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Abstract. This paper concerns the study of the discret approximation
for the following semilinear heat equation with a singular boundary outflux

∂u

∂t
= uxx + (1 − u)−p, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −u(1, t)−q, t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where p > 0, q > 0.
We find some conditions under which the solution of a discrete form of
above problem quenches in a finite time and estimate its discrete quenching
time. We also establish the convergence of the discrete quenching time to
the theoretical one when the mesh size tends to zero. Finally, we give some
numerical experiments for a best illustration of our analysis.

2020 AMS Classification: 35B50, 35B51, 35K05, 35K55, 65M06
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ary, Finite difference methods.
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1. Introduction

We consider the semilinear heat equation with a singular boundary outflux

ut = uxx + (1− u)−p, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, ux(1, t) = −u(1, t)−q, t > 0,(1.2)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.3)

where p > 0, q > 0. The initial value u0 : [0, 1] −→ (0, 1) is nonincreasing and
satisfies the compatibility conditions:
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u′0(0) = 0, u′0(1) = −u0(1)−q.

Selcuk and Ozalp [1] show that its solution u quenches in finite time Tq and x = 0
is the unique quenching point. They also show that the time derivative ut blows
up at the quenching point and they get a quenching rate and a lower bound of the
quenching time.

Definition 1.1. We say that the classical solution u of the problem (1.1)–(1.3)
quenches in a finite time if there exists a finite time Tq such that ‖u(., t)‖∞ < 1 for
t ∈ [0, Tq), but

lim
t→Tq

‖u(., t)‖∞ = 1,

where ‖u(., t)‖∞ = max
0≤x≤1

|u(x, t)|. The time Tq is called the quenching time of the

solution u.

The theoretical study of solutions for semilinear parabolic equations with quench
in a finite time has been the subject of investigations of many authors (See [2, 3, 4,
5, 6, 7, 8, 9, 1, 10] and the references cited therein). Local in time existence and
uniqueness of the solution have been proved (See [10]). In [6], the authors considered
semilinear parabolic problem

ut = uxx + f(x)(1− u)−p, 0 < x < 1, 0 < t ≤ T,

ux(0, t) = 0, ux(1, t) = −u(1, t)−q, 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where p and q are positive constants and T ≤ ∞.
Under some conditions, they prove three main results namely the quenching of

the solution in finite time, the existence of a single quenching point x = 0 and the
blow-up of the time derivative at the quenching point.

In recent years, more and more researchers are interested in numerical study of
parabolic problems. This is the case of [11] in which the authors are interested in the
numerical study of a heat equation with nonlinear boundary flux conditions using
a semidiscrete form obtained by finite difference method. Under some conditions,
they show that the solution of the numerical approximation for this heat equation
quenches in a finite, they also establish the convergence of the semidiscrete quenching
time and obtain a numerical quenching rate. Using the explicit and implicit Euler
methods, they present some numerical results through tables and figures. We can
also cite [12] in which The authors consider the following initial-boundary value
problem:

ut = uxx + up, 0 < x < 1, 0 < t <∞,

ux(0, t) = 0, ux(1, t) = −u(1, t)−q, 0 < t <∞,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where p > 0, q > 0.
They work about the numerical quenching and numerical blow-up using the

semidiscrete form obtained by finite difference method. Under some conditions,
188
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they prove that the solution of the semidiscrete form blows up in a finite time, and
they study the convergence of semidiscrete blow-up time and estimate a semidis-
crete blow up rate. They also under some conditions prove that the solution of the
semidiscrete form quenches in a finite time, study the convergence of semidiscrete
quenching time and estimate a semidiscrete quenching rate. The convergence of the
semidiscrete scheme has also been proved. Using Hirota and Ozawa method [13],
they present some numerical results which contain tables and figures for adequate
values p and q which illustrate well their theoretical study. From these results,
they emerged interesting results concerning the influence of the parameters p and q
on the numerical quenching time. Concerning problem (1.1)–(1.3), The authors of
[14] investigate about the numerical quenching phenomenon. Using the semidiscrete
scheme, they show some properties of semidiscrete solution. Under some conditions,
they prove that the semidiscrete solution quenches in finite time and they get a upper
bound of the semidiscrete quenching time. They also prove the convergence of the
semidiscrete scheme and the numerical time. Using the explicit and implicit Euler
methods, they illustrate their analyses by tables where they get some finite values of
the numerical quenching time according to the values taken by I. They finish their
study by presentation of figures with adequate values of p and q. For other previous
studies on numerical approximations of parabolic system with non-linear boundary
conditions, we refer to [15, 16, 17, 18].

In this paper, we will deepen the work of [14] using discrete form of problem (1.1)–
(1.3). We present our work in this way: In section 2, we present some properties of
the discrete solution. In sections 3 and 4, we prove some main results related to the
discrete quenching time and the discrete scheme. In section 5, we give numerical
results for new values of the parameters p and q.

2. Properties of the discrete scheme

Let I ≥ 3 be a positive integer and let h = 1/I. Define the grid xi = ih,
0 ≤ i ≤ I. We approximate the solution u of problem (1.1)–(1.3) by the solution

U
(n)
h = (U

(n)
0 , U

(n)
1 , . . . , U

(n)
I )T and the initial condition u0 by the initial condition

ϕh = (ϕ0, ϕ1, . . . , ϕI)T of the following discrete equations

δtU
(n)
i = δ2U

(n)
i + (1− U (n)

i )−p, 0 ≤ i ≤ I − 1,(2.1)

δtU
(n)
I = δ2U

(n)
I − 2

h
(U

(n)
I )−q + (1− U (n)

I )−p,(2.2)

U
(0)
i = ϕi, 0 ≤ i ≤ I,(2.3)

where

n ≥ 0, p > 0, q > 0,

δtU
(n)
i =

U
(n+1)
i − U (n)

i

∆tn
, 0 ≤ i ≤ I,

δ2U
(n)
i =

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
, 1 ≤ i ≤ I − 1,

189
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δ2U
(n)
0 =

2U
(n)
1 − 2U

(n)
0

h2
, δ2U

(n)
I =

2U
(n)
I−1 − 2U

(n)
I

h2
,

ϕi > 0, 0 ≤ i ≤ I,

δ+ϕi =
ϕi+1 − ϕi

h
, 0 ≤ i ≤ I − 1,

δ+ϕi < 0, 0 ≤ i ≤ I − 1.

In order to permit the discrete solution to reproduce the properties of the continuous
one when the time t approaches to the quenching time Tq, we need to adapt the size
of the time step. We choose

∆tn = min

{
h2

2
, τ(1− ‖U (n)

h ‖∞)p+1

}
with τ ∈ (0, 1).

Definition 2.1. We say that the solution U
(n)
h , n ≥ 0 of the discrete problem (2.1)–

(2.3) quenches in finite time, if ‖U (n)
h ‖∞ < 1 for n ≥ 0 but lim

n→+∞
‖U (n)

h ‖∞ = 1

and

T∆t
h = lim

n→+∞

n−1∑
j=0

∆tj < +∞.

We call T∆t
h the numerical quenching time of U

(n)
h .

Now we give some Lemmas which will be used in this work.

Lemma 2.2. Let b
(n)
h and V

(n)
h be two sequences, with n ≥ 0 and b

(n)
h ≤ 0, such

that for 0 ≤ i ≤ I

δtV
(n)
i − δ2V

(n)
i + b

(n)
i V

(n)
i ≥ 0,

V
(0)
i ≥ 0.

Then we have

V
(n)
i ≥ 0, 0 ≤ i ≤ I, n ≥ 0 when ∆tn ≤

h2

2
.

Proof. A straightforward computation shows that for

V
(n+1)
i ≥

(
1− 2

∆tn
h2

)
V

(n)
i +

∆tn
h2

(
V

(n)
i+1 + V

(n)
i−1

)
−∆tnb

(n)
i V

(n)
i , 1 ≤ i ≤ I − 1

V
(n+1)
0 ≥

(
1− 2

∆tn
h2

)
V

(n)
0 +

2∆tn
h2

V
(n)
1 −∆tnb

(n)
0 V

(n)
0 ,

V
(n+1)
I ≥

(
1− 2

∆tn
h2

)
V

(n)
I +

2∆tn
h2

V
(n)
I−1 −∆tnb

(n)
I V

(n)
I .

If V
(n)
h ≥ 0, then using an argument of recursion, we easily see that V

(n+1)
h ≥ 0,

because 1− 2
∆tn
h2
≥ 0 and −b(n)

h ≥ 0. This end the proof. �
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Lemma 2.3. Let b
(n)
h , V

(n)
h and W

(n)
h be three sequences, with n ≥ 0 and b

(n)
h ≤ 0,

such that for 0 ≤ i ≤ I,

δtV
(n)
i − δ2V

(n)
i + b

(n)
i V

(n)
i ≤ δtW (n)

i − δ2W
(n)
i + b

(n)
i W

(n)
i ,

V
(0)
i ≤W (0)

i .

Then we have

V
(n)
i ≤W (n)

i , 0 ≤ i ≤ I, n ≥ 0, when ∆tn ≤
h2

2
.

Proof. Define the vector Z
(n)
h = W

(n)
h − V

(n)
h . For 0 ≤ i ≤ I, a straightforward

calculation gives

δtZ
(n)
i − δ2Z

(n)
i + b

(n)
i Z

(n)
i ≥ 0.

Knowing that Z
(0)
h ≥ 0, from Lemma 2.2, we have Z

(n)
h ≥ 0, n ≥ 0. �

Lemma 2.4. Let b
(n)
h , V

(n)
h and W

(n)
h be three sequences, with n ≥ 0 and b

(n)
h ≤ 0,

such that for 0 ≤ i ≤ I,

δtV
(n)
i − δ2V

(n)
i + b

(n)
i V

(n)
i < δtW

(n)
i − δ2W

(n)
i + b

(n)
i W

(n)
i ,

V
(0)
i < W

(0)
i .

Then we have

V
(n)
i < W

(n)
i , 0 ≤ i ≤ I, n ≥ 0, when ∆tn ≤

h2

2
.

Proof. Define the vector Z
(n)
h = W

(n)
h − V

(n)
h . For 0 ≤ i ≤ I, a straightforward

calculation gives

δtZ
(n)
i − δ2Z

(n)
i + b

(n)
i Z

(n)
i > 0.

Knowing that Z
(0)
h > 0, from Lemma 2.2, we have Z

(n)
h > 0, n ≥ 0. �

Lemma 2.5. Let U
(n)
h , n ≥ 0 be a sequence such that ‖U (n)

h ‖∞ < 1. Then we have

δt(1− U (n)
i )−p ≥ p(1− U (n)

i )−p−1δtU
(n)
i , 0 ≤ i ≤ I.

Proof. Using Taylor’s expansion, we get

δt(1− U (n)
i )−p = p(1− U (n)

i )−p−1δtU
(n)
i +

p(p+ 1)

2
∆tn(1− θ(n)

i )−p−2(δtU
(n)
i )2,

where θ
(n)
i is an intermediate value between U

(n)
i and U

(n+1)
i , 0 ≤ i ≤ I. We use the

fact that ‖U (n)
h ‖∞ < 1, n ≥ 0 to complete the proof. �

Lemma 2.6. Let U
(n)
h , n ≥ 0, be the solution of the discrete problem (2.1)–(2.3).

Then

δtU
(n)
i ≥ 0, 0 ≤ i ≤ I.
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Proof. Consider the vector Z
(n)
h such that Z

(n)
i = δtU

(n)
i , 0 ≤ i ≤ I. Using

Lemma 2.5, a straightforward calculation gives

δtZ
(n)
i − δ2Z

(n)
i − p(1− U (n)

i )−p−1Z
(n)
i ≥ 0, 0 ≤ i ≤ I − 1,

δtZ
(n)
I − δ2Z

(n)
I − q 2

h
(U

(n)
I )−q−1Z

(n)
I − p(1− U (n)

I )−p−1Z
(n)
I ≥ 0.

Since Z
(0)
h ≥ 0, from Lemma 2.2, we have Z

(n)
h ≥ 0, which implies that δtU

(n)
i ≥ 0,

0 ≤ i ≤ I. �

Lemma 2.7. Let U
(n)
h , n ≥ 0 be the solution of the discrete problem (2.1)–(2.3).

Then we have

U
(n)
i > 0, 0 ≤ i ≤ I, n ≥ 0 when ∆tn ≤

h2

2
.

Proof. A straightforward computation shows that

U
(n+1)
i =

(
1− 2

∆tn
h2

)
U

(n)
i +

∆tn
h2

(
U

(n)
i+1 + U

(n)
i−1

)
+ ∆tn(1−U (n)

i )−p, 1 ≤ i ≤ I − 1

U
(n+1)
0 =

(
1− 2

∆tn
h2

)
U

(n)
0 +

2∆tn
h2

U
(n)
1 + ∆tn(1− U (n)

0 )−p,

U
(n+1)
I =

(
1− 2

∆tn
h2

)
U

(n)
I +

2∆tn
h2

U
(n)
I−1 −

2∆tn
h

(U
(n)
I )−q + ∆tn(1− U (n)

I )−p.

If U
(n)
h > 0, then using an argument of recursion, we easily see that U

(n+1)
h > 0,

because 1− 2
∆tn
h2
≥ 0. This end the proof. �

Lemma 2.8. Let U
(n)
h , n ≥ 0 be the solution of the discrete problem (2.1)–(2.3).

Then we have

U
(n)
i+1 < U

(n)
i , 0 ≤ i ≤ I − 1.(2.4)

Proof. Define the vector Z
(n)
h such that Z

(n)
i = U

(n)
i −U (n)

i+1, 0 ≤ i ≤ I − 1. We have

Z
(n)
i = U

(n)
i − U (n)

i+1, 0 ≤ i ≤ I − 2,

Z
(n)
I−1 = U

(n)
I−1 − U

(n)
I .

By a straightforward computations, we have

δtZ
(n)
i − δ2Z

(n)
i − p(1− ζ(n)

i )−p−1Z
(n)
i = 0, 0 ≤ i ≤ I − 2,

δtZ
(n)
I−1 − δ

2Z
(n)
I−1 −

2

h
(U

(n)
I )−q − p(1− ζ(n)

I−1)−p−1Z
(n)
I−1 = 0.

Where ζ
(n)
i is an intermediate value between U

(n)
i and U

(n)
i+1, 0 ≤ i ≤ I − 1.

Knowing that Z
(0)
h > 0, from Lemma 2.2, we have Z

(n)
h > 0, which implies that

U
(n)
i+1 < U

(n)
i , 0 ≤ i ≤ I − 1, and we obtain the desired result. �
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3. Discrete quenching solutions

In this section, under some assumptions, we show that the solution U
(n)
h of the

discrete problem (2.1)–(2.3) quenches in a finite time and estimate its numerical

quenching time. Now let us set V
(n)
h = 1−U (n)

h . The problem (2.1)–(2.3) is equiva-
lent to

δtV
(n)
i = δ2V

(n)
i − (V

(n)
i )−p, 0 ≤ i ≤ I − 1,(3.1)

δtV
(n)
I = δ2V

(n)
I +

2

h
(1− V (n)

I )−q − (V
(n)
I )−p,(3.2)

V
(0)
i = ξi = 1− ϕi, 0 ≤ i ≤ I,(3.3)

where

n ≥ 0, p > 0, q > 0.

Lemma 3.1. Let V
(n)
h , n ≥ 0 be a sequence such that ‖V (n)

h ‖inf > 0. Then we have

δt(V
(n)
i )−p ≥ −p(V (n)

i )−p−1δtV
(n)
i , 0 ≤ i ≤ I.

Proof. Using Taylor’s expansion, we get

δt(V
(n)
i )−p = −p(V (n)

i )−p−1δtV
(n)
i +

p(p+ 1)

2
∆tn(θ

(n)
i )−p−2(δtV

(n)
i )2, 0 ≤ i ≤ I,

where θ
(n)
i is an intermediate value between V

(n)
i and V

(n+1)
i , 0 ≤ i ≤ I. We use the

fact that ‖V (n)
h ‖inf > 0, n ≥ 0 to complete the proof. �

Lemma 3.2. Let V
(n)
h , n ≥ 0 be a sequence such that ‖V (n)

h ‖inf > 0 . Then we have

δ2(V
(n)
i )−p ≥ −p(V (n)

i )−p−1δ2V
(n)
i , 0 ≤ i ≤ I.

Proof. Applying Taylor’s expansion, we obtain

δ2(V
(n)
i )−p = −p(V (n)

i )−p−1δ2V
(n)
i + (V

(n)
i−1 − V

(n)
i )2 p(p+ 1)

2h2
(θ

(n)
i )−p−2

+(V
(n)
i+1 − V

(n)
i )2 p(p+ 1)

2h2
(ε

(n)
i )−p−2, 1 ≤ i ≤ I − 1,

δ2(V
(n)
0 )−p = −p(V (n)

0 )−p−1δ2V
(n)
0 + (V

(n)
1 − V (n)

0 )2 p(p+ 1)

h2
(θ

(n)
0 )−p−2,

δ2(V
(n)
I )−p = −p(V (n)

I )−p−1δ2V
(n)
I + (V

(n)
I−1 − V

(n)
I )2 p(p+ 1)

h2
(θ

(n)
I )−p−2,

where θ
(n)
0 is an intermediate value between V

(n)
0 and V

(n)
1 , θ

(n)
i is an intermediate

value between V
(n)
i−1 and V

(n)
i , 1 ≤ i ≤ I − 1, θ

(n)
I is an intermediate value between

V
(n)
I−1 and V

(n)
I , ε

(n)
i is an intermediate value between V

(n)
i and V

(n)
i+1 , 1 ≤ i ≤ I − 1.

The result follows taking into account the fact that ‖V (n)
h ‖inf > 0. �
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Theorem 3.3. Let U
(n)
h be the solution of (2.1)–(2.3). Suppose that there exists a

constant A ∈ (0, 1] such that the initial data at (3.3) satisfies

δ2ξi − ξ−pi ≤ −Aξ−pi , 0 ≤ i ≤ I − 1,(3.4)

δ2ξI +
2

h
(1− ξI)−q − ξ−pI ≤ −Aξ−pI .(3.5)

Then U
(n)
h quenches in a finite time T∆t

h =

+∞∑
n=0

∆tn, which satisfies the estimate

T∆t
h ≤ τ(1− ‖ϕh‖∞)p+1

1− (1− τ ′)p+1
,

where ∆tn = min

{
h2

2
, τ(V

(n)
hmin)p+1

}
with τ ∈ (0, 1), V

(n)
hmin = (1− ‖U (n)

h ‖∞) and

τ ′ = Amin{h
2(ξhmin)−p−1

2
, τ}.

Proof. Introduce the vector J
(n)
h defined as follows

J
(n)
i = δt(V

(n)
i ) +A(V

(n)
i )−p, 0 ≤ i ≤ I, n ≥ 0.

A straightforward computation yields for 0 ≤ i ≤ I and n ≥ 0,

δtJ
(n)
i − δ2J

(n)
i = δt(δtV

(n)
i − δ2V

(n)
i ) +Aδt(V

(n)
i )−p −Aδ2(V

(n)
i )−p.

Using (3.1)–(3.2) we arrive at

δtJ
(n)
i − δ2J

(n)
i = −(1−A)δt(V

(n)
i )−p −Aδ2(V

(n)
i )−p, 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I = −(1−A)δt(V

(n)
I )−p +

2q

h
(1− V (n)

I )−q−1δtV
(n)
I −Aδ2(V

(n)
I )−p.

It follows from Lemma 3.1 and Lemma 3.2 that for n ≥ 0,

δtJ
(n)
i − δ2J

(n)
i

≤ p(1−A)(V
(n)
i )−p−1δtV

(n)
i +Ap(V

(n)
i )−p−1δ2V

(n)
i , 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I

≤ p(1−A)(V
(n)
I )−p−1δtV

(n)
I +

2q

h
(1−V (n)

I )−q−1δtV
(n)
I +Ap(V

(n)
I )−p−1δ2V

(n)
I .

We deduce that

δtJ
(n)
i − δ2J

(n)
i − p(V (n)

i )−p−1J
(n)
i ≤ 0, 0 ≤ i ≤ I − 1,

δtJ
(n)
I − δ2J

(n)
I − p(V (n)

I )−p−1J
(n)
I − 2q

h
(1− V (n)

I )−q−1δtV
(n)
I ≤ 0.

By inequalities (3.4) and (3.5), we have J
(0)
h ≤ 0. Applying Lemma 2.2, we get

J
(n)
h ≤ 0 for n ≥ 0, which implies that

V
(n+1)
i − V (n)

i

∆tn
≤ −A(V

(n)
i )−p, 0 ≤ i ≤ I, n ≥ 0.
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We get:

V
(n+1)
i ≤ V (n)

i

(
1−A∆tn(V

(n)
i )−p−1

)
, 0 ≤ i ≤ I, n ≥ 0.(3.6)

These estimates reveal that the sequence V
(n)
h is nonincreasing. By induction, we

obtain V
(n)
h ≤ V (0)

h = ξh. Thus, the following holds

A∆tn(V
(n)
hmin)−p−1 ≥ Amin{h

2(ξhmin)−p−1

2
, τ} = τ ′

Let i0 be such that V
(n)
hmin = V

(n)
i0

. Replacing i by i0 in (3.6), we obtain

V
(n+1)
hmin ≤ V

(n)
hmin(1− τ ′), n ≥ 0,(3.7)

and by iteration, we arrive at

V
(n)
hmin ≤ V

(0)
hmin(1− τ ′)n = ξhmin(1− τ ′)n, n ≥ 0.(3.8)

Since the term on the right hand side of the above equality goes to zero as n ap-

proaches infinity, we conclude that V
(n)
hmin tends to zero as n approaches infinity and

‖U (n)
h ‖∞ tends to one as n approaches infinity. Now, let us estimate the numerical

quenching time. Due to (3.8) and the restriction ∆tn ≤ τ(V
(n)
hmin)p+1, it is not hard

to see that
+∞∑
n=0

∆tn ≤
+∞∑
n=0

τξp+1
hmin[(1− τ ′)p+1]n.

Use the fact that the series on the right hand side of the above inequality converges
towards

τξp+1
hmin

1− (1− τ ′)p+1

and ξhmin = (1− ‖ϕh‖∞), we obtain

T∆t
h ≤ τ(1− ‖ϕh‖∞)p+1

1− (1− τ ′)p+1
.

�

Remark 3.4. Using Taylor’s expansion, we get

1− (1− τ ′)p+1 = (p+ 1)τ ′ + o(τ ′),

which implies that

τ

1− (1− τ ′)p+1
=

τ

τ ′
1

(p+ 1) + o(1)
≤ τ

τ ′
2

(p+ 1)
.

If we take τ = h2, we have

τ

τ ′
=

1

A
min{2ξp+1

hmin, 1}.

Then
τ

1− (1− τ ′)p+1
≤ 2τ

τ ′(p+ 1)
=

2

A(p+ 1)
min{2ξp+1

hmin, 1}.
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We conclude that
τ

1− (1− τ ′)p+1
is bounded.

Remark 3.5. From (3.8) we deduce by induction that

V
(n)
hmin ≤ V

(k)
hmin(1− τ ′)n−k, for n ≥ k,

and we see that

T∆t
h − tk =

+∞∑
n=k

∆tn ≤
+∞∑
n=k

τ(V
(k)
hmin)p+1[(1− τ ′)p+1]n−k,

which implies that

T∆t
h − tk ≤

τ(V
(k)
hmin)p+1

1− (1− τ ′)p+1
.

Since V
(k)
hmin = (1− ‖Uk

h‖∞), we get

T∆t
h − tk ≤

τ(1− ‖Uk
h‖∞)p+1

1− (1− τ ′)p+1
.

In the sequel, we take τ = h2.

4. Convergence of the discrete quenching time

In this section, under some assumptions, we show that the numerical quenching
time of the discrete solution converges to the real one when the mesh size goes to
zero. We denote by

uh(tn) = (u(x0, tn), u(x1, tn), ..., u(xI , tn))T and ‖U (n)
h ‖∞ = max

0≤i≤I
|U (n)

i |.

In order to obtain the convergence of the numerical quenching time, we firstly prove
the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the continuous problem (1.1)–(1.3) has a solution u ∈
C4,2([0, 1] × [0, T ]) such that sup

t∈[0,T ]

‖u(., t)‖∞ = ζ, (0 < ζ < 1). Suppose the initial

condition at (2.3) satisfies

‖ϕh − uh(0)‖∞ = o(1) as h −→ 0.(4.1)

Then, for h sufficiently small, the discrete problem (2.1)–(2.3) has a solution U
(n)
h ,

0 ≤ n ≤ J, and we have the following relation

max
0≤n≤J

(‖U (n)
h − uh(tn)‖∞) = O(‖ϕh − uh(0)‖∞ + h) as h −→ 0.

Where J is such that

J−1∑
j=0

∆tj ≤ T and tn =

n−1∑
j=0

∆tj.

Proof. For each h, the discrete problem (2.1)–(2.3) has a solution U
(n)
h . Let N ≤ J ,

the greatest value of n such that there exists a positive constant β (with ζ < β < 1)
such that

‖U (n)
h − uh(tn)‖∞ <

β − ζ
2

, n < N.(4.2)
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We know that N ≥ 1 because of (4.1). Using the triangular inequality for n < N,
we have

(4.3) ‖U (n)
h ‖∞ ≤ ‖uh(tn)‖∞ + ‖U (n)

h − uh(tn)‖∞ ≤ ζ +
β − ζ

2
=
β + ζ

2
< 1.

Let e
(n)
h = U

(n)
h − uh(tn) be the error of discretization for n < N. Using Taylor’s

expansion, we have

δte
(n)
0 − δ2e

(n)
0

= p(1−σ(n)
0 )−p−1e

(n)
0 +h

(
h

12
uxxxx(x̃0, tn) +

2

3
uxxx(x0, tn)

)
− ∆tn

2
utt(x0, t̃n),

δte
(n)
i − δ2e

(n)
i

= p(1− σ(n)
i )−p−1e

(n)
i +

h2

12
uxxxx(x̃i, tn)− ∆tn

2
utt(xi, t̃n), 1 ≤ i ≤ I − 1,

δte
(n)
I − δ2e

(n)
I

=

(
p(1− σ(n)

I )−p−1 +
2q

h
(µ

(n)
I )−q−1

)
e

(n)
I

+h

(
h

12
uxxxx(x̃I , tn)− 2

3
uxxx(xI , tn)

)
− ∆tn

2
utt(xI , t̃n),

where σ
(n)
i is intermediate value between U

(n)
i and u(xi, tn), 0 ≤ i ≤ I and µ

(n)
I

is intermediate value between U
(n)
I and u(xI , tn). Since uxxx(x, t), uxxxx(x, t) and

utt(x, t) are bounded and ∆tn = O(h2), there exist a positive constant K > 0 such
that

δte
(n)
0 − δ2e

(n)
0 ≤ C(n)

0 e
(n)
0 +Kh,

δte
(n)
i − δ2e

(n)
i ≤ C(n)

i e
(n)
i +Kh2, 1 ≤ i ≤ I − 1,

δte
(n)
I − δ2e

(n)
I ≤ C(n)

I e
(n)
I +Kh,

where

C
(n)
0 = p(1− σ(n)

0 )−p−1,

C
(n)
i = p(1− σ(n)

i )−p−1, 1 ≤ i ≤ I − 1,

C
(n)
I = p(1− σ(n)

I )−p−1 +
2q

h
(µ

(n)
I )−q−1.

Set M = max
0≤i≤I

{C(n)
i } and introduce the vector Z

(n)
h defined as follows

Z
(n)
i = e(M+1)tn(‖ϕh − uh(0)‖∞ +Kh), 0 ≤ i ≤ I, n < N.

By a straightforward computations, we have

δtZ
(n)
0 − δ2Z

(n)
0 > C

(n)
0 Z

(n)
0 +Kh,

δtZ
(n)
i − δ2Z

(n)
i > C

(n)
i Z

(n)
i +Kh2, 1 ≤ i ≤ I − 1,

δtZ
(n)
I − δ2Z

(n)
I > C

(n)
I Z

(n)
I +Kh,
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Z
(0)
i > e

(0)
i , 0 ≤ i ≤ I.

It follows from Lemma 2.4 that

Z
(n)
i > e

(n)
i , 0 ≤ i ≤ I.

By the same way, we also prove that

Z
(n)
i > −e(n)

i , 0 ≤ i ≤ I,
which implies that

Z
(n)
i > |e(n)

i |, 0 ≤ i ≤ I.
we deduce that

‖U (n)
h − uh(tn)‖∞ ≤ e(M+1)tn(‖ϕh − uh(0)‖∞ +Kh), n < N.(4.4)

Now, let us show that N = J . Suppose that N < J . If we replace n by N in (4.4),
and taking into account the inequality (4.2), we obtain

β − ζ
2
≤ ‖U (N)

h − uh(tN )‖∞ ≤ e(M+1)T (‖ϕh − uh(0)‖∞ +Kh).(4.5)

Since e(M+1)T (‖ϕh − uh(0)‖∞ + Kh) −→ 0 as h −→ 0, we deduce from (4.5) that
β − ζ

2
≤ 0, which is impossible. Consequently N = J , and we conclude the proof.

�

Theorem 4.2. Suppose that the solution u of problem (1.1)–(1.3) quenches in a
finite time Tq such that u ∈ C4,2([0, 1]×[0, Tq)) and the iniatial data at (2.3) satisfies

||ϕh − uh(0)||∞ = o(1) as h −→ 0.

Under the hypothesis of Theorem 3.3, the problem (2.1)–(2.3) has a discrete solution

U
(n)
h which quenches in a finite time T∆t

h and we have

lim
h→0

T∆t
h = Tq.

Proof. We know from Remark 3.4 that
τ

1− (1− τ ′)p+1
is bounded.

Let 0 < ε <
Tq
2
, there exists a constant η = β − ζ (0 < ζ < β < 1) such that

τ(1− %)p+1

1− (1− τ ′)p+1
<
ε

2
, % ∈ [1− η, 1).(4.6)

Since u quenches in finite time Tq, there exists T1 ∈ (Tq −
ε

2
, Tq) and h0(ε) > 0

such that 1− η

2
≤ ‖u(., tn)‖∞ < 1 for tn ∈ [T1, Tq). Let k be a positive integer such

that tk =

k−1∑
n=0

∆tn ∈ [T1, Tq) for h ≤ h0(ε). It follows from Theorem 4.1 that the

problem (2.1)–(2.3) has a solution U
(n)
h which verifies ‖U (n)

h − uh(tn)‖∞ <
η

2
for

n ≤ k, h ≤ h0(ε). This fact implies that

‖U (k)
h ‖∞ ≥ ‖u(., tk)‖∞ − ‖U (k)

h − uh(tk)‖∞ ≥ 1− η

2
− η

2
= 1− η, h ≤ h0(ε).
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From Theorem 3.3, U
(n)
h quenches at the time T∆t

h . It follows from Remark 3.5

and (4.6) that |T∆t
h − tk| ≤

τ(1− ‖U (k)
h ‖∞)p+1

1− (1− τ ′)p+1
<
ε

2
. We deduce that for h ≤ h0(ε),

|Tq − T∆t
h | ≤ |Tq − tk|+ |tk − T∆t

h | ≤
ε

2
+
ε

2
≤ ε.

Which leads us to the result. �

5. Numerical experiments

In this section, we present some numerical approximations to the quenching time

of the problem (1.1)–(1.3) in the case where u0(x) = 0.7 − 1

2
x4. We consider the

following explicit scheme

U
(n+1)
i − U (n)

i

∆ten
=
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+ (1− U (n)

i )−p, 1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆ten
=

2U
(n)
1 − 2U

(n)
0

h2
+ (1− U (n)

0 )−p,

U
(n+1)
I − U (n)

I

∆ten
=

2U
(n)
I−1 − 2U

(n)
I

h2
− 2

h
(U

(n)
I )−q + (1− U (n)

I )−p,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ∆ten = min

{
h2

2
, h2(1− ‖U (n)

h ‖∞)p+1

}
. We also consider the implicit

scheme

U
(n+1)
i − U (n)

i

∆tn
=
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+ (1− U (n)

i )−p, 1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆tn
=

2U
(n+1)
1 − 2U

(n+1)
0

h2
+ (1− U (n)

0 )−p,

U
(n+1)
I − U (n)

I

∆tn
=

2U
(n+1)
I−1 − 2U

(n+1)
I

h2
− 2

h
(U

(n)
I )−q + (1− U (n)

I )−p,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ∆tn = h2(1 − ‖U (n)
h ‖∞)p+1. In the following tables, in rows, we

present the numerical quenching times, the numbers of iterations and the orders of
the approximations corresponding to meshes 16, 32, 64, 128, 256, 512. The numerical

quenching time Tn =

n−1∑
j=0

∆tj is computed at the first time when

|Tn+1 − Tn| ≤ 10−16.

The order s of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.
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For the discrete initial data we take ϕi = 0.7− 1

2
(ih)4.

Table 1. Numerical quenching times obtained with the explicit
Euler method p = 4 and q = −log(2)/log(0.2)

I Tn n s
16 0.00048983809 1292 -
32 0.00048696537 4891 -
64 0.00048624977 18434 2.00
128 0.00048607104 69198 2.00
256 0.00048602636 258629 2.00
512 0.00048601519 961840 2.00

Table 2. Numerical quenching times obtained with the implicit
Euler method p = 4 and q = −log(2)/log(0.2)

I Tn n s
16 0.00049012477 1292 -
32 0.00048703076 4891 -
64 0.00048626995 18434 2.02
128 0.00048607886 69199 1.99
256 0.00048602982 258631 1.96
512 0.00048601682 961844 1.91

Next, we give some plots to illustrate our analysis. We take the case where I = 64,
p = 4 and q = −log(2)/log(0.2) .

Figure 1. Evolution
of the numerical solu-
tion (explicit scheme).

Figure 2. Evolution
of the numerical solu-
tion (implicit scheme).
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Figure 3. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(explicit scheme).

Figure 4. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(implicit scheme).

Figure 5. The pro-
fil of the approxima-

tion of ‖U (n)
h ‖∞ (ex-

plicit scheme).

Figure 6. The pro-
fil of the approxima-

tion of ‖U (n)
h ‖∞ (im-

plicit scheme).

Remark 5.1. We can observe from figures 1–4 that the discrete solution quenches
in a finite time at the fisrt node, which is well known in a theoretical point of view.
For figures 5–6 we see that the discrete solution quenches in a finite time close to
4.9× 10−4.

6. Conclusion

In this paper, we have studied the numerical quenching of the solution of the
semi-linear heat equation (1.1)–(1.3) and we have obtained good approximations of
its quenching time.
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We have constructed, by the finite difference method, the discrete problem (2.1)–
(2.3) associated to the continuous problem (1.1)–(1.3). We have shown that under
some conditions, the solution of the discrete problem (2.1)–(2.3) quenches in finite
time and we have estimated its discrete quenching time. We have also established
the convergence of the discrete time towards the theoretical time when the spatial
and temporal discretionary steps tend towards zero. Finally, we have given some
numerical experiments to illustrate our analysis.
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Touré Kidjégbo Augustin (latoureci@gmail.com )
Institut National Polytechnique Houphouët-Boigny de Yamoussoukro, BP 2444 Ya-
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203


	Quenching for discretization of a semilinear heat equation with singular boundary outflux. By 
	Quenching for discretization of a semilinear heat equation with singular boundary outflux. By 

