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multisets. The notion of multisemigroups and left(right) multi-ideals in
multiset framework are introduced and several properties are investigated.
Relationships between multisemigroups and left(right) multi-ideals are dis-
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1. Introduction

The development of multiset theory has provided an avenue to generalize several
basic notions of group theory and algebra in general. Multisets are extension of
classical sets, which accommodate repeated elements unlike the classical sets that
wholly exclude repetition of elements. For more details, we refer the readers to
[1, 2, 3].

Semigroups play an important role in many areas of mathematics, for exam-
ple, coding and language theory, automata theory, combinatorics and mathemat-
ical analysis. Generalization of semigroups owing to classical structures has been
studied by many authors. Among others are the notion of left almost semigroups
(LA-semigroups) introduced by Kazim and Naseeruddin [4]. The structure is also
known as AG-groupoid and modular groupoid and has a variety of applications in
topology, matrices, flock theory, finite mathematics and geometry. In 2013, Akram
et al. [5] discussed some properties of (m,n)-ideals in a locally associative LA-
semigroup. Gulistan et al. [6] introduced Hv-LA-semigroups and showed that every
LA-semihypergroup is an Hv-LA-semigroup. Kudryavtseva and Mazorchuk [7] was
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motivated by the appearance of multivalued structures and proposed multisemi-
groups as an extension of semigroups. Forsberg [8] presented multisemigroup with
multistructures. Very recently, Chinram et al. [9] presented necessary and sufficient
conditions for elements in semigroups of partial transformations to be left or right
magnifiers.

The algebraic extensions of a semigroup in non-classical structures have also been
studied. Fuzzy semigroups were introduced by Kuroki [10], which is a generalization
of classical semigroups. Extensive studies in this direction have been carried by
several researchers (See [11] for more details). Shabir and Ali [12] defined soft
semigroup and its substructures. In 2015, Khan et al. [13] defined the concept of
generalized cubic subsemigroups (ideals) of a semigroup and investigated some of its
related properties.

Motivated by semigroup theory, the present paper introduces multisemigroups
depicting multiset perspective as different from the concept of multisemigroups dis-
cussed by [8] and [7] and investigates some properties analogous to semigroup con-
cept.

2. Preliminaries

A non empty set X together with a binary associative operation ”.” is called a
semigroup. A semigroups is said to be commutative, if xy = yx for all x, y ∈ X.
An element 1 ∈ X is called an identity, if for all x ∈ X, we have 1x = x1 = x.
A semigroup containing such an identity element is called a monoid. A monoid in
which, for each x ∈ X there exists a unique x−1 ∈ X such that xx−1 = x−1x = 1 is
called a group.

Unlike a group, a semigroup does not necessarily contain an identity element. We
denote the monoid obtained from the semigroup X by adjoining an identity element
1 by X1. It is routine to verify that X1 = X ∪ {1} is a monoid. Identity elements
are necessarily unique.

A semigroup X is said to be left (right) zero, if y ∈ X satisfies yx = y (xy = y)
for all x ∈ X. If X does not have a zero element, we may adjoin one and obtain a
new semigroup X0 = X ∪ {0} which satisfies x0 = 0x = 02 = 0 for all x ∈ X.

An idempotent semigroup is a system of elements closed under an associative mul-
tiplication such that, for every element x of the semigroup X, x2 = x. One-sided
identity and zero elements are idempotent.

A subset S ⊆ X is called a subsemigroup of X, denoted S ≤ X, if S forms a
semigroup under the operation inherited from X. A non-empty subsemigroup S
satisfying xy ∈ S for all x ∈ X and y ∈ S is called a left ideal. A right ideal is a
subsemigroup S satisfying yx ∈ S for all x ∈ X and y ∈ S. A subsemigroup which
is both a left and right ideal is called a two-sided ideal or simply an ideal for short.

A semigroup X is said to be left (right) cancellative, provided that xz = yz =⇒
x = y (zx = zy =⇒ x = y) for all x, y, z ∈ X.
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If X is both left and right cancellative, then it is said to be cancellative.

3. Multiset properties

Definition 3.1 ([14]). A multiset A is a countable set X together with a func-
tion CA : X −→ N≥0 = N ∪ {0} that defines the count or multiplicity of the
elements of X in A. An expedient notation of A drawn from X = {x1, .., xn}
is [x1, .., xn]CA(x1),...,CA(xn)

such that CA(xi) is the number of times xi occurs in

A, (i = 1, ..., n).

The customary set operations can be carried over to multisets. Let A and B be
multisets over a semigroup X. Then

(i) A v B ⇐⇒ CA(x) ≤ CB(x) ∀ x ∈ X.
(ii) A = B ⇐⇒ CA(x) = CB(x) ∀ x ∈ X.

(iii) A
⋃
B ⇐⇒ CA

⋃
B(x) = CA(x)

∨
CB(x) ∀ x ∈ X.

(iv) A
⋂
B ⇐⇒ CA

⋂
B(x) = CA(x)

∧
CB(x) ∀ x ∈ X.

Definition 3.2. Let A and B be two multisets over a semigroup X such that the
count functions are CA : X −→ N≥0 and CB : X −→ N≥0 respectively. Then the
product of A and B, denoted by A ◦ B, is defined by: for all x ∈ X,

CA◦B (x) =

{ ∨
x=yz{CA(y)

∧
CB(z)}, if ∃ y, z ∈ X such that x = yz,

0, otherwise.

Following Definition 3.2 terminology, the m times multiplication of the multiset
A can be defined as Am = A ◦ A ◦ ... ◦ A and its count function is

CAm (x) =

{ ∨
{
∧

i∈{1,..,m} CA(xi)}, if ∃ xi ∈ X such that
∏m

i=1 xi = x,

0, otherwise.

We denote the set of all multisets over a semigroup X by M(X).

Proposition 3.3. Let A,Bi ∈M(X) and i = 1, .., k. Then

(1) A
⋃(⋂k

i=1 Bi
)

=
⋂k

i=1 (A
⋃
Bi),

(2) A
⋂(⋃k

i=1 Bi
)

=
⋃k

i=1 (A
⋂
Bi),

(3) A ◦
(⋃k

i=1 Bi
)

=
⋃k

i=1 (A ◦ Bi),

(4) A ◦
(⋂k

i=1 Bi
)
v
⋂k

i=1 (A ◦ Bi).

Proof. (1)-(2) immediate.
(3) Let x ∈ X. If x 6= yz, then CA◦(

⋃k
i=1 Bi)(x) = 0 = C⋃k

i=1(A◦Bi)
(x). Thus we

have

A ◦

(
k⋃

i=1

Bi

)
=

k⋃
i=1

(A ◦ Bi) .
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If x = yz for some x, y ∈ X, then

CA◦(
⋃k

i=1 Bi)(x) =
∨

x=yz

{CA(y)
∧
C⋃k

i=1 Bi
(z)}

=
∨

x=yz

{CA(y)
∧(

k∨
i=1

CBi
(z)

)
}

=
∨

x=yz

{CA(y)
∧(

CB1(z)
∨
...
∨
CBn(z)

)
}

=

( ∨
x=yz

{CA(y)
∧
CB1

(z)}

)∨
...
∨( ∨

x=yz

{CA(y)
∧
CBn

(z)}

)

=

k∨
i=1

CA◦Bi
(x) = C⋃k

i=1(A◦Bi)
(x).

Thus A ◦
(⋃k

i=1 Bi
)

=
⋃k

i=1 (A ◦ Bi).
(4) Let x ∈ X. If x 6= yz for any y, z ∈ X, then the result is obvious. Otherwise,

there exist y, z ∈ X such that x = yz. Thus

CA◦(
⋂k

i=1 B)
(x) =

∨
x=yz

{CA(y)
∧
C⋂k

i=1 B
(z)}

=
∨

x=yz

{CA(y)
∧(

k∧
i=1

CBi(z)

)
}

=
∨

x=yz

{CA(y)
∧(

CB1
(z)
∧
...
∧
CBn

(z)
)
}

≤

( ∨
x=yz

{CA(y)
∧
CB1(z)}

)∧
...
∧( ∨

x=yz

{CA(y)
∧
CBn(z)}

)

=

k∧
i=1

CA◦Bi = C⋂k
i=1(A◦Bi)

(x).

So A ◦
(⋂k

i=1 Bi
)
v
⋂k

i=1 (A ◦ Bi). �

Proposition 3.4. Let A,B, C ∈M(X). If A v B, then we get

A ◦ C v B ◦ C and C ◦ A v C ◦ B.

Proof. Let x ∈ X. If x 6= yz for any y, z ∈ X, then CA◦C(x) = 0 ≤ CB◦C(x).
Otherwise,

CA◦B(x) =
∨

x=yz

{CA(y)
∧
CC(z)}

≤
∨

x=yz

{CB(y)
∧
CC(z)} [Since CA(y) ≤ CB(y)]

= CB◦C(x).
208
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�

Thus A ◦ C v B ◦ C.
Similarly, we may prove CC◦A v CC◦B.

Remark 3.5. If A,B, C ∈M(X) such that xy = y for every x, y ∈ X, then
A ◦ C = B ◦ C = C. Analogously, C ◦ A = C ◦ B = C is such that xy = x for every
x, y ∈ X.

Proposition 3.6. Let A,B, C ∈ M(X). Then A ◦ C = B ◦ C ; A = B and
C ◦ A = C ◦ B ; A = B.

Proof. The collection of multisets over a semigroup X is not cancellative because
there may exists y ∈ X such that CA(y) < CB(y). �

Proposition 3.7. Let A,B ∈M(X). If A v B, then Am v Bm.

Proof. Let x ∈ X. Suppose x 6=
∏m

i=1 xi. Since A v B implies CA(x) ≤ CB(x) for
all x ∈ X, CAm(x) = 0 ≤ CBm(x). Suppose x =

∏m
i=1 xi for some xi ∈ X. Then we

have ∨
{

∧
i∈{1,...,m}

CA(xi) | x =

m∏
i=1

xi} ≤
∨
{

∧
i∈{1,...,m}

CB(xi) | x =

m∏
i=1

xi}.

Thus Am v Bm. �

Definition 3.8. Let A and B be multisets over semigroups X1 and X2 respectively.
The Cartesian product of A and B, denoted by A× B, is a function

CA×B : X1 ×X2 −→ N≥0
defined by

CA×B(x, y) = {CA(x)
∧
CB(y) | x ∈ X1, y ∈ X2}.

Proposition 3.9. Let A,B, C ∈M(X). Then

(1) A× (B
⋃
C) = (A× B)

⋃
(A× C),

(2) A× (B
⋂
C) = (A× B)

⋂
(A× C).

Proof. Straightforward. �

Proposition 3.10. Let A ∈M(X1) and B ∈M(X2). Then (A× B)
m

= Am×Bm.

Proof. Let (x, y) ∈ X1 ×X2. Suppose (x, y) 6=
∏m

i=1(xi, yi). Then we get

C(A×B)m(x, y) = 0 = CAm(x, y)× CBm(x, y).

Thus (A× B)
m

= Am × Bm. Suppose (x, y) =
∏m

i=1(xi, yi) for some (xi, yi) ∈
X1 ×X2. Then

C(A×B)m(x, y)

=
∨
{
∧

i∈{1,...,m} CA×B(xi, yi) |
∏m

i=1(xi, yi) = (x, y), xi ∈ X1, yi ∈ X2}
=
∨
{
∧

i∈{1,...,m} (CA(xi)
∧
CB(yi)) |

∏m
i=1(xi, yi) = (x, y), xi ∈ X1, yi ∈ X2}

=
∨
{
(∧

i∈{1,...,m} CA(xi)
)∧(∧

i∈{1,...,m} CB(yi)
)
|
∏m

i=1 xi = x,∏m
i=1 yi = y, xi ∈ X1, yi ∈ X2}

=
∨
{
∧

i∈{1,...,m} CA(xi) | xi ∈ X1,
∏m

i=1 xi = x}
209
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∧∨
{
∧

i∈{1,...,m} CB(yi) | yi ∈ X2,
∏m

i=1 yi = y}
= CAm(x)

∧
CBm(y)

= CAm×Bm(x, y).
Thus (A× B)

m
= Am × Bm. �

Definition 3.11. Let A be a multiset over a set X and n ∈ Z+ . Then the sets

An = {x ∈ X | CA(x) ≥ n} and A>
n = {x ∈ X | CA(x) > n}

are called n-level sets and strong n-level sets of A.

Clearly for n ≥ CA(x), A>
n is always empty.

Proposition 3.12. Let A,B ∈ M(X) and n ∈ Z+. Then (A ◦ B)
>
n = A>

n · B>n for
every n < CA(x).

Proof. Let x ∈ (A ◦ B)
>
n

⇐⇒ CA◦B(x) > n

⇐⇒
∨

x=ab (CA(a)
∧
CB(b)) > n

⇐⇒ CA(ao)
∧
CB(bo) > n for some ao, bo ∈ X such that x = aobo

⇐⇒ CA(ao) > n and CB(bo) > n

⇐⇒ ao ∈ A>
n and bo ∈ B>n

⇐⇒ x = aobo ∈ A>
n . B>n . �

4. Multisemigroup and ideals

Definition 4.1. Let a map · : X ×X −→ X be a composition law such that (X, ·)
forms a semigroup. A multiset A constructed from X is called a multisemigroup, if

CA(ab) = CA(a)
∧
CA(b) ∀ a, b ∈ X.

Particularly, if CA(x) = 1, ∀ x ∈ X, such a multisemigroup is called a semigroup.
Undeniably, every semigroup is a multisemigroup in an obvious manner, however,
not every multisemigroup is a semigroup. The set of all multisemigroups over a
semigroup X is denoted by MS(X).

Example 4.2. Let X = {0, 1, 2, 3, 4, 5} be a semigroup with the multiplication (See
the below table). Let ti ∈ N≥0, 0 ≤ i ≤ 2 be such that t0 > t1 > t2. Define a
multiset

CA : X −→ N≥0 as follows :

CA(0) = t0, CA(1) = CA(5) = t1 , CA(2) = CA(3) = CA(4) = t2.

Then clearly, A is a multisemigroup of X. However, if CA(5) < t2, then A is not a
multisemigroup of X.
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. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 1 1 1
2 0 1 2 3 1 1
3 0 1 1 1 2 3
4 0 1 4 5 1 1
5 0 1 1 1 4 5

Theorem 4.3. Let A ∈M(X). Then A ∈MS(X) if and only if A ◦ A v A.

Proof. Let A ∈ MS(X) and a ∈ X. If a 6= xy for any x, y ∈ X, then CA◦A(a) =
0 ≤ CA(a). If such exists, let a = xy for some x, y ∈ X. Then

CA◦A(a) =
∨

a=xy

{CA(x)
∧
CA(y)}

≤
∨

a=xy

{CA(xy)}

=
∨
{CA(a)} = CA(a).

Thus A ◦ A v A.
Conversely, let A ◦ A v A and x, y ∈ X. Then xy ∈ X. Let a = xy. Then

CA(xy) = CA(a) ≥ CA◦A(a)

=
∨

a=xy

{CA(x)
∧
CA(y)}

≥ CA(x)
∧
CA(y).

Thus A ∈MS(X). �

Theorem 4.4. Let X be a semigroup with identity e. If A ∈ MS(X) such that
CA(e) ≥ CA(a) for all a ∈ X, then A ◦ A = A.

Proof. For any a ∈ X, we have

CA◦A(a) =
∨

a=xy

{CA(x)
∧
CA(y)}

=
∨

a=ae

{CA(a)
∧
CA(e)}

≥ CA(a)
∧
CA(e)

= CA(a).

�

This shows that A v A ◦ A. Since A ◦ A v A by Theorem 4.1, we have that
A ◦ A = A.
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Remark 4.5. It follows from Definition 3.2 and Theorem 4.3 that Am = A
∀ m ∈ Z+.

Theorem 4.6. Let A,B ∈MS(X). Then A
⋂
B ∈MS(X).

Proof. Let A,B ∈MS(X) and x, y ∈ X. Then

CA
⋂
B(xy) = CA(xy)

∧
CB(xy)

≥
[
CA(x)

∧
CA(y)

]∧[
CB(x)

∧
CB(y)

]
=

[
CA(x)

∧
CB(x)

]∧[
CA(y)

∧
CB(y)

]
= CA

⋂
B(x) ∧ CA⋂

B(y).

Thus A
⋂
B ∈MS(X). �

Remark 4.7. Let {Ai : i ∈ I} be a non-empty family of multisemigroups over a
semigroup X. Then

⋂
i∈I Ai is a multisemigroup over X.

The union of any two multisemigroups may not be a multisemigroup as is shown
in the following.

Example 4.8. By Example 4.1, letA = [1, 2, 4]3,2,2 and B = [1, 3]2,1. ThenA
⋃
B =

[1, 2, 3, 4]3,2,1,2. Clearly, CA
⋃
B(4.3) = CA

⋃
B(5) = 0 � 1 = CA

⋃
B(4) ∧ CA⋃

B(3).

Proposition 4.9. Let X be a left zero semigroup. If A ∈MS(X) such that CA(x) >
CA(y) and also interchangeably satisfies the inequality, then A is a constant function.

Proof. Let x, y ∈ X. Then xy = x and yx = y. Thus

CA(x) = CA(xy)

≥ CA(y) (CA(x) > CA(y))

= CA(yx)

≥ CA(x). (CA(y) > CA(x))

So CA(x) = CA(y) for all x, y ∈ X. Hence the proof is complete.
Similarly, we can prove for right zero semigroup. �

Remark 4.10. If A ∈ MS(X) with a fixed element a ∈ X and setting xy = a for
all x, y ∈ X, then CA(xy) = CA(yx) for all x, y ∈ X.

Definition 4.11. Let X be a semigroup with identity e and A ∈ MS(X). Then
the subsemigroup Ae is a constant function defined as follows:

Ae = {x ∈ X | CA(x) = CA(e)}.
Proposition 4.12. Let X be a semigroup with identity e and A,B ∈MS(X). Then
Ae ∩ Be ⊆ (A ∩ B)e.

Proof. Let x ∈ Ae ∩ Be. Then x ∈ Ae and x ∈ Be.
=⇒ CA(x) = CA(e) ∀ x ∈ X and CB(x) = CB(e) ∀ x ∈ X
=⇒ CA(x)

∧
CB(x) = CA(e)

∧
CB(e) ∀ x ∈ X

=⇒ CA∩B(x) = CA∩B(e) ∀ x ∈ X
=⇒ x ∈ (A ∩ B)e.
Thus Ae ∩ Be ⊆ (A ∩ B)e. �
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Theorem 4.13. Let A ∈M(X). Then A ∈MS(X) if and only if every An 6= ∅ is
a subsemigroup of X.

Proof. Let A ∈MS(X) and x, y ∈ An ∀ n ∈ Z+. Then CA(x) ≥ n and CA(y) ≥ n.
It follows from Definition 4.1 that CA(xy) ≥ CA(x)

∧
CA(y) ≥ n. Thus xy ∈ An.

So An is a subsemigroup of X.
Conversely, let n ∈ Z+ be such that An 6= ∅ and An is a subsemigroup of

X. Assume that CA(xy) � CA(x)
∧
CA(y). Then there exist n0 ∈ Z+ such that

CA(xy) < n0 ≤ CA(x)
∧
CA(y) for some n0 ∈ Z+ implies x, y ∈ An0 but xy /∈ An0 .

This is a contradiction. Thus the proof is complete. �

Proposition 4.14. Let A ∈MS(X1) and B ∈MS(X2). Then
A× B ∈MS(X1 ×X2).

Proof. Let (x1, y1), (x2, y2) ∈ X1 ×X2. Then

CA×B((x1, y1), (x2, y2)) = CA×B(x1x2, y1y2)

= CA(x1x2)
∧
CB(y1y2)

≥
(
CA(x1)

∧
CA(x2)

)∧(
CB(y1)

∧
CB(y2)

)
=

(
CA(x1)

∧
CB(y1)

)∧(
CA(x2)

∧
CB(y2)

)
= CA×B(x1, y1)

∧
CA×B(x2, y2).

Thus A× B ∈MS(X1 ×X2). �

Remark 4.15. If A1, ...,Ak are multisemigroups over X1, ..., Xk respectively, then
A1 × ...×Ak is a multisemigroups over X1 × ...×Xk.

Theorem 4.16. Let A ∈MS(X1) and B ∈MS(X2). If A = B, then A×B = B×A.

Proof. Suppose A = B and x, y ∈ X1. Then

CA×B(x, y) = CA(x)
∧
CB(y)

= CB(x)
∧
CA(y)

= CB×A(x, y).

Thus A× B = B ×A.
�

However, the converse problem above does not hold. For example, let

CA×B(x, y) = {CA(x)
∧
CB(y) | x ∈ X1, y ∈ X2}

and

CB×A(y, x) = {CB(y)
∧
CA(x) | x ∈ X1, y ∈ X2}.

Then

CA×B(x, y) = CB×A(y, x).

Thus we obtain A× B = B ×A but A 6= B, if x 6= y.
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Definition 4.17. Let X be a semigroup and A be a multisemigroup over X. A
submultisemigroup J of A is called a left multi-ideal of A, if CJ (ab) ≥ CJ (b) ∀ a, b ∈
X. Analogously, J is called a right multi-ideal of A, if CJ (ab) ≥ CJ (a).

Equivalently, a submultisemigroup J of A is called a left (right) multi-ideal, if
A ◦ J v J (J ◦ A v J ).

A submultisemigroup J of A is called a multi-ideal, if it is a left and a right
multi-ideal of A.

Remark 4.18. (1) The union of any collection of left(right) multi-ideals of A
is a left(right) multi-ideal of A.

(2) The product of two left(right) multi-ideals of A is a left(right) multi-ideal
of A.

(3) The intersection of any collection of left(right) multi-ideals of A is also a
left(right) multi-ideal of A.

(4) If J and K are two left(right) multi-ideals of A, then J ∩ K is a left(right)
multi-ideal of A.

(5) If X is a right zero semigroup, then J is a left multi-ideal of A. However,
J is a right multi-ideal of A if X is a left zero semigroup.

(6) The intersection of a left multi-ideal and a right multi-ideal of A need not
be a multi-ideal of A.

Example 4.19. Let X = {1, 2, 3, 4, 5} be a semigroup with the following multipli-
cation table below:

. 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 3 3 5
4 1 1 3 4 5
5 1 1 3 3 5

Let A = [1, 2, 3, 4, 5]5,3,2,1,4 and J = [1, 3, 4, 5]4,2,1,3 imply that

CJ (1) = 4, CJ (2) = 0, CJ (3) = 2, CJ (4) = 1, CJ (5) = 3.

Then it is easy to verify that J is a multi ideal of A.

Proposition 4.20. Let X be a semigroup. Then every left(right) multi-ideal is a
multisemigroup.

Proof. Let J be a left(right) multi-ideal of A. Since J < A, we get

J ◦ J v A ◦ J (J ◦ A) .

Then J ◦ J v A ◦ J (J ◦ A) v J . Thus J ◦ J v J . �

The converse of the preceding Proposition may not be true in general. For ex-
ample, let X = {ε, α, β, γ} be a semigroup with the following multiplication table
below:

Let J = [ε, α, β, γ]3,2,3,1 and let A = [ε, α, β, γ]4,2,3,2. Then it is easy to ver-
ify that J is a multisemigroup over X but it is not a left multi-ideal of A, since
CJ (γβ) = CJ (α) = 2 � 3 = CJ (β).
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. ε α β γ
ε ε ε ε ε
α ε ε ε ε
β ε ε ε α
γ ε ε α β

Proposition 4.21. Let X be a semigroup. Then J is a left multi-ideal of A if and
only if A ◦ J v J .

Proof. Let J be a left multi-ideal of A and a ∈ X. If a 6= xy for any x, y ∈ X, then
it is obvious that A ◦ J v J . Suppose a = xy for some x, y ∈ X. Then

CA◦J (a) =
∨

a=xy

{CA(x)
∧
CJ (y)}

=
∨

a=xy

{CJ (y)}

≤
∨

a=xy

{CJ (xy)}

=
∨
{CJ (a)} = CJ (a).

Thus A ◦ J v J .
Conversely, let A ◦ J v J and x, y ∈ X. Then xy ∈ X. Let a = xy. Then

CJ (xy) = CJ (a) ≥ CA◦J (a)

=
∨

a=xy

{CA(x)
∧
CJ (y)}

≥ CA(x)
∧
CJ (y)

= CJ (y).

Thus J is a left multi-ideal of A.
Similarly, we can prove for right multi-ideal of A. �

Remark 4.22. Let X be a commutative semigroup. If J is a submultisemigroup
of A, then A ◦ J = J ◦ A v J .

Proposition 4.23. Let X be a semigroup. If J and K are two left(right) multi-
ideals of A, then J ×K is a left (right) multi-ideal of A×A.

Proof. Let (x1, x2), (y1, y2) ∈ X ×X. Then

CJ×K((x1, x2), (y1, y2)) = CJ×K(x1y1, x2y2)

= CJ×K(x1y1)
∧
CJ×K(x2y2)

≥ CJ (y1)
∧
CK(y2)

= CJ×K(y1, y2).
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Similarly,

CJ×K((x1, x2), (y1, y2)) = CJ×K(x1y1, x2y2)

= CJ×K(x1y1)
∧
CJ×K(x2y2)

≥ CJ (x1)
∧
CK(x2)

= CJ×K(x1, x2).

�

Proposition 4.24. Let X be a semigroup. Then J is a left multi-ideal of A if and
only if J × J is a left multi-ideal of A×A.

Proof. Let J be a submultisemigroup of A. If J is a left multi-ideal of A, then by
Proposition 4.23, J × J is a left multi-ideal of A×A.

Conversely, suppose J × J is a left multi-ideal of A × A and x1, x2, y1, y2 ∈ X.
Then

CJ (x1y1)
∧
CJ (x2y2) = CJ×J (x1y1, x2y2)

= CJ×J ((x1, x2), (y1, y2))

≥ CJ (y1, y2)

= CJ (y1)
∧
CJ (y2).

Now, setting x1 = x, x2 = a, y1 = y and y2 = a such that aa = a in the above
inequality and noticing that CJ (a) ≥ CJ (x) ∀ x ∈ X, we have CJ (xy) ≥ CJ (y).
Thus J is a left multi-ideal of A. �

Similarly, we can prove for right multi-ideal of A.

Proposition 4.25. Let X be a left zero semigroup. If J is a left multi-ideal of A,
then CJ (x) = CJ (y) for all x, y ∈ X.

Proof. Let x, y ∈ X. Then xy = x and yx = y. Thus

CJ (x) = CJ (xy)

≥ CJ (y)

= CJ (yx)

≥ CJ (x).

So CJ (x) = CJ (y) for all x, y ∈ X.
�

Similarly, we can prove for right multi-ideal of A over a right zero semigroup.

Proposition 4.26. Let X be a semigroup and E(X) be the set of all idempotent
elements of X such that ab = a and ba = b. If J is a left multi-ideal of A, then
CJ (a) = CJ (b) for all a, b ∈ E(X).
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Proof. Suppose a, b ∈ E(X). Then ab = a and ba = b. Thus

CJ (a) = CJ (ab)

≥ CJ (b)

= CJ (ba)

≥ CJ (a).

So CJ (a) = CJ (b). �

Similarly, we can prove for right multi-ideal of A.

Proposition 4.27. Let X be a semigroup. If J is a right multi-ideal and K is a
left multi-ideal of A, then J ◦ K v J ∩ K.

Proof. Let J and K be a right multi-ideal and a left multi-ideal of A, and a ∈ X. If
a 6= xy for any x, y ∈ X, then CJ◦K(a) = 0 ≤ CJ∩K(a). Suppose a = xy for some
x, y ∈ X. Then

CJ◦K(a) =
∨

a=xy

{CJ (x)
∧
CK(y)}

≤
∨

a=xy

{CJ (xy)
∧
CK(xy)}

= CJ (a)
∧
CK(a)

= CJ∩K(a).

Thus J ◦ K v J ∩ K. �

Proposition 4.28. Let X be a semigroup. If J is a multi-ideal of A and B is a
submultisemigroup of A, then B ∩ (A ◦ J ) (B ∩ (J ◦ A)) is a multi-ideal of multi-
semigroup B.

Proof. Suppose J is a left multi-ideal of A and B v A. Then we have

B ◦ (B ∩ (A ◦ J )) = (B ◦ B) ∩ (B ◦ (A ◦ J )) v B ∩ (A ◦ J ) .

Thus B ∩ (A ◦ J ) is a left multi-ideal of B. Also, we get

(B ∩ (J ◦ A)) ◦ B = (B ◦ B) ∩ ((J ◦ A) ◦ B) v B ∩ (J ◦ A) .

So B ∩ (J ◦ A) is a right multi-ideal of B. �

Proposition 4.29. Let X be a semigroup. If J is a left multi-ideal of A, then
CJ (an) ≤ CJ (a1+n), ∀ n ∈ Z+.

Proof. For any n ∈ Z+, we have

CJ (a1+n) ≥ CA◦J (a1+n)

=
∨

a1+n=xy

{CA(x)
∧
CJ (y)}

≥ CA(a)
∧
CJ (an)

= CJ (an).

Then the result holds. �
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Similarly, we can prove for right multi-ideal of A.

Proposition 4.30. Let X be a semigroup. If J is a left(right) multi-ideal of A,
then every non-empty Jn of J is a left(right) ideal of X.

Proof. Suppose Jn 6= ∅. Let a, b ∈ Jn ∀ n ∈ Z+. Then CJ (a) ≥ n and CJ (b) ≥ n
imply CJ (ab) ≥ CJ (a)

∧
CJ (b) ≥ n. Thus ab ∈ Jn. So Jn is a subsemigroup

of X. Now, let x ∈ X and a ∈ Jn ∀ n ∈ Z+. Then CJ (xa) ≥ CJ (a) ≥ n
(CJ (ax) ≥ CJ (a) ≥ n). Thus Jn is a left (right) ideal of X. �

Proposition 4.31. Let X be a semigroup. If J is a left(right) multi-ideal of A,
then every non-empty J>

n of J is a left(right) ideal of X.

Proof. Assume that J is left multi-ideal of A. Let J>
n 6= ∅ be strong n-level sets of

J . We show that J>
n is a left ideal of X. Suppose, if possible, J>

n is not a left ideal
of X. Then X · J>

n * J>
n . This implies that there exists z ∈ X · J>

n but z /∈ J>
n .

Thus let z = xy0 for some y0 ∈ J>
n and x ∈ X. Since y0 ∈ J>

n , CJ (y0) > n. So
CJ (z) = CJ (xy0) ≥ CJ (y0) > n. Hence, z ∈ J>

n , which is a contradiction. This
shows that J>

n is a left ideal of X. �

Remark 4.32. The non-empty Jn, J>
n of J may not necessarily be an ideal of X.

Proposition 4.33. Let X be a semigroup. Suppose J is a left(right) multi-ideal of
A. Then two n-level left(right) ideals Jn1

,Jn2
of J with n1 < n2 are equal if and

only if there is no x ∈ X such that n1 ≤ CJ (x) < n2.

Proof. Assume that Jn1 = Jn2 for n1 < n2 and if there exists x ∈ X such that
n1 ≤ CJ (x) < n2, then Jn2

⊂ Jn1
. This is a contradiction.

Conversely, suppose there is no x ∈ X such that n1 ≤ CJ (x) < n2. We have that
n1 < n2 implies Jn2

⊆ Jn1
. If x ∈ Jn1

, then CJ (x) ≥ n1. Since CJ (x) ≮ n2, we
have CJ (x) ≥ n2 or x ∈ Jn2 . Thus Jn1 = Jn2 . So the result holds. �

Proposition 4.34. Let J be a left(right) multi-ideal of A. If n1, n2 ∈ Im(J) such
that Jn1

= Jn2
, then n1 = n2.

Proof. Assume that n1 6= n2, say n1 < n2. Then there exists x ∈ X such that
CJ (x) = n1 < n2. Thus x ∈ Jn1 and x /∈ Jn2 . So Jn1 6= Jn2 , a contradiction.
Hence the result holds. �

Definition 4.35. Let X be a semigroup and A ∈MS(X). The smallest left(right)
multi-ideal of A containing J is called the left(right) multi-ideal of A generated by
J .

By Remark 4.18 (3), it follows that the intersection of all multi-ideals of A con-
taining J is a multi-ideal generated by J .

Proposition 4.36. Let X be a semigroup. Then J ∪ A ◦ J is the left multi-ideal
of A generated by J .
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Proof. Let {Hi}i∈I be the collection of all left multi-ideals of A containing J . Since
CHi(y) ≤ CHi(xy), we get

CA◦Hi
(a) =

∨
a=xy

(
CA(x)

∧
CHi

(y)
)

≤
∨

a=xy

CHi
(xy)

= CHi(a).

Since A◦Hi v Hi for each i ∈ I, A◦J v
⋂

i∈I Hi. As a result, J ∪A◦J v
⋂

i∈I Hi.
Since A is a multisemigroup, A ◦ A v A. Then we have

A◦(J ∪A◦J ) = A◦J ∪A◦(A ◦ J ) = A◦J ∪(A ◦ A)◦J v A◦J ∪A◦J v J ∪A◦J .

Moreover, we get

CJ∪A◦J (ab) ≥ CA◦(J∪A◦J )(ab) =
∨

ab=xy

(
CA(x)

∧
CJ∪A◦J (y)

)
≥ CA(a)

∧
CJ∪A◦J (b)

= CJ∪A◦J (b).

Thus J ∪ A ◦ J is a left multi-ideal of A containing J , that is,

⋂
i∈I
Hi v J ∪A ◦ J .

So
⋂

i∈I Hi = J ∪ A ◦ J . �

Similarly, we can prove for right multi-ideal of A generated by J .

Proposition 4.37. Let X be a semigroup. Then J ∪A ◦ J ∪ J ◦A∪A ◦ J ◦A is
the multi-ideal of A generated by J .

Proof. Let {Hi}i∈I be the collection of all multi-ideals of A containing J . We can
show A◦J v

⋂
i∈I Hi and J ◦A v

⋂
i∈I Hi by the same way as shown in Proposition
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4.36. Since A ◦Hi ◦ A = (A ◦Hi) ◦ A, we have

CA◦Hi◦A(a) =
∨

a=xy

(
CA◦Hi

(x)
∧
CA(y)

)
=

∨
a=xy

(( ∨
x=pq

(
CA(p)

∧
CHi

(q)
))∧

CA(y)

)

=
∨

a=xy

( ∨
x=pq

CHi
(q)

)

≤
∨

a=xy

( ∨
x=pq

CHi
(pq)

)
=

∨
a=xy

(CHi(x))

≤
∨

a=xy

(CHi
(xy)) = CHi

(a).

Since A ◦ J ◦ A v
⋂

i∈I Hi for each i ∈ I, we have

J ∪ A ◦ J ∪ J ◦ A ∪ A ◦ J ◦ A v
⋂
i∈I
Hi.

Since A is a multisemigroup, we get
A ◦ (J ∪ A ◦ J ∪ J ◦ A ∪ A ◦ J ◦ A)

= A ◦ J ∪ A ◦ (A ◦ J ) ∪ A ◦ (J ◦ A) ∪ A ◦ (A ◦ J ◦ A)
= A ◦ J ∪ (A ◦ AR) ◦ J ∪ A ◦ J ◦ A ∪ (A ◦ A) ◦ J ◦ A
v J ∪A ◦ J ∪ J ◦ A ∪ A ◦ J ◦ A.

Moreover, we have

CJ∪A◦J∪J◦A∪A◦J◦A(ab) ≥ CA◦(J∪A◦J∪J◦A∪A◦J◦A)(ab)

=
∨

ab=xy

(
CA(x)

∧
CJ∪A◦J∪J◦A∪A◦J◦A(y)

)
≥ CA(a)

∧
CJ∪A◦J∪J◦A∪A◦J◦A(b)

= CJ∪A◦J∪J◦A∪A◦J◦A(b).

Then J ∪A◦J ∪J ◦A∪A◦J ◦A is a left multi-ideal of A. Similarly, we can show that
J ∪A◦J ∪J ◦A∪A◦J ◦A is a right multi-ideal of A. Thus J ∪A◦J ∪J ◦A∪A◦J ◦A
is a multi-ideal of A containing J , that is,

⋂
i∈I Hi v J ∪A◦J ∪J ◦A∪A◦J ◦A.

So
⋂

i∈I Hi = J ∪ A ◦ J ∪ J ◦ A ∪ A ◦ J ◦ A. �

Example 4.38. Let X = {a, b, c, d, e} be a semigroup with the following multiplica-
tion (See the below table). Let A = [a, b, c, d, e]7,6,5,4,5 and J = [a, b, c, d, e]3,2,1,4,5.
Then

CA◦J (a) =
∨

a=xy

{CA(x)
∧
CJ (y)}

=
∨
{CJ (a), CJ (c)} = 3.
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. a b c d e
a a d a d e
b e b c e e
c c b c b e
d e d a e e
e e e e e e

Similarly, we can easily check that that
CA◦J (b) = CA◦J (d) = 4, CA◦J (c) = 3, CJ◦A(a) = CJ◦A(d) = 4,
CJ◦A(b) = CJ◦A(c) = 2, CA◦J (e) = CJ◦A(e) = 5.

Also, we get

CA◦J◦A(a) =
∨

a=xy

{CA(x)
∧
CJ◦A(y)}

=
∨
{CJ◦A(a), CJ◦A(c).} = 4

We can analogously show that

CA◦J◦A(b) = CA◦J◦A(c) = CA◦J◦A(d) = 4, CA◦J◦A(e) = 5.

Let G = J ∪ A ◦ J ∪ J ◦ A ∪ A ◦ J ◦ A. Then we have

CG(a) = CG(b) = CG(c) = CG(d) = 4, CG(e) = 5.

It is easily checked that G is a multi-ideal ofA. Let K be a multi-ideal ofA containing
J . Then CK(a) = CK(dc) ≥ CK(d) ≥ CJ (d) = 4 = CG(a). Similarly, we can show
that CG(b) ≤ CK(b), CG(c) ≤ CK(c), CG(d) ≤ CK(d), and CG(e) ≤ CK(e). Thus
G = J ∪A ◦ J ∪J ◦A∪A ◦ J ◦A such that CG(a) = CG(b) = CG(c) = CG(d) = 4,
and CG(e) = 5 is the multi-ideal generated by J .

5. Conclusion

Using multiset theory, we introduced the concept of multisemigroups and left(right)
multi-ideals, and several properties were investigated. In addition, we discussed the
relationships between multisemigroups and left(right) multi-ideals, and showed by
an example that every multisemigroup is not a left(right) multi-ideal. Finally, we
described multi-ideals generated by multisets.
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