Annals of Fuzzy Mathematics and Informatics Volume 22, No. 2, (October 2021) pp. 187-203 ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.2.187

@FMII

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Quenching for discretization of a semilinear heat equation with singular boundary outflux

Anoh Assiedou Rodrigue, N'Guessan Koffi, Coulibaly Adama, Toure Kidjegbo Augustin

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 22, No. 2, October 2021

Annals of Fuzzy Mathematics and Informatics Volume 22, No. 2, (October 2021) pp. 187-203
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.2.187
@IFMII
© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Quenching for discretization of a semilinear heat equation with singular boundary outflux

Anoh Assiedou Rodrigue, N'Guessan Koffi, Coulibaly Adama, Toure Kidjegbo Augustin

Received 2 July 2021; Revised 28 July 2021; Accepted 13 August 2021
AbStract. This paper concerns the study of the discret approximation for the following semilinear heat equation with a singular boundary outflux

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=u_{x x}+(1-u)^{-p}, \quad 0<x<1, t>0 \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u(1, t)^{-q}, \quad t>0 \\
u(x, 0)=u_{0}(x), \quad 0 \leq x \leq 1
\end{array}\right.
$$

where $p>0, q>0$.
We find some conditions under which the solution of a discrete form of above problem quenches in a finite time and estimate its discrete quenching time. We also establish the convergence of the discrete quenching time to the theoretical one when the mesh size tends to zero. Finally, we give some numerical experiments for a best illustration of our analysis.

2020 AMS Classification: 35B50, 35B51, 35K05, 35K55, 65M06
Keywords: Numerical quenching, Heat equation, Discretization, Singular boundary, Finite difference methods.

Corresponding Author: Anoh Assiedou Rodrigue (r1992anoh@gmail.com)

1. Introduction

We consider the semilinear heat equation with a singular boundary outflux

$$
\begin{gather*}
u_{t}=u_{x x}+(1-u)^{-p}, \quad 0<x<1, \quad t>0 \tag{1.1}\\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u(1, t)^{-q}, \quad t>0 \tag{1.2}\\
u(x, 0)=u_{0}(x), \quad 0 \leq x \leq 1 \tag{1.3}
\end{gather*}
$$

where $p>0, q>0$. The initial value $u_{0}:[0,1] \longrightarrow(0,1)$ is nonincreasing and satisfies the compatibility conditions:

$$
u_{0}^{\prime}(0)=0, u_{0}^{\prime}(1)=-u_{0}(1)^{-q}
$$

Selcuk and Ozalp [1] show that its solution u quenches in finite time T_{q} and $x=0$ is the unique quenching point. They also show that the time derivative u_{t} blows up at the quenching point and they get a quenching rate and a lower bound of the quenching time.

Definition 1.1. We say that the classical solution u of the problem (1.1)-(1.3) quenches in a finite time if there exists a finite time T_{q} such that $\|u(., t)\|_{\infty}<1$ for $t \in\left[0, T_{q}\right)$, but

$$
\lim _{t \rightarrow T_{q}}\|u(., t)\|_{\infty}=1
$$

where $\|u(., t)\|_{\infty}=\max _{0 \leq x \leq 1}|u(x, t)|$. The time T_{q} is called the quenching time of the solution u.

The theoretical study of solutions for semilinear parabolic equations with quench in a finite time has been the subject of investigations of many authors (See [2, 3, 4, $5,6,7,8,9,1,10]$ and the references cited therein). Local in time existence and uniqueness of the solution have been proved (See [10]). In [6], the authors considered semilinear parabolic problem

$$
\begin{gathered}
u_{t}=u_{x x}+f(x)(1-u)^{-p}, \quad 0<x<1, \quad 0<t \leq T \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u(1, t)^{-q}, 0<t \leq T \\
u(x, 0)=u_{0}(x), \quad 0 \leq x \leq 1
\end{gathered}
$$

where p and q are positive constants and $T \leq \infty$.
Under some conditions, they prove three main results namely the quenching of the solution in finite time, the existence of a single quenching point $x=0$ and the blow-up of the time derivative at the quenching point.

In recent years, more and more researchers are interested in numerical study of parabolic problems. This is the case of [11] in which the authors are interested in the numerical study of a heat equation with nonlinear boundary flux conditions using a semidiscrete form obtained by finite difference method. Under some conditions, they show that the solution of the numerical approximation for this heat equation quenches in a finite, they also establish the convergence of the semidiscrete quenching time and obtain a numerical quenching rate. Using the explicit and implicit Euler methods, they present some numerical results through tables and figures. We can also cite [12] in which The authors consider the following initial-boundary value problem:

$$
\begin{gathered}
u_{t}=u_{x x}+u^{p}, \quad 0<x<1, \quad 0<t<\infty \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u(1, t)^{-q}, \quad 0<t<\infty \\
u(x, 0)=u_{0}(x), \quad 0 \leq x \leq 1
\end{gathered}
$$

where $p>0, q>0$.
They work about the numerical quenching and numerical blow-up using the semidiscrete form obtained by finite difference method. Under some conditions,
they prove that the solution of the semidiscrete form blows up in a finite time, and they study the convergence of semidiscrete blow-up time and estimate a semidiscrete blow up rate. They also under some conditions prove that the solution of the semidiscrete form quenches in a finite time, study the convergence of semidiscrete quenching time and estimate a semidiscrete quenching rate. The convergence of the semidiscrete scheme has also been proved. Using Hirota and Ozawa method [13], they present some numerical results which contain tables and figures for adequate values p and q which illustrate well their theoretical study. From these results, they emerged interesting results concerning the influence of the parameters p and q on the numerical quenching time. Concerning problem (1.1)-(1.3), The authors of [14] investigate about the numerical quenching phenomenon. Using the semidiscrete scheme, they show some properties of semidiscrete solution. Under some conditions, they prove that the semidiscrete solution quenches in finite time and they get a upper bound of the semidiscrete quenching time. They also prove the convergence of the semidiscrete scheme and the numerical time. Using the explicit and implicit Euler methods, they illustrate their analyses by tables where they get some finite values of the numerical quenching time according to the values taken by I. They finish their study by presentation of figures with adequate values of p and q. For other previous studies on numerical approximations of parabolic system with non-linear boundary conditions, we refer to $[15,16,17,18]$.

In this paper, we will deepen the work of [14] using discrete form of problem (1.1)(1.3). We present our work in this way: In section 2, we present some properties of the discrete solution. In sections 3 and 4, we prove some main results related to the discrete quenching time and the discrete scheme. In section 5 , we give numerical results for new values of the parameters p and q.

2. Properties of the discrete scheme

Let $I \geq 3$ be a positive integer and let $h=1 / I$. Define the grid $x_{i}=i h$, $0 \leq i \leq I$. We approximate the solution u of problem (1.1)-(1.3) by the solution $U_{h}^{(n)}=\left(U_{0}^{(n)}, U_{1}^{(n)}, \ldots, U_{I}^{(n)}\right)^{T}$ and the initial condition u_{0} by the initial condition $\varphi_{h}=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{I}\right)^{T}$ of the following discrete equations

$$
\begin{gather*}
\delta_{t} U_{i}^{(n)}=\delta^{2} U_{i}^{(n)}+\left(1-U_{i}^{(n)}\right)^{-p}, \quad 0 \leq i \leq I-1 \tag{2.1}\\
\delta_{t} U_{I}^{(n)}=\delta^{2} U_{I}^{(n)}-\frac{2}{h}\left(U_{I}^{(n)}\right)^{-q}+\left(1-U_{I}^{(n)}\right)^{-p} \tag{2.2}\\
U_{i}^{(0)}=\varphi_{i}, \quad 0 \leq i \leq I \tag{2.3}
\end{gather*}
$$

where

$$
\begin{gathered}
n \geq 0, \quad p>0, \quad q>0, \\
\delta_{t} U_{i}^{(n)}=\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}, \quad 0 \leq i \leq I, \\
\delta^{2} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-2 U_{i}^{(n)}+U_{i-1}^{(n)}}{h^{2}}, \quad 1 \leq i \leq I-1, \\
189
\end{gathered},
$$

$$
\begin{gathered}
\delta^{2} U_{0}^{(n)}=\frac{2 U_{1}^{(n)}-2 U_{0}^{(n)}}{h^{2}}, \quad \delta^{2} U_{I}^{(n)}=\frac{2 U_{I-1}^{(n)}-2 U_{I}^{(n)}}{h^{2}}, \\
\varphi_{i}>0, \quad 0 \leq i \leq I, \\
\delta^{+} \varphi_{i}=\frac{\varphi_{i+1}-\varphi_{i}}{h}, \quad 0 \leq i \leq I-1, \\
\delta^{+} \varphi_{i}<0, \quad 0 \leq i \leq I-1 .
\end{gathered}
$$

In order to permit the discrete solution to reproduce the properties of the continuous one when the time t approaches to the quenching time T_{q}, we need to adapt the size of the time step. We choose

$$
\Delta t_{n}=\min \left\{\frac{h^{2}}{2}, \tau\left(1-\left\|U_{h}^{(n)}\right\|_{\infty}\right)^{p+1}\right\} \text { with } \tau \in(0,1) .
$$

Definition 2.1. We say that the solution $U_{h}^{(n)}, n \geq 0$ of the discrete problem (2.1)(2.3) quenches in finite time, if $\left\|U_{h}^{(n)}\right\|_{\infty}<1$ for $n \geq 0$ but $\lim _{n \rightarrow+\infty}\left\|U_{h}^{(n)}\right\|_{\infty}=1$ and

$$
T_{h}^{\Delta t}=\lim _{n \rightarrow+\infty} \sum_{j=0}^{n-1} \Delta t_{j}<+\infty .
$$

We call $T_{h}^{\Delta t}$ the numerical quenching time of $U_{h}^{(n)}$.
Now we give some Lemmas which will be used in this work.
Lemma 2.2. Let $b_{h}^{(n)}$ and $V_{h}^{(n)}$ be two sequences, with $n \geq 0$ and $b_{h}^{(n)} \leq 0$, such that for $0 \leq i \leq I$

$$
\begin{gathered}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+b_{i}^{(n)} V_{i}^{(n)} \geq 0, \\
V_{i}^{(0)} \geq 0 .
\end{gathered}
$$

Then we have

$$
V_{i}^{(n)} \geq 0,0 \leq i \leq I, n \geq 0 \text { when } \Delta t_{n} \leq \frac{h^{2}}{2} .
$$

Proof. A straightforward computation shows that for

$$
\begin{aligned}
V_{i}^{(n+1)} \geq & \left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) V_{i}^{(n)}+\frac{\Delta t_{n}}{h^{2}}\left(V_{i+1}^{(n)}+V_{i-1}^{(n)}\right)-\Delta t_{n} b_{i}^{(n)} V_{i}^{(n)}, 1 \leq i \leq I-1 \\
& V_{0}^{(n+1)} \geq\left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) V_{0}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} V_{1}^{(n)}-\Delta t_{n} b_{0}^{(n)} V_{0}^{(n)}, \\
& V_{I}^{(n+1)} \geq\left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) V_{I}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} V_{I-1}^{(n)}-\Delta t_{n} b_{I}^{(n)} V_{I}^{(n)} .
\end{aligned}
$$

If $V_{h}^{(n)} \geq 0$, then using an argument of recursion, we easily see that $V_{h}^{(n+1)} \geq 0$, because $1-2 \frac{\Delta t_{n}}{h^{2}} \geq 0$ and $-b_{h}^{(n)} \geq 0$. This end the proof.

Lemma 2.3. Let $b_{h}^{(n)}, V_{h}^{(n)}$ and $W_{h}^{(n)}$ be three sequences, with $n \geq 0$ and $b_{h}^{(n)} \leq 0$, such that for $0 \leq i \leq I$,

$$
\begin{gathered}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+b_{i}^{(n)} V_{i}^{(n)} \leq \delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)}+b_{i}^{(n)} W_{i}^{(n)}, \\
V_{i}^{(0)} \leq W_{i}^{(0)} .
\end{gathered}
$$

Then we have

$$
V_{i}^{(n)} \leq W_{i}^{(n)}, 0 \leq i \leq I, n \geq 0, \text { when } \Delta t_{n} \leq \frac{h^{2}}{2}
$$

Proof. Define the vector $Z_{h}^{(n)}=W_{h}^{(n)}-V_{h}^{(n)}$. For $0 \leq i \leq I$, a straightforward calculation gives

$$
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+b_{i}^{(n)} Z_{i}^{(n)} \geq 0
$$

Knowing that $Z_{h}^{(0)} \geq 0$, from Lemma 2.2, we have $Z_{h}^{(n)} \geq 0, n \geq 0$.
Lemma 2.4. Let $b_{h}^{(n)}, V_{h}^{(n)}$ and $W_{h}^{(n)}$ be three sequences, with $n \geq 0$ and $b_{h}^{(n)} \leq 0$, such that for $0 \leq i \leq I$,

$$
\begin{gathered}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+b_{i}^{(n)} V_{i}^{(n)}<\delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)}+b_{i}^{(n)} W_{i}^{(n)}, \\
V_{i}^{(0)}<W_{i}^{(0)} .
\end{gathered}
$$

Then we have

$$
V_{i}^{(n)}<W_{i}^{(n)}, 0 \leq i \leq I, n \geq 0, \text { when } \Delta t_{n} \leq \frac{h^{2}}{2}
$$

Proof. Define the vector $Z_{h}^{(n)}=W_{h}^{(n)}-V_{h}^{(n)}$. For $0 \leq i \leq I$, a straightforward calculation gives

$$
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+b_{i}^{(n)} Z_{i}^{(n)}>0
$$

Knowing that $Z_{h}^{(0)}>0$, from Lemma 2.2, we have $Z_{h}^{(n)}>0, n \geq 0$.
Lemma 2.5. Let $U_{h}^{(n)}, n \geq 0$ be a sequence such that $\left\|U_{h}^{(n)}\right\|_{\infty}<1$. Then we have

$$
\delta_{t}\left(1-U_{i}^{(n)}\right)^{-p} \geq p\left(1-U_{i}^{(n)}\right)^{-p-1} \delta_{t} U_{i}^{(n)}, \quad 0 \leq i \leq I .
$$

Proof. Using Taylor's expansion, we get

$$
\delta_{t}\left(1-U_{i}^{(n)}\right)^{-p}=p\left(1-U_{i}^{(n)}\right)^{-p-1} \delta_{t} U_{i}^{(n)}+\frac{p(p+1)}{2} \Delta t_{n}\left(1-\theta_{i}^{(n)}\right)^{-p-2}\left(\delta_{t} U_{i}^{(n)}\right)^{2}
$$

where $\theta_{i}^{(n)}$ is an intermediate value between $U_{i}^{(n)}$ and $U_{i}^{(n+1)}, 0 \leq i \leq I$. We use the fact that $\left\|U_{h}^{(n)}\right\|_{\infty}<1, n \geq 0$ to complete the proof.

Lemma 2.6. Let $U_{h}^{(n)}, n \geq 0$, be the solution of the discrete problem (2.1)-(2.3). Then

$$
\delta_{t} U_{i}^{(n)} \geq 0, \quad 0 \leq i \leq I
$$

Proof. Consider the vector $Z_{h}^{(n)}$ such that $Z_{i}^{(n)}=\delta_{t} U_{i}^{(n)}, 0 \leq i \leq I$. Using Lemma 2.5, a straightforward calculation gives

$$
\begin{gathered}
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}-p\left(1-U_{i}^{(n)}\right)^{-p-1} Z_{i}^{(n)} \geq 0, \quad 0 \leq i \leq I-1, \\
\delta_{t} Z_{I}^{(n)}-\delta^{2} Z_{I}^{(n)}-q \frac{2}{h}\left(U_{I}^{(n)}\right)^{-q-1} Z_{I}^{(n)}-p\left(1-U_{I}^{(n)}\right)^{-p-1} Z_{I}^{(n)} \geq 0 .
\end{gathered}
$$

Since $Z_{h}^{(0)} \geq 0$, from Lemma 2.2, we have $Z_{h}^{(n)} \geq 0$, which implies that $\delta_{t} U_{i}^{(n)} \geq 0$, $0 \leq i \leq I$.

Lemma 2.7. Let $U_{h}^{(n)}, n \geq 0$ be the solution of the discrete problem (2.1)-(2.3). Then we have

$$
U_{i}^{(n)}>0,0 \leq i \leq I, n \geq 0 \text { when } \Delta t_{n} \leq \frac{h^{2}}{2}
$$

Proof. A straightforward computation shows that

$$
\begin{aligned}
U_{i}^{(n+1)}= & \left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) U_{i}^{(n)}+\frac{\Delta t_{n}}{h^{2}}\left(U_{i+1}^{(n)}+U_{i-1}^{(n)}\right)+\Delta t_{n}\left(1-U_{i}^{(n)}\right)^{-p}, 1 \leq i \leq I-1 \\
& U_{0}^{(n+1)}=\left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) U_{0}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} U_{1}^{(n)}+\Delta t_{n}\left(1-U_{0}^{(n)}\right)^{-p} \\
U_{I}^{(n+1)}= & \left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) U_{I}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} U_{I-1}^{(n)}-\frac{2 \Delta t_{n}}{h}\left(U_{I}^{(n)}\right)^{-q}+\Delta t_{n}\left(1-U_{I}^{(n)}\right)^{-p} .
\end{aligned}
$$

If $U_{h}^{(n)}>0$, then using an argument of recursion, we easily see that $U_{h}^{(n+1)}>0$, because $1-2 \frac{\Delta t_{n}}{h^{2}} \geq 0$. This end the proof.

Lemma 2.8. Let $U_{h}^{(n)}, n \geq 0$ be the solution of the discrete problem (2.1)-(2.3). Then we have

$$
\begin{equation*}
U_{i+1}^{(n)}<U_{i}^{(n)}, \quad 0 \leq i \leq I-1 \tag{2.4}
\end{equation*}
$$

Proof. Define the vector $Z_{h}^{(n)}$ such that $Z_{i}^{(n)}=U_{i}^{(n)}-U_{i+1}^{(n)}, 0 \leq i \leq I-1$. We have

$$
\begin{gathered}
Z_{i}^{(n)}=U_{i}^{(n)}-U_{i+1}^{(n)}, \quad 0 \leq i \leq I-2 \\
Z_{I-1}^{(n)}=U_{I-1}^{(n)}-U_{I}^{(n)}
\end{gathered}
$$

By a straightforward computations, we have

$$
\begin{gathered}
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}-p\left(1-\zeta_{i}^{(n)}\right)^{-p-1} Z_{i}^{(n)}=0, \quad 0 \leq i \leq I-2 \\
\delta_{t} Z_{I-1}^{(n)}-\delta^{2} Z_{I-1}^{(n)}-\frac{2}{h}\left(U_{I}^{(n)}\right)^{-q}-p\left(1-\zeta_{I-1}^{(n)}\right)^{-p-1} Z_{I-1}^{(n)}=0
\end{gathered}
$$

Where $\zeta_{i}^{(n)}$ is an intermediate value between $U_{i}^{(n)}$ and $U_{i+1}^{(n)}, 0 \leq i \leq I-1$.
Knowing that $Z_{h}^{(0)}>0$, from Lemma 2.2, we have $Z_{h}^{(n)}>0$, which implies that $U_{i+1}^{(n)}<U_{i}^{(n)}, 0 \leq i \leq I-1$, and we obtain the desired result.

3. Discrete quenching solutions

In this section, under some assumptions, we show that the solution $U_{h}^{(n)}$ of the discrete problem (2.1)-(2.3) quenches in a finite time and estimate its numerical quenching time. Now let us set $V_{h}^{(n)}=1-U_{h}^{(n)}$. The problem (2.1)-(2.3) is equivalent to

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}=\delta^{2} V_{i}^{(n)}-\left(V_{i}^{(n)}\right)^{-p}, \quad 0 \leq i \leq I-1, \tag{3.1}\\
\delta_{t} V_{I}^{(n)}=\delta^{2} V_{I}^{(n)}+\frac{2}{h}\left(1-V_{I}^{(n)}\right)^{-q}-\left(V_{I}^{(n)}\right)^{-p}, \tag{3.2}\\
V_{i}^{(0)}=\xi_{i}=1-\varphi_{i}, \quad 0 \leq i \leq I, \tag{3.3}
\end{gather*}
$$

where

$$
n \geq 0, \quad p>0, \quad q>0
$$

Lemma 3.1. Let $V_{h}^{(n)}, n \geq 0$ be a sequence such that $\left\|V_{h}^{(n)}\right\|_{\inf }>0$. Then we have

$$
\delta_{t}\left(V_{i}^{(n)}\right)^{-p} \geq-p\left(V_{i}^{(n)}\right)^{-p-1} \delta_{t} V_{i}^{(n)}, \quad 0 \leq i \leq I .
$$

Proof. Using Taylor's expansion, we get

$$
\delta_{t}\left(V_{i}^{(n)}\right)^{-p}=-p\left(V_{i}^{(n)}\right)^{-p-1} \delta_{t} V_{i}^{(n)}+\frac{p(p+1)}{2} \Delta t_{n}\left(\theta_{i}^{(n)}\right)^{-p-2}\left(\delta_{t} V_{i}^{(n)}\right)^{2}, 0 \leq i \leq I
$$

where $\theta_{i}^{(n)}$ is an intermediate value between $V_{i}^{(n)}$ and $V_{i}^{(n+1)}, 0 \leq i \leq I$. We use the fact that $\left\|V_{h}^{(n)}\right\|_{i n f}>0, n \geq 0$ to complete the proof.

Lemma 3.2. Let $V_{h}^{(n)}, n \geq 0$ be a sequence such that $\left\|V_{h}^{(n)}\right\|_{\mathrm{inf}}>0$. Then we have

$$
\delta^{2}\left(V_{i}^{(n)}\right)^{-p} \geq-p\left(V_{i}^{(n)}\right)^{-p-1} \delta^{2} V_{i}^{(n)}, \quad 0 \leq i \leq I
$$

Proof. Applying Taylor's expansion, we obtain

$$
\begin{array}{r}
\delta^{2}\left(V_{i}^{(n)}\right)^{-p}=-p\left(V_{i}^{(n)}\right)^{-p-1} \delta^{2} V_{i}^{(n)}+\left(V_{i-1}^{(n)}-V_{i}^{(n)}\right)^{2} \frac{p(p+1)}{2 h^{2}}\left(\theta_{i}^{(n)}\right)^{-p-2} \\
\quad+\left(V_{i+1}^{(n)}-V_{i}^{(n)}\right)^{2} \frac{p(p+1)}{2 h^{2}}\left(\varepsilon_{i}^{(n)}\right)^{-p-2}, 1 \leq i \leq I-1
\end{array}, \begin{aligned}
& \delta^{2}\left(V_{0}^{(n)}\right)^{-p}=-p\left(V_{0}^{(n)}\right)^{-p-1} \delta^{2} V_{0}^{(n)}+\left(V_{1}^{(n)}-V_{0}^{(n)}\right)^{2} \frac{p(p+1)}{h^{2}}\left(\theta_{0}^{(n)}\right)^{-p-2}, \\
& \delta^{2}\left(V_{I}^{(n)}\right)^{-p}=-p\left(V_{I}^{(n)}\right)^{-p-1} \delta^{2} V_{I}^{(n)}+\left(V_{I-1}^{(n)}-V_{I}^{(n)}\right)^{2} \frac{p(p+1)}{h^{2}}\left(\theta_{I}^{(n)}\right)^{-p-2}
\end{aligned}
$$

where $\theta_{0}^{(n)}$ is an intermediate value between $V_{0}^{(n)}$ and $V_{1}^{(n)}, \theta_{i}^{(n)}$ is an intermediate value between $V_{i-1}^{(n)}$ and $V_{i}^{(n)}, 1 \leq i \leq I-1, \theta_{I}^{(n)}$ is an intermediate value between $V_{I-1}^{(n)}$ and $V_{I}^{(n)}, \varepsilon_{i}^{(n)}$ is an intermediate value between $V_{i}^{(n)}$ and $V_{i+1}^{(n)}, 1 \leq i \leq I-1$. The result follows taking into account the fact that $\left\|V_{h}^{(n)}\right\|_{\text {inf }}>0$.

Theorem 3.3. Let $U_{h}^{(n)}$ be the solution of (2.1)-(2.3). Suppose that there exists a constant $A \in(0,1]$ such that the initial data at (3.3) satisfies

$$
\begin{align*}
& \delta^{2} \xi_{i}-\xi_{i}^{-p} \leq-A \xi_{i}^{-p}, \quad 0 \leq i \leq I-1 \tag{3.4}\\
& \delta^{2} \xi_{I}+\frac{2}{h}\left(1-\xi_{I}\right)^{-q}-\xi_{I}^{-p} \leq-A \xi_{I}^{-p} \tag{3.5}
\end{align*}
$$

Then $U_{h}^{(n)}$ quenches in a finite time $T_{h}^{\Delta t}=\sum_{n=0}^{+\infty} \Delta t_{n}$, which satisfies the estimate

$$
T_{h}^{\Delta t} \leq \frac{\tau\left(1-\left\|\varphi_{h}\right\|_{\infty}\right)^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}}
$$

where $\Delta t_{n}=\min \left\{\frac{h^{2}}{2}, \tau\left(V_{h m i n}^{(n)}\right)^{p+1}\right\}$ with $\tau \in(0,1), V_{h m i n}^{(n)}=\left(1-\left\|U_{h}^{(n)}\right\|_{\infty}\right)$ and

$$
\tau^{\prime}=A \min \left\{\frac{h^{2}\left(\xi_{h \min }\right)^{-p-1}}{2}, \tau\right\}
$$

Proof. Introduce the vector $J_{h}^{(n)}$ defined as follows

$$
J_{i}^{(n)}=\delta_{t}\left(V_{i}^{(n)}\right)+A\left(V_{i}^{(n)}\right)^{-p}, \quad 0 \leq i \leq I, \quad n \geq 0
$$

A straightforward computation yields for $0 \leq i \leq I$ and $n \geq 0$,

$$
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}=\delta_{t}\left(\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}\right)+A \delta_{t}\left(V_{i}^{(n)}\right)^{-p}-A \delta^{2}\left(V_{i}^{(n)}\right)^{-p}
$$

Using (3.1)-(3.2) we arrive at

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}=-(1-A) \delta_{t}\left(V_{i}^{(n)}\right)^{-p}-A \delta^{2}\left(V_{i}^{(n)}\right)^{-p}, 0 \leq i \leq I-1 \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}=-(1-A) \delta_{t}\left(V_{I}^{(n)}\right)^{-p}+\frac{2 q}{h}\left(1-V_{I}^{(n)}\right)^{-q-1} \delta_{t} V_{I}^{(n)}-A \delta^{2}\left(V_{I}^{(n)}\right)^{-p}
\end{gathered}
$$

It follows from Lemma 3.1 and Lemma 3.2 that for $n \geq 0$,

$$
\begin{aligned}
& \delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \\
\leq & p(1-A)\left(V_{i}^{(n)}\right)^{-p-1} \delta_{t} V_{i}^{(n)}+A p\left(V_{i}^{(n)}\right)^{-p-1} \delta^{2} V_{i}^{(n)}, 0 \leq i \leq I-1, \\
& \delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)} \\
\leq & p(1-A)\left(V_{I}^{(n)}\right)^{-p-1} \delta_{t} V_{I}^{(n)}+\frac{2 q}{h}\left(1-V_{I}^{(n)}\right)^{-q-1} \delta_{t} V_{I}^{(n)}+A p\left(V_{I}^{(n)}\right)^{-p-1} \delta^{2} V_{I}^{(n)} .
\end{aligned}
$$

We deduce that

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}-p\left(V_{i}^{(n)}\right)^{-p-1} J_{i}^{(n)} \leq 0, \quad 0 \leq i \leq I-1 \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}-p\left(V_{I}^{(n)}\right)^{-p-1} J_{I}^{(n)}-\frac{2 q}{h}\left(1-V_{I}^{(n)}\right)^{-q-1} \delta_{t} V_{I}^{(n)} \leq 0
\end{gathered}
$$

By inequalities (3.4) and (3.5), we have $J_{h}^{(0)} \leq 0$. Applying Lemma 2.2, we get $J_{h}^{(n)} \leq 0$ for $n \geq 0$, which implies that

$$
\frac{V_{i}^{(n+1)}-V_{i}^{(n)}}{\Delta t_{n}} \leq-A\left(V_{i}^{(n)}\right)^{-p}, \quad 0 \leq i \leq I, \quad n \geq 0
$$

We get:

$$
\begin{equation*}
V_{i}^{(n+1)} \leq V_{i}^{(n)}\left(1-A \Delta t_{n}\left(V_{i}^{(n)}\right)^{-p-1}\right), \quad 0 \leq i \leq I, \quad n \geq 0 . \tag{3.6}
\end{equation*}
$$

These estimates reveal that the sequence $V_{h}^{(n)}$ is nonincreasing. By induction, we obtain $V_{h}^{(n)} \leq V_{h}^{(0)}=\xi_{h}$. Thus, the following holds

$$
A \Delta t_{n}\left(V_{h m i n}^{(n)}\right)^{-p-1} \geq A \min \left\{\frac{h^{2}\left(\xi_{h \min }\right)^{-p-1}}{2}, \tau\right\}=\tau^{\prime}
$$

Let i_{0} be such that $V_{h m i n}^{(n)}=V_{i_{0}}^{(n)}$. Replacing i by i_{0} in (3.6), we obtain

$$
\begin{equation*}
V_{\text {hmin }}^{(n+1)} \leq V_{h m i n}^{(n)}\left(1-\tau^{\prime}\right), \quad n \geq 0, \tag{3.7}
\end{equation*}
$$

and by iteration, we arrive at

$$
\begin{equation*}
V_{h m i n}^{(n)} \leq V_{h m i n}^{(0)}\left(1-\tau^{\prime}\right)^{n}=\xi_{h m i n}\left(1-\tau^{\prime}\right)^{n}, \quad n \geq 0 \tag{3.8}
\end{equation*}
$$

Since the term on the right hand side of the above equality goes to zero as n approaches infinity, we conclude that $V_{h m i n}^{(n)}$ tends to zero as n approaches infinity and $\left\|U_{h}^{(n)}\right\|_{\infty}$ tends to one as n approaches infinity. Now, let us estimate the numerical quenching time. Due to (3.8) and the restriction $\Delta t_{n} \leq \tau\left(V_{\text {hmin }}^{(n)}\right)^{p+1}$, it is not hard to see that

$$
\sum_{n=0}^{+\infty} \Delta t_{n} \leq \sum_{n=0}^{+\infty} \tau \xi_{h m i n}^{p+1}\left[\left(1-\tau^{\prime}\right)^{p+1}\right]^{n} .
$$

Use the fact that the series on the right hand side of the above inequality converges towards

$$
\frac{\tau \xi_{h m i n}^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}}
$$

and $\xi_{h \text { min }}=\left(1-\left\|\varphi_{h}\right\|_{\infty}\right)$, we obtain

$$
T_{h}^{\Delta t} \leq \frac{\tau\left(1-\left\|\varphi_{h}\right\|_{\infty}\right)^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}} .
$$

Remark 3.4. Using Taylor's expansion, we get

$$
1-\left(1-\tau^{\prime}\right)^{p+1}=(p+1) \tau^{\prime}+o\left(\tau^{\prime}\right),
$$

which implies that

$$
\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{p+1}}=\frac{\tau}{\tau^{\prime}} \frac{1}{(p+1)+o(1)} \leq \frac{\tau}{\tau^{\prime}} \frac{2}{(p+1)} .
$$

If we take $\tau=h^{2}$, we have

$$
\frac{\tau}{\tau^{\prime}}=\frac{1}{A} \min \left\{2 \xi_{h m i n}^{p+1}, 1\right\}
$$

Then

$$
\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{p+1}} \leq \frac{2 \tau}{\tau^{\prime}(p+1)}=\frac{2}{A(p+1)} \min \left\{2 \xi_{h m i n}^{p+1}, 1\right\} .
$$

195

We conclude that $\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{p+1}}$ is bounded.
Remark 3.5. From (3.8) we deduce by induction that

$$
V_{h m i n}^{(n)} \leq V_{h m i n}^{(k)}\left(1-\tau^{\prime}\right)^{n-k}, \text { for } n \geq k,
$$

and we see that

$$
T_{h}^{\Delta t}-t_{k}=\sum_{n=k}^{+\infty} \Delta t_{n} \leq \sum_{n=k}^{+\infty} \tau\left(V_{h m i n}^{(k)}\right)^{p+1}\left[\left(1-\tau^{\prime}\right)^{p+1}\right]^{n-k},
$$

which implies that

$$
T_{h}^{\Delta t}-t_{k} \leq \frac{\tau\left(V_{h \min }^{(k)}\right)^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}}
$$

Since $V_{h m i n}^{(k)}=\left(1-\left\|U_{h}^{k}\right\|_{\infty}\right)$, we get

$$
T_{h}^{\Delta t}-t_{k} \leq \frac{\tau\left(1-\left\|U_{h}^{k}\right\|_{\infty}\right)^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}}
$$

In the sequel, we take $\tau=h^{2}$.

4. Convergence of the discrete quenching time

In this section, under some assumptions, we show that the numerical quenching time of the discrete solution converges to the real one when the mesh size goes to zero. We denote by

$$
u_{h}\left(t_{n}\right)=\left(u\left(x_{0}, t_{n}\right), u\left(x_{1}, t_{n}\right), \ldots, u\left(x_{I}, t_{n}\right)\right)^{T} \text { and }\left\|U_{h}^{(n)}\right\|_{\infty}=\max _{0 \leq i \leq I}\left|U_{i}^{(n)}\right|
$$

In order to obtain the convergence of the numerical quenching time, we firstly prove the following theorem about the convergence of the discrete scheme.
Theorem 4.1. Assume that the continuous problem (1.1)-(1.3) has a solution $u \in$ $C^{4,2}([0,1] \times[0, T])$ such that $\sup _{t \in[0, T]}\|u(., t)\|_{\infty}=\zeta,(0<\zeta<1)$. Suppose the initial condition at (2.3) satisfies

$$
\begin{equation*}
\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}=o(1) \quad \text { as } \quad h \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

Then, for h sufficiently small, the discrete problem (2.1)-(2.3) has a solution $U_{h}^{(n)}$, $0 \leq n \leq J$, and we have the following relation

$$
\max _{0 \leq n \leq J}\left(\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}\right)=O\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+h\right) \quad \text { as } \quad h \longrightarrow 0
$$

Where J is such that $\sum_{j=0}^{J-1} \Delta t_{j} \leq T$ and $t_{n}=\sum_{j=0}^{n-1} \Delta t_{j}$.
Proof. For each h, the discrete problem (2.1)-(2.3) has a solution $U_{h}^{(n)}$. Let $N \leq J$, the greatest value of n such that there exists a positive constant β (with $\zeta<\beta<1$) such that

$$
\begin{equation*}
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}<\frac{\beta-\zeta}{2}, \quad n<N \tag{4.2}
\end{equation*}
$$

We know that $N \geq 1$ because of (4.1). Using the triangular inequality for $n<N$, we have

$$
\begin{equation*}
\left\|U_{h}^{(n)}\right\|_{\infty} \leq\left\|u_{h}\left(t_{n}\right)\right\|_{\infty}+\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \leq \zeta+\frac{\beta-\zeta}{2}=\frac{\beta+\zeta}{2}<1 \tag{4.3}
\end{equation*}
$$

Let $e_{h}^{(n)}=U_{h}^{(n)}-u_{h}\left(t_{n}\right)$ be the error of discretization for $n<N$. Using Taylor's expansion, we have

$$
\begin{aligned}
& \delta_{t} e_{0}^{(n)}-\delta^{2} e_{0}^{(n)} \\
= & p\left(1-\sigma_{0}^{(n)}\right)^{-p-1} e_{0}^{(n)}+h\left(\frac{h}{12} u_{x x x x}\left(\tilde{x}_{0}, t_{n}\right)+\frac{2}{3} u_{x x x}\left(x_{0}, t_{n}\right)\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{0}, \tilde{t}_{n}\right), \\
& \delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)} \\
= & p\left(1-\sigma_{i}^{(n)}\right)^{-p-1} e_{i}^{(n)}+\frac{h^{2}}{12} u_{x x x x}\left(\tilde{x}_{i}, t_{n}\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{i}, \tilde{t}_{n}\right), 1 \leq i \leq I-1, \\
& \delta_{t} e_{I}^{(n)}-\delta^{2} e_{I}^{(n)} \\
= & \left(p\left(1-\sigma_{I}^{(n)}\right)^{-p-1}+\frac{2 q}{h}\left(\mu_{I}^{(n)}\right)^{-q-1}\right) e_{I}^{(n)} \\
& +h\left(\frac{h}{12} u_{x x x x}\left(\tilde{x}_{I}, t_{n}\right)-\frac{2}{3} u_{x x x}\left(x_{I}, t_{n}\right)\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{I}, \tilde{t}_{n}\right)
\end{aligned}
$$

where $\sigma_{i}^{(n)}$ is intermediate value between $U_{i}^{(n)}$ and $u\left(x_{i}, t_{n}\right), 0 \leq i \leq I$ and $\mu_{I}^{(n)}$ is intermediate value between $U_{I}^{(n)}$ and $u\left(x_{I}, t_{n}\right)$. Since $u_{x x x}(x, t), u_{x x x x}(x, t)$ and $u_{t t}(x, t)$ are bounded and $\Delta t_{n}=O\left(h^{2}\right)$, there exist a positive constant $K>0$ such that

$$
\begin{gathered}
\delta_{t} e_{0}^{(n)}-\delta^{2} e_{0}^{(n)} \leq C_{0}^{(n)} e_{0}^{(n)}+K h \\
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)} \leq C_{i}^{(n)} e_{i}^{(n)}+K h^{2}, \quad 1 \leq i \leq I-1 \\
\delta_{t} e_{I}^{(n)}-\delta^{2} e_{I}^{(n)} \leq C_{I}^{(n)} e_{I}^{(n)}+K h
\end{gathered}
$$

where

$$
\begin{gathered}
C_{0}^{(n)}=p\left(1-\sigma_{0}^{(n)}\right)^{-p-1} \\
C_{i}^{(n)}=p\left(1-\sigma_{i}^{(n)}\right)^{-p-1}, \quad 1 \leq i \leq I-1 \\
C_{I}^{(n)}= \\
p\left(1-\sigma_{I}^{(n)}\right)^{-p-1}+\frac{2 q}{h}\left(\mu_{I}^{(n)}\right)^{-q-1}
\end{gathered}
$$

Set $M=\max _{0 \leq i \leq I}\left\{C_{i}^{(n)}\right\}$ and introduce the vector $Z_{h}^{(n)}$ defined as follows

$$
Z_{i}^{(n)}=e^{(M+1) t_{n}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+K h\right), \quad 0 \leq i \leq I, \quad n<N
$$

By a straightforward computations, we have

$$
\begin{gathered}
\delta_{t} Z_{0}^{(n)}-\delta^{2} Z_{0}^{(n)}>C_{0}^{(n)} Z_{0}^{(n)}+K h, \\
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}>C_{i}^{(n)} Z_{i}^{(n)}+K h^{2}, \quad 1 \leq i \leq I-1, \\
\delta_{t} Z_{I}^{(n)}-\delta^{2} Z_{I}^{(n)}>C_{I}^{(n)} Z_{I}^{(n)}+K h \\
197
\end{gathered}
$$

$$
Z_{i}^{(0)}>e_{i}^{(0)}, \quad 0 \leq i \leq I
$$

It follows from Lemma 2.4 that

$$
Z_{i}^{(n)}>e_{i}^{(n)}, \quad 0 \leq i \leq I
$$

By the same way, we also prove that

$$
Z_{i}^{(n)}>-e_{i}^{(n)}, \quad 0 \leq i \leq I
$$

which implies that

$$
Z_{i}^{(n)}>\left|e_{i}^{(n)}\right|, \quad 0 \leq i \leq I
$$

we deduce that

$$
\begin{equation*}
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \leq e^{(M+1) t_{n}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+K h\right), \quad n<N . \tag{4.4}
\end{equation*}
$$

Now, let us show that $N=J$. Suppose that $N<J$. If we replace n by N in (4.4), and taking into account the inequality (4.2), we obtain

$$
\begin{equation*}
\frac{\beta-\zeta}{2} \leq\left\|U_{h}^{(N)}-u_{h}\left(t_{N}\right)\right\|_{\infty} \leq e^{(M+1) T}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+K h\right) \tag{4.5}
\end{equation*}
$$

Since $e^{(M+1) T}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+K h\right) \longrightarrow 0$ as $h \longrightarrow 0$, we deduce from (4.5) that $\frac{\beta-\zeta}{2} \leq 0$, which is impossible. Consequently $N=J$, and we conclude the proof.

Theorem 4.2. Suppose that the solution u of problem (1.1)-(1.3) quenches in a finite time T_{q} such that $u \in C^{4,2}\left([0,1] \times\left[0, T_{q}\right)\right)$ and the iniatial data at (2.3) satisfies

$$
\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}=o(1) \text { as } h \longrightarrow 0
$$

Under the hypothesis of Theorem 3.3, the problem (2.1)-(2.3) has a discrete solution $U_{h}^{(n)}$ which quenches in a finite time $T_{h}^{\Delta t}$ and we have

$$
\lim _{h \rightarrow 0} T_{h}^{\Delta t}=T_{q}
$$

Proof. We know from Remark 3.4 that $\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{p+1}}$ is bounded.
Let $0<\varepsilon<\frac{T_{q}}{2}$, there exists a constant $\eta=\beta-\zeta(0<\zeta<\beta<1)$ such that

$$
\begin{equation*}
\frac{\tau(1-\varrho)^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}}<\frac{\varepsilon}{2}, \quad \varrho \in[1-\eta, 1) \tag{4.6}
\end{equation*}
$$

Since u quenches in finite time T_{q}, there exists $T_{1} \in\left(T_{q}-\frac{\varepsilon}{2}, T_{q}\right)$ and $h_{0}(\varepsilon)>0$ such that $1-\frac{\eta}{2} \leq\left\|u\left(., t_{n}\right)\right\|_{\infty}<1$ for $t_{n} \in\left[T_{1}, T_{q}\right)$. Let k be a positive integer such that $t_{k}=\sum_{n=0}^{k-1} \Delta t_{n} \in\left[T_{1}, T_{q}\right)$ for $h \leq h_{0}(\varepsilon)$. It follows from Theorem 4.1 that the problem (2.1)-(2.3) has a solution $U_{h}^{(n)}$ which verifies $\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}<\frac{\eta}{2}$ for $n \leq k, h \leq h_{0}(\varepsilon)$. This fact implies that

$$
\left\|U_{h}^{(k)}\right\|_{\infty} \geq\left\|u\left(., t_{k}\right)\right\|_{\infty}-\left\|U_{h}^{(k)}-u_{h}\left(t_{k}\right)\right\|_{\infty} \geq 1-\frac{\eta}{2}-\frac{\eta}{2}=1-\eta, \quad h \leq h_{0}(\varepsilon)
$$

From Theorem 3.3, $U_{h}^{(n)}$ quenches at the time $T_{h}^{\Delta t}$. It follows from Remark 3.5 and (4.6) that $\left|T_{h}^{\Delta t}-t_{k}\right| \leq \frac{\tau\left(1-\left\|U_{h}^{(k)}\right\|_{\infty}\right)^{p+1}}{1-\left(1-\tau^{\prime}\right)^{p+1}}<\frac{\varepsilon}{2}$. We deduce that for $h \leq h_{0}(\varepsilon)$,

$$
\left|T_{q}-T_{h}^{\Delta t}\right| \leq\left|T_{q}-t_{k}\right|+\left|t_{k}-T_{h}^{\Delta t}\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leq \varepsilon
$$

Which leads us to the result.

5. Numerical experiments

In this section, we present some numerical approximations to the quenching time of the problem (1.1)-(1.3) in the case where $u_{0}(x)=0.7-\frac{1}{2} x^{4}$. We consider the following explicit scheme

$$
\begin{gathered}
\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}^{e}}=\frac{U_{i+1}^{(n)}-2 U_{i}^{(n)}+U_{i-1}^{(n)}}{h^{2}}+\left(1-U_{i}^{(n)}\right)^{-p}, 1 \leq i \leq I-1 \\
\frac{U_{0}^{(n+1)}-U_{0}^{(n)}}{\Delta t_{n}^{e}}=\frac{2 U_{1}^{(n)}-2 U_{0}^{(n)}}{h^{2}}+\left(1-U_{0}^{(n)}\right)^{-p} \\
\frac{U_{I}^{(n+1)}-U_{I}^{(n)}}{\Delta t_{n}^{e}}=\frac{2 U_{I-1}^{(n)}-2 U_{I}^{(n)}}{h^{2}}-\frac{2}{h}\left(U_{I}^{(n)}\right)^{-q}+\left(1-U_{I}^{(n)}\right)^{-p} \\
U_{i}^{(0)}=\varphi_{i}, 0 \leq i \leq I
\end{gathered}
$$

where $n \geq 0, \Delta t_{n}^{e}=\min \left\{\frac{h^{2}}{2}, h^{2}\left(1-\left\|U_{h}^{(n)}\right\|_{\infty}\right)^{p+1}\right\}$. We also consider the implicit scheme

$$
\begin{gathered}
\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}=\frac{U_{i+1}^{(n+1)}-2 U_{i}^{(n+1)}+U_{i-1}^{(n+1)}}{h^{2}}+\left(1-U_{i}^{(n)}\right)^{-p}, 1 \leq i \leq I-1 \\
\frac{U_{0}^{(n+1)}-U_{0}^{(n)}}{\Delta t_{n}}=\frac{2 U_{1}^{(n+1)}-2 U_{0}^{(n+1)}}{h^{2}}+\left(1-U_{0}^{(n)}\right)^{-p} \\
\frac{U_{I}^{(n+1)}-U_{I}^{(n)}}{\Delta t_{n}}=\frac{2 U_{I-1}^{(n+1)}-2 U_{I}^{(n+1)}}{h^{2}}-\frac{2}{h}\left(U_{I}^{(n)}\right)^{-q}+\left(1-U_{I}^{(n)}\right)^{-p} \\
U_{i}^{(0)}=\varphi_{i}, 0 \leq i \leq I
\end{gathered}
$$

where $n \geq 0, \Delta t_{n}=h^{2}\left(1-\left\|U_{h}^{(n)}\right\|_{\infty}\right)^{p+1}$. In the following tables, in rows, we present the numerical quenching times, the numbers of iterations and the orders of the approximations corresponding to meshes $16,32,64,128,256,512$. The numerical quenching time $T^{n}=\sum_{j=0}^{n-1} \Delta t_{j}$ is computed at the first time when

$$
\left|T^{n+1}-T^{n}\right| \leq 10^{-16}
$$

The order s of the method is computed from

$$
s=\frac{\log \left(\left(T_{4 h}-T_{2 h}\right) /\left(T_{2 h}-T_{h}\right)\right)}{\log (2)} .
$$

For the discrete initial data we take $\varphi_{i}=0.7-\frac{1}{2}(i h)^{4}$.
Table 1. Numerical quenching times obtained with the explicit Euler method $p=4$ and $q=-\log (2) / \log (0.2)$

I	T^{n}	n	s
16	0.00048983809	1292	-
32	0.00048696537	4891	-
64	0.00048624977	18434	2.00
128	0.00048607104	69198	2.00
256	0.00048602636	258629	2.00
512	0.00048601519	961840	2.00

Table 2. Numerical quenching times obtained with the implicit Euler method $p=4$ and $q=-\log (2) / \log (0.2)$

I	T^{n}	n	s
16	0.00049012477	1292	-
32	0.00048703076	4891	-
64	0.00048626995	18434	2.02
128	0.00048607886	69199	1.99
256	0.00048602982	258631	1.96
512	0.00048601682	961844	1.91

Next, we give some plots to illustrate our analysis. We take the case where $I=64$, $p=4$ and $q=-\log (2) / \log (0.2)$.

Figure 1. Evolution of the numerical solution (explicit scheme).

Figure 2. Evolution of the numerical solution (implicit scheme).

Figure 3. The profil of the approximation of $u(x, T)$ where, T is the quenching time (explicit scheme).

Figure 5. The profil of the approximation of $\left\|U_{h}^{(n)}\right\|_{\infty} \quad($ explicit scheme).

Figure 4. The profil of the approximation of $u(x, T)$ where, T is the quenching time (implicit scheme).

Figure 6. The profil of the approximation of $\left\|U_{h}^{(n)}\right\|_{\infty}(\mathrm{im}-$ plicit scheme).

Remark 5.1. We can observe from figures $1-4$ that the discrete solution quenches in a finite time at the fisrt node, which is well known in a theoretical point of view. For figures 5-6 we see that the discrete solution quenches in a finite time close to 4.9×10^{-4}.

6. Conclusion

In this paper, we have studied the numerical quenching of the solution of the semi-linear heat equation (1.1)-(1.3) and we have obtained good approximations of its quenching time.

We have constructed, by the finite difference method, the discrete problem (2.1)(2.3) associated to the continuous problem (1.1)-(1.3). We have shown that under some conditions, the solution of the discrete problem (2.1)-(2.3) quenches in finite time and we have estimated its discrete quenching time. We have also established the convergence of the discrete time towards the theoretical time when the spatial and temporal discretionary steps tend towards zero. Finally, we have given some numerical experiments to illustrate our analysis.

References

[1] B. Selcuk and N. Ozalp, The quenching behavior of a semilinear heat equation with a singular boundary outflux, Quart. Appl. Math. 72 (2014) 747-52.
[2] C. Y. Chan, Recent advances in quenching phenomena, Proceedings of Dynamic Systems and Applications 2 (1995) 107-113.
[3] C. Y. Chan, New results in quenching, World Congress of Nonlinear Analysts I-IV (1992) 427-434.
[4] C. Y. Chan and X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, J. Math. Anal. Appl. 437 (2016) 445-73.
[5] C. Y. Chan and N. Ozalp, Singular reaction-diffusion mixed boundary-value quenching problems, Dynamical systems and applications World Sci. Ser. Appl. Anal. 4 (1995) 127-137.
[6] L. Cai and Z. Cui , The Quenching Behavior of a Semilinear Parabolic Equation with a Singular Boundary Outflux, Global Journal of Pure and Applied Mathematics 6 (2020) 261-269.
[7] M. Fila and H. A. Levine, Quenching on the boundary, Nonlinear Anal. 21 (1993) 795-802.
[8] H. Kawarada, On Solutions of Initial-Boundary Problem $u_{t}=u_{x x}+1 /(1-u)$, Publ. Res. Inst. Math. Kyoto Univ. 10 (1975) 729-36.
[9] C. M. Kirk and C. A. Roberts, A quenching problem for the heat equation, J. Integral Equations Appl. 14 (2002) 53-72.
[10] B. Selcuk and N. Ozalp, Quenching for a Semilinear Heat Equation with a Singular Boundary Outflux, Int. J. Appl. Math. 29 (2016) 451-464.
[11] K. B. Edja, K. A. Touré and B. J. Koua, Numerical quenching of a heat equation with nonlinear boundary conditions, Journal of Nonlinear Science and Applications 13 (2020) 65-74.
[12] K. C. N'dri, K. A. Touré and G. Yoro , Numerical Quenching versus Blow-up for nonlinear parabolic equation with nonlinear boundary outflux, Advances in Mathematics: Scientific Journal 9 (2020) 151-171.
[13] C. Hirota and K. Ozawa, Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations - An application to the blow-up problems of partial differential equations, Journal of Computational and Apllied Mathematics 193 (2006) 614-637.
[14] A. R. Anoh, A. Coulibaly, K. N'Guessan and A. K. Toure, Numerical Quenching of a Semilinear Heat Equation With a Singular Boundary Outflux, Adv. Math. Sci. Journal 10 (2021) 18991914.
[15] L. Abia, J. C. Lopez-Marcos and J. Martinez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998) 399-414.
[16] T. K. Boni and T. K. Kouakou, Quenching Semidiscretizations in Time of a Nonlocal Parabolic Problem With Neumann Boundary Condition, Int. J. Open Problems Compt. Math. 2 (2009) 312-331.
[17] N. Koffi, D. Nabongo and T. K. Augustin, Blow-up for Discretization of some Semilinear Parabolic Equations with a Convection Term, Global Journal of Pure and Applied Mathematics 4 (2016) 3367-3394.
[18] D. Nabongo and T. K. Boni, Numerical quenching for a semilinear parabolic equation, Mathematical Modelling and Analysis 13 (2008) 521-538.

Anoh Assiedou Rodrigue (r1992anoh@gmail.com)
Université Félix Houphouët Boigny d'Abidjan, UFR-MI, 22 BP 582 Abidjan 22, Côte d'Ivoire

N'GuESSAN Koffi (nkrasoft@yahoo.fr)
Université Alassane Ouattara de Bouaké, UFR-SED, 01 BP V 18 Bouaké 01, Côte d'Ivoire
Coulibaly ADAMA (couliba@yahoo.fr)
Université Félix Houphouët Boigny d'Abidjan, UFR-MI, 22 BP 582 Abidjan 22, Côte d'Ivoire
Touré Kidjégbo Augustin (latoureci@gmail.com)
Institut National Polytechnique Houphouët-Boigny de Yamoussoukro, BP 2444 Yamoussoukro, Côte d'Ivoire

