅, {c, d}], A17(e) = [{c}, X],
A18(e) = [{b}, {a, b, c}], A19(e) = [{d}, {a, c, d}], A20(e) = [{b, d}, X],
A21(e) = [{a}, {a, b, c}], A22(e) = [{d}, {b, c, d}], A23(e) = [{b, d}, X],
A24(e) = [{a}, {a, c}], A25(e) = [{b}, {b, c}], A26(e) = [{d}, {c, d}],
A27(e) = [{a, d}, {a, c, d}], A28(e) = [{b, d}, {b, c, d}], A29(e) = [{a, b, d}, X].

So we can confirm that Proposition 5.5 holds.
Furthermore, we obtain six ordinary topologies on X for the IVT τ :

τ−e = {∅, X, {c}, {a, b}, {a, b, c}},

τ+e = {∅, X, {c}, {a, c}, {b, c}, {a, b, c}},
τ−
IV SP ,e = {∅, X, {c}, {a, b}, {a, b, c}} = τ−e ,

τ+
IV SP ,e = {∅, X, {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}},

τ−
IV SV P ,e = {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}},
τ+
IV SV P ,e = {∅, X, {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}}.
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(2) X = {a, b, c, d}, E = {e, f} and τ be the IVST on X given by:

τ = {∅̃E , X̃E ,A1,A2,A3,A4},
where A1(e) = [{b, c}, {b, c, d}], A2(e) = [{a, b}, {a, b, c}],

A3(e) = [{b}, {b, c}], A4(e) = [{a, b, c}, X],
A1(f) = [{a, c}, {a, c, d}], A2(f) = [{a, b}, {a, b, c}],
A3(f) = [{a}, {a, c}], A4(e) = [{a, b, c}, X].

Then we easily check that τ
IV SV P

= τ .

The following is an immediate consequence of Propositions 4.4 and 5.5 (2).

Corollary 5.8. Let (X, τ,E) be an IVSTS and let τ c
IV SP

[resp. τ c
IV SV P

] be the set
of all IVSCSs w.r.t. τ

IV SP
[resp. τ

IV SV P
]. Then

τ c ⊂ τ c
IV SP

, and τ c ⊂ τ c
IV SV P

.

Example 5.9. Let (X, τ,E) be the IVSTS given in Example 5.7 (1). Then we have:

τ c = {∅̃E , X̃E ,A
c
1,A

c
2,A

c
3,A

c
4,A

c
5,A

c
6,A

c
7},

τ c
IV SP

= τ c ∪ {Ac
8,A

c
9,A

c
10,A

c
11,A

c
12,A

c
13,A

c
14,A

c
15,A

c
16,A

c
17},

τ c
IV SV P

= τ c ∪ {Ac
18,A

c
19,A

c
20,A

c
21,A

c
22,A

c
23,A

c
24,A

c
25,A

c
26,A

c
27,A

c
28,A

c
29},

where Ac
1(e) = [{d}, {c, d}], Ac

2(e) = [{a, d}, {a, b, d}], Ac
3(e) = [{b, d}, X],

Ac
4(e) = [{d}, {d}], Ac

5(e) = [{a, d}, X], Ac
6(e) = [{a, b, d}, X],

Ac
7(e) = [{d}, {a, b, d}],

Ac
8(e) = [∅, {c, d}], Ac

9(e) = [{a}, {a, b, d}],
Ac

10(e) = [∅, {a, b, d}], Ac
11(e) = [{d}, X] Ac

12(e) = [{b}, X],
Ac

13(e) = [∅, X], Ac
14(e) = [∅, {d}], Ac

15(e) = [{a}, X],
Ac

16(e) = [{a, b}, X], Ac
17(e) = [∅, {a, b, d}],

Ac
18(e) = [{d}, {a, c, d}], Ac

19(e) = [{b}, {a, b, c}], Ac
20(e) = [∅, {a, c}],

Ac
21(e) = [{d}, {b, c, d}], Ac

22(e) = [{a}, {a, b, c}], Ac
23(e) = [∅, {a, c}],

Ac
24(e) = [{b, d}, {b, c, d}], Ac

25(e) = [{a, d}, {a, c, d}], Ac
26(e) = [{a, b}, {a, b, c}],

Ac
27(e) = [{b}, {b, c}], Ac

28(e) = [{a}, {a, c}], Ac
29(e) = [∅, {c}].

Thus we can confirm that Corollary 5.8 holds.

Now let us consider the converses of Propositions 5.3 and 5.4.

Proposition 5.10. Suppose to each ea
IV V P

∈ X̃E, there corresponds a family

N∗(ea
IV V P

) of IVSSs over X satisfying the conditions [IVSVN1], [IVSVN2], [IVSVN3]

and [IVSVN4] in Proposition 5.4. Then there is an IVST on X with respect to E
such that N∗(ea

IV V P
) is the set of all IVSVNs of e

a
IV V P

in this IVST for each

e
a
IV V P

∈ X̃E.

Proof. Let

τ
IV SV P

= {U ∈ IV SSE(X) : U ∈ N(e
a
IV V P

) for each e
a
IV V P

∈ U},

where N(ea
IV V P

) denotes the set of all IVSVNs in τ .

Then clearly, τ
IV SV P

∈ IV STE(X) by Proposition 5.5. We will prove thatN∗(ea
IV V P

)

is the set of all IVSVNs of e
a
IV V P

in τ
IV SV P

for each e
a
IV V P

∈ X̃E .
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Let V ∈ IV SSE(X) such that V ∈ N∗(ea
IV V P

) and let U be the union of all the

IVSVPs e
b
IV V P

in X such that U ∈ N∗(ea
IV V P

). If we can prove that

ea
IV V P

∈ U ⊂ V and U ∈ τ
IV SV P

,

then the proof will be complete.
Since V ∈ N∗(ea

IV V P
), e

a
IV V P

∈ U by the definition of U. Moreover, U ⊂ V.

Suppose e
b
IV V P

∈ U. Then by [IVSVN4], there is an IVSS W ∈ N∗(eb
IV V P

) such

that V ∈ N∗(ec
IV V P

) for each e
c
IV V P

∈W. Thus e
c
IV V P

∈ U. By Proposition 3.30

(1), W ⊂ U. So by [IVSVN2], U ∈ N∗(eb
IV V P

) for each e
b
IV V P

∈ U. Hence by the

definition of τ
IV SV P

, U ∈ τ
IV SV P

. This completes the proof. �

Proposition 5.11. Suppose to each e
a
IV P
∈ X̃E, there corresponds a set N∗(ea

IV P
)

of IVSSs in X satisfying the conditions [IVSN1], [IVSN2], [IVSN3] and [IVSN4] in
Proposition 5.3. Then there is an IVST over X such that N∗(ea

IV P
) is the set of

all IVSNs of e
a
IV P

in this IVST for each e
a
IV P
∈ X̃E.

Proof. The proof is similar to Proposition 5.10. �

Theorem 5.12. Let (X, τ,E) be an IVTS and let A ∈ IV SSE(X). Then A ∈ τ if
and only if A ∈ N(e

a
IV P

) and A ∈ N(e
a
IV V P

) for each e
a
IV P

, e
a
IV P
∈ A.

Proof. Suppose A ∈ N(ea
IV P

) and A ∈ N(ea
IV V P

) for each ea
IV P

, ea
IV V P

∈ A.

Then there are Uea
IV P

, Vea
IV V P

∈ τ such that e
a
IV P
∈ Uea

IV P
⊂ A and e

a
IV V P

∈
Vea

IV V P
⊂ A. Thus by Proposition 3.27, we get

A = (
⋃
ea
IV P

∈A eaIV P
) ∪ (

⋃
ea
IV V P

∈A eaIV V P
)

⊂ (
⋃
ea
IV P

∈A Uea
IV P

) ∪ (
⋃
ea
IV V P

∈A Vea
IV P

)

⊂ A.
So A = (

⋃
ea
IV P

∈A Uea
IV P

) ∪ (
⋃
ea
IV V P

∈A Vea
IV P

). Since Uea
IV P

, Vea
IV V P

∈ τ ,

A ∈ τ .
The proof of the necessary condition is easy. �

Now we provide the relationship among three IVSTs, τ , τ
IV SP

and τ
IV SV P

.

Proposition 5.13. τ = τ
IV SP

∩ τ
IV SV P

.

Proof. From Proposition 5.5 (2), it is clear that τ ⊂ τ
IV SP

∩ τ
IV SV P

.
Conversely, let U ∈ τ

IV SP
∩ τ

IV SV P
. Then clearly, U ∈ τ

IV SP
and U ∈ τ

IV SV P

Thus U is an IVSN of each of its IVSP e
a
IV P

and an IVSVN of each of its IVVP

e
a
IV V P

. Thus there are Uea
IV P

, Uea
IV V P

∈ τ such that e
a
IV P
∈ Uea

IV P
⊂ U and

e
a
IV V P

∈ Uea
IV V P

⊂ U. So we have

UIV =
⋃

ea
IV P

∈U

ea
IV P
⊂

⋃
ea
IV V P

∈U

Uea
IV P
⊂ U

and
UIV V =

⋃
ea
IV P

∈U

ea
IV V P

⊂
⋃

ea
IV V P

∈U

Uea
IV V P

⊂ U.
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By Proposition 3.27, we get

U = U
IV SP

∪U
IV SV P

⊂ (
⋃

ea
IV P

∈U

Uea
IV P

) ∪ (
⋃

ea
IV V P

∈U

Uea
IV V P

) ⊂ U, i.e.,

U = (
⋃

ea
IV P

∈U

Uea
IV P

) ∪ (
⋃

ea
IV V P

∈U

Uea
IV V P

).

It is obvious that (
⋃
ea
IV P

∈U Uea
IV V P

) ∪ (
⋃
ea
IV V P

∈U Uea
IV V P

) ∈ τ. Hence U ∈ τ.
Therefore τ

IV SP
∩ τ

IV SV P
⊂ τ. This completes the proof. �

The following is an immediate consequence of Corollary 5.8 and Proposition 5.13.

Corollary 5.14. Let (X, τ,E) be an IVSTS. Then

τ c = τ c
IV SP

∩ τ c
IV SV P

.

Example 5.15. In Example 5.9, we can easily check that Corollary 5.14 holds.

Now we define interval-valued soft interiors and closures, and study some of their
properties and give some examples.

Definition 5.16. Let (X, τ,E) be an IVSTS and let A ∈ IV S(X)E .
(i) The interval-valued soft closure of A w.r.t. τ , denoted by IV Scl(A), is an

IVSS over X defined as:

IV Scl(A) =
⋂
{K ∈ τ c : A ⊂ K}.

(ii) The interval-valued soft interior of A w.r.t. τ , denoted by IV Sint(A), is an
IVSS over X defined as:

IV int(A) =
⋃
{U : U ∈ τ and U ⊂ A}.

(iii) The interval-valued soft closure of A w.r.t. τ
IV SP

, denoted by cl
IV SP

(A), is
an IVSS over X defined as:

cl
IV SP

(A) =
⋂
{K ∈ τ c

IV SP
: A ⊂ K}.

(iv) The interval-valued soft interior of A w.r.t. τ
IV SP

, denoted by int
IV SP

(A),
is an IVSS over X defined as:

int
IV SP

(A) =
⋃
{U : U ∈ τ

IV SP
and U ⊂ A}.

(v) The interval-valued soft closure of A w.r.t. τ
IV SV P

, denoted by cl
IV SV P

(A),
is an IVSS over X defined as:

cl
IV SV P

(A) =
⋂
{K ∈ τ c

IV SV P
: A ⊂ K}.

(vi) The interval-valued soft interior of A w.r.t. τ
IV SV P

, denoted by int
IV SV P

(A),
is an IVSS over X defined as:

intIIV SV P (A) =
⋃
{U : U ∈ τ

IV SV P
and U ⊂ A}.
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Remark 5.17. (1) From the above definition, it is clear that the followings hold:

IV Sint(A) ⊂ int
IV SP

(A), IV Sint(A) ⊂ int
IV SV P

(A)

and
clIIV SP (A) ⊂ IV Scl(A), cl

IV SV P
(A) ⊂ IV Scl(A).

(2) We can easily check that for each e ∈ E, the followings hold (See Definition
6.1 in [39]):

IV Scl(A)(e) = IV cl(A(e)), IV Sint(A)(e) = IV int(A(e)),

cl
IV SP

(A)(e) = cl
IV P

(A(e)), int
IV SP

(A)(e) = int
IV P

(A(e)),

cl
IV SV P

(A)(e) = cl
IV V P

(A(e)), int
IV SV P

(A)(e) = int
IV V P

(A(e)).

Example 5.18. Let (X, τ,E) be the IVTS given in Example 5.7. Consider two
IVSSs A, B over X such that A(e) = [{a, c}, {a, b, c}] and B(e) = [{d}, {a, d}].
Then

IV Sint(A) =
⋃
{U ∈ τ : U ⊂ A} = A2 ∪A3 ∪A5 ∪A5 ∪A6 ∪A7 = A7,

int
IV SP

(A) =
⋃
{U ∈ τ

IV SP
: U ⊂ A} = A7 ∪A11 = A7,

int
IV SV P

(A) =
⋃
{U ∈ τ

IV SV P
: U ⊂ A} = A7 ∪A21 ∪A24 ∪A25 = C,

where C(e) = [{a, b, c}, {a, b, c}]
and

IV Scl(B) =
⋂
{K ∈ τ c : B ⊂ K} = Ac

2 ∩Ac
3 ∩Ac

5 ∩Ac
6 ∩Ac

7 = Ac
7,

cl
IV SP

(B) =
⋂
{K ∈ τ c

IV SP
: B ⊂ K} = Ac

7 ∩Ac
11 = Ac

7,
cl
IV SV P

(B) =
⋂
{K ∈ τ c

IV SV P
: B ⊂ K} = Ac

7 ∩Ac
18 ∩Ac

25 = B.
Moreover, we can confirm that Remark 5.17 holds.

Proposition 5.19. Let (X, τ,E) be an IVSTS and let A ∈ IV SSE(X). Then

IV Sint(Ac) = (IV Scl(A))c and IV Scl(Ac) = (IV Sint(A))c.

Proof. Let e ∈ E. Then we have
IV Sint(Ac)(e) =

⋃
{U(e) ∈ τe : U(e) ⊂ Ac(e)}

=
⋃
{U(e) ∈ τe : U(e)− ⊂ A(e)+

c
, U(e)+ ⊂ A(e)−

c}
=
⋃
{U(e) ∈ τe : A(e)+ ⊂ U(e)−

c
, A(e)− ⊂ U(e)+

c}
=
⋂
{Uc(e) ∈ τ ce : A(e) ⊂ Uc(e)}

= IV Scl(A).
Thus IV Sint(Ac) = IV Scl(A). Similarly, we can show that

IV Scl(Ac) = (IV Sint(A))c.

�

Proposition 5.20. Let (X, τ,E) be an IVTTS and let A ∈ IV SSE(X). Then

IV Sint(A) = int
IV SP

(A) ∩ int
IV SV P

(A).

Proof. The proof is straightforward from Proposition 5.13 and Definition 5.16. �

The following is an immediate consequence of Definition 5.16, and Propositions
5.19 and 5.20.

Corollary 5.21. Let (X, τ,E) be an IVSTS and let A ∈ IV SSE(X). Then

IV Scl(A) = cl
IV SP

(A) ∪ cl
IV SV P

(A).
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Example 5.22. Consider two IVSSs A = [{a, c}, {a, b, c}] and B = [{d}, {a, d}] in
X given in Example 5.18. Then we have : for e ∈ E,

IV Sint(A)(e) = [{c}, {a, b, c}] = int
IV SP

(A)(e), int
IV SV P

(A)(e) = [{a, b, c}, {a, b, c}]

and
IV Scl(B)(e) = [{a, d}, {a, b, d} = cl

IV SP
(B)(e),

cl
IV SV P

(B)(e) = [{d}, {a, d}] = B(e).
Thus we get

int
IV SP

(A)(e) ∩ int
IV SV P

(A)(e) = [{c}, {a, b, c}] = IV Sint(B)(e)

and
cl
IV SP

(B)(e) ∪ cl
IV SV P

(B)(e) = [{d}, {a, b, d} = IV Scl(B)(e).
So IV Sint(B) = int

IV SP
(A)∩int

IV SV P
(A) and IV Scl(B) = cl

IV SP
(B)∪cl

IV SV P
(B).

Theorem 5.23. Let (X, τ,E) be an IVSTS and let A ∈ IV SSE(X). Then
(1) A ∈ τ c if and only if A = IV Scl(A),
(2) A ∈ τ if and only if A = IV Sint(A).

Proof. Straightforward. �

Proposition 5.24 (Kuratowski Closure Axioms). Let (X, τ,E) be an IVSTS and
let A,B ∈ IV SSE(X). Then

[IVSK0] if A ⊂ B, then IV Scl(A) ⊂ IV Scl(B),
[IVSK1] IV Scl(∅̃E) = ∅̃E ,
[IVSK2] A ⊂ IV Scl(A),
[IVSK3] IV Scl(IV Scl(A)) = IV Scl(A),
[IVSK4] IV Scl(A ∪B) = IV Scl(A) ∪ IV Scl(A).

Proof. Straightforward. �

Let IV Scl∗ : IV SSE(X)→ IV SSE(X) be the mapping satisfying the properties
[IVSK1], [IVSK2],[IVSK3] and [IVSK4]. Then we call the mapping IV Scl∗ as the
interval-valued soft closure operator (briefly, IVSCO) on X.

Proposition 5.25. Let IV Scl∗ be the IVSCO on X. Then there exists a unique
IVST τ on X such that IV Scl∗(A) = IV Scl(A) for each A ∈ IV SSE(X), where
IV Scl(A) denotes the interval-valued soft closure of A in the IVSTS (X, τ,E). In
fact,

τ = {Ac ∈ IV SSE(X) : IV Scl∗(A) = A}.

Proof. The proof is almost similar to the case of ordinary topological spaces. �

Proposition 5.26. Let (X, τ,E) be an IVSTS and let A,B ∈ IV SSE(X). Then
[IVSI0] if A ⊂ B, then IV Sint(A) ⊂ IV Sint(B),

[IVSI1] IV Sint(X̃E) = X̃E ,
[IVSI2] IV Sint(A) ⊂ A,
[IVSI3] IV Sint(IV Sint(A)) = IV Sint(A),
[IVSI4] IV Sint(A ∩B) = IV Sint(A) ∩ IV Sint(B).

Proof. Straightforward. �
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Let IV Sint∗ : IV SSE(X)→ IV SSE(X) be the mapping satisfying the properties
[IVSI1], [IVSI22],[IVSI3] and [IVSI44]. Then we call the mapping IV Sint∗ as the
interval-valued soft interior operator (briefly, IVSIO) on X.

Proposition 5.27. Let IV Sint∗ be the IVSIO on X. Then there exists a unique
IVST τ on X such that IV Sint∗(A) = IV Sint(A) for each A ∈ IV SSE(X), where
IV Sint(A) denotes the interval-valued soft interior of A in the IVSTS (X, τ,E).
In fact,

τ = {A ∈ IV SSE(X) : IV Sint∗(A) = A}.

Proof. The proof is similar to one of Proposition 5.25. �

The following provides a criterion for an interval-valued soft closed set in an
interval-valued soft subspace to be closed in the IVSTS.

Proposition 5.28. Let (X, τ,E) be an IVSTS, and let A ∈ τ c. If C is closed in
(A, τ

A
, E), then C ∈ τ c.

Proof. Suppose C is closed in (A, τ
A
, E). Then by Theorem 4.21, there is D ∈ τ c

such that C = A ∩D. Since A ∈ τ c and D ∈ τ c, A ∩D ∈ τ c. Thus C ∈ τ c. �

When we deal with interval-valued soft subspaces of an IVSTS, we needs to exer-
cise care in taking closures of n IVSS because the closure in the interval-valued soft
subspace may be quite different from the closure in the IVSTS. The following gives
a criterion for dealing with this situation.

Proposition 5.29. Let (A, τ
A
, E) be an interval-valued soft subspace of an IVSTS

(X, τ) and let B ⊂ A. Then IV Sclτ
A

(B) = IV Scl(B), where IV Sclτ
A

(B) denotes

the interval-valued soft closure in (A, τ
A
, E).

Proof. Since IV Scl(B) ∈ τ c, by Theorem 4.21, A∩IV Scl(B) is closed in (A, τ
A
, E).

Since B ⊂ A and B ⊂ IV Scl(B), B ⊂ A ∩ IV Scl(B). Then by the definition of
IV Sclτ

A
(B), IV Sclτ

A
(B) ⊂ A ∩ IV Scl(B).

Since IV Sclτ
A

(B) is closed in (A, τ
A
, E), by Theorem 4.21, there is C ∈ τ c such

that IV Sclτ
A

(B) = A ∩C. �

Theorem 5.30. Let (A, τ
A
, E) be an interval-valued soft subspace of an IVSTS

(X, τ) and let U ⊂ A.
(1) U is an IVSN of e

a
IV P

with respect to τ
A

if and only if there is a V ∈ N(e
a
IV P

)

such that U = A ∩V.
(2) U is an IVSN of e

a
IV V P

with respect to τ
A

if and only if there is a V ∈
N(e

a
IV V P

) such that U = A ∩V.

Proof. (1) Suppose U is an IVSN of ea
IV P

with respect to τ
A

. Then there is an

IVSOS B in (A, τ
A
, E) such that e

a
IV P
∈ B ⊂ U. Thus by Proposition 4.15, there

is V ∈ τ such that B = A ∩V. Since ea
IV P
∈ B, ea

IV P
∈ V. So by Theorem 5.12,

V ∈ N(e
a
IV V P

). Hence the necessary condition holds.

The proof of the sufficient condition is easy.
(2) The proof is similar to (1). �
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6. Conclusions

We introduced the new concept of interval-valued soft sets which are the gen-
eralization of soft sets and the special case of interval-valued fuzzy soft sets, and
obtained its various properties. Next, we defined the notion of interval-valued soft
topological spaces which are considered as a soft bi-topological space introduced
by Kelly [43]. Moreover, we defined an interval-valued soft base and subbase and
found the characterization of an interval-valued soft base. Also, we introduced the
notion of interval-valued soft subspaces and found some of its properties. Finally, we
introduced the concept of interval-valued soft neighborhoods of two types and ob-
tained some similar properties to classical neighborhoods. Furthermore, we defined
an interval-valued soft closure and interior and dealt with their some properties. In
the future, we expect that one can apply the notion of interval-valued soft sets to
group and ring theory, BCK-algebra, category theory and decision making problem,
etc. Furthermore, we will study relation between interval-valued sets and rough sets
and thus interval-valued soft sets and soft rough sets.
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