Annals of Fuzzy Mathematics and Informatics Volume 22, No. 2, (October 2021) pp. 205-222 ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.2.205

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On ideal structure of multisemigroups

Johnson Awolola, Musa Ibrahim

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 22, No. 2, October 2021

Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 2, (October 2021) pp. 205-222
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.2.205
@IFMII
(c) Research Institute for Basic Science, Wonkwang University
http://ribs.wonkwang.ac.kr

On ideal structure of multisemigroups

Johnson Awolola, Musa Ibrahim

Received 31 May 2021; Revised 11 July 2021; Accepted 8 August 2021

Abstract

The paper at first briefly delineates some properties of multisets. The notion of multisemigroups and left(right) multi-ideals in multiset framework are introduced and several properties are investigated. Relationships between multisemigroups and left(right) multi-ideals are discussed. Characterizations of left(right) multi-deals, and multi-ideals generated by multisets are also considered.

2020 AMS Classification: 20N25, 03E72
Keywords: Multisemigroup, Left (right) multi-ideal, Multi-ideal generated by a multiset.

Corresponding Author: J. A. Awolola (remsonjay@yahoo.com)

1. Introduction

The development of multiset theory has provided an avenue to generalize several basic notions of group theory and algebra in general. Multisets are extension of classical sets, which accommodate repeated elements unlike the classical sets that wholly exclude repetition of elements. For more details, we refer the readers to [1, 2, 3].

Semigroups play an important role in many areas of mathematics, for example, coding and language theory, automata theory, combinatorics and mathematical analysis. Generalization of semigroups owing to classical structures has been studied by many authors. Among others are the notion of left almost semigroups (LA-semigroups) introduced by Kazim and Naseeruddin [4]. The structure is also known as AG-groupoid and modular groupoid and has a variety of applications in topology, matrices, flock theory, finite mathematics and geometry. In 2013, Akram et al. [5] discussed some properties of (m, n)-ideals in a locally associative LAsemigroup. Gulistan et al. [6] introduced H_{v}-LA-semigroups and showed that every LA-semihypergroup is an H_{v}-LA-semigroup. Kudryavtseva and Mazorchuk [7] was
motivated by the appearance of multivalued structures and proposed multisemigroups as an extension of semigroups. Forsberg [8] presented multisemigroup with multistructures. Very recently, Chinram et al. [9] presented necessary and sufficient conditions for elements in semigroups of partial transformations to be left or right magnifiers.

The algebraic extensions of a semigroup in non-classical structures have also been studied. Fuzzy semigroups were introduced by Kuroki [10], which is a generalization of classical semigroups. Extensive studies in this direction have been carried by several researchers (See [11] for more details). Shabir and Ali [12] defined soft semigroup and its substructures. In 2015, Khan et al. [13] defined the concept of generalized cubic subsemigroups (ideals) of a semigroup and investigated some of its related properties.

Motivated by semigroup theory, the present paper introduces multisemigroups depicting multiset perspective as different from the concept of multisemigroups discussed by [8] and [7] and investigates some properties analogous to semigroup concept.

2. Preliminaries

A non empty set X together with a binary associative operation "." is called a semigroup. A semigroups is said to be commutative, if $x y=y x$ for all $x, y \in X$. An element $1 \in X$ is called an identity, if for all $x \in X$, we have $1 x=x 1=x$. A semigroup containing such an identity element is called a monoid. A monoid in which, for each $x \in X$ there exists a unique $x^{-1} \in X$ such that $x x^{-1}=x^{-1} x=1$ is called a group.

Unlike a group, a semigroup does not necessarily contain an identity element. We denote the monoid obtained from the semigroup X by adjoining an identity element 1 by X^{1}. It is routine to verify that $X^{1}=X \cup\{1\}$ is a monoid. Identity elements are necessarily unique.

A semigroup X is said to be left (right) zero, if $y \in X$ satisfies $y x=y(x y=y)$ for all $x \in X$. If X does not have a zero element, we may adjoin one and obtain a new semigroup $X^{0}=X \cup\{0\}$ which satisfies $x 0=0 x=0^{2}=0$ for all $x \in X$.

An idempotent semigroup is a system of elements closed under an associative multiplication such that, for every element x of the semigroup $X, x^{2}=x$. One-sided identity and zero elements are idempotent.

A subset $S \subseteq X$ is called a subsemigroup of X, denoted $S \leq X$, if S forms a semigroup under the operation inherited from X. A non-empty subsemigroup S satisfying $x y \in S$ for all $x \in X$ and $y \in S$ is called a left ideal. A right ideal is a subsemigroup S satisfying $y x \in S$ for all $x \in X$ and $y \in S$. A subsemigroup which is both a left and right ideal is called a two-sided ideal or simply an ideal for short.

A semigroup X is said to be left (right) cancellative, provided that $x z=y z \Longrightarrow$ $x=y(z x=z y \Longrightarrow x=y)$ for all $x, y, z \in X$.

If X is both left and right cancellative, then it is said to be cancellative.

3. Multiset properties

Definition 3.1 ([14]). A multiset \mathcal{A} is a countable set X together with a function $C_{\mathcal{A}}: X \longrightarrow \mathbb{N}_{\geq 0}=\mathbb{N} \cup\{0\}$ that defines the count or multiplicity of the elements of X in \mathcal{A}. An expedient notation of \mathcal{A} drawn from $X=\left\{x_{1}, . ., x_{n}\right\}$ is $\left[x_{1}, . ., x_{n}\right]_{C_{\mathcal{A}}\left(x_{1}\right), \ldots, C_{\mathcal{A}}\left(x_{n}\right)}$ such that $C_{\mathcal{A}}\left(x_{i}\right)$ is the number of times x_{i} occurs in $\mathcal{A},(i=1, \ldots, n)$.

The customary set operations can be carried over to multisets. Let \mathcal{A} and \mathcal{B} be multisets over a semigroup X. Then
(i) $\mathcal{A} \sqsubseteq \mathcal{B} \Longleftrightarrow C_{\mathcal{A}}(x) \leq C_{\mathcal{B}}(x) \forall x \in X$.
(ii) $\mathcal{A}=\mathcal{B} \Longleftrightarrow C_{\mathcal{A}}(x)=C_{\mathcal{B}}(x) \forall x \in X$.
(iii) $\mathcal{A} \bigcup \mathcal{B} \Longleftrightarrow C_{\mathcal{A} \cup \mathcal{B}}(x)=C_{\mathcal{A}}(x) \bigvee C_{\mathcal{B}}(x) \forall x \in X$.
(iv) $\mathcal{A} \bigcap \mathcal{B} \Longleftrightarrow C_{\mathcal{A} \cap \mathcal{B}}(x)=C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{B}}(x) \forall x \in X$.

Definition 3.2. Let \mathcal{A} and \mathcal{B} be two multisets over a semigroup X such that the count functions are $C_{\mathcal{A}}: X \longrightarrow \mathbb{N}_{\geq 0}$ and $C_{\mathcal{B}}: X \longrightarrow \mathbb{N}_{\geq 0}$ respectively. Then the product of \mathcal{A} and \mathcal{B}, denoted by $\mathcal{A} \circ \mathcal{B}$, is defined by: for all $x \in X$,

$$
C_{\mathcal{A} \circ \mathcal{B}}(x)=\left\{\begin{array}{c}
\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \wedge C_{\mathcal{B}}(z)\right\}, \\
0, \quad \text { if } \exists y, z \in X \text { such that } x=y z, \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

Following Definition 3.2 terminology, the m times multiplication of the multiset \mathcal{A} can be defined as $\mathcal{A}^{m}=\mathcal{A} \circ \mathcal{A} \circ \ldots \circ \mathcal{A}$ and its count function is

$$
C_{\mathcal{A}^{m}}(x)=\left\{\begin{array}{c}
\bigvee\left\{\bigwedge_{i \in\{1, . ., m\}} C_{\mathcal{A}}\left(x_{i}\right)\right\}, \text { if } \exists x_{i} \in X \text { such that } \prod_{i=1}^{m} x_{i}=x, \\
0, \quad \text { otherwise }
\end{array}\right.
$$

We denote the set of all multisets over a semigroup X by $M(X)$.
Proposition 3.3. Let $\mathcal{A}, \mathcal{B}_{i} \in M(X)$ and $i=1, . ., k$. Then
(1) $\mathcal{A} \bigcup\left(\bigcap_{i=1}^{k} \mathcal{B}_{i}\right)=\bigcap_{i=1}^{k}\left(\mathcal{A} \bigcup \mathcal{B}_{i}\right)$,
(2) $\mathcal{A} \bigcap\left(\bigcup_{i=1}^{k} \mathcal{B}_{i}\right)=\bigcup_{i=1}^{k}\left(\mathcal{A} \bigcap \mathcal{B}_{i}\right)$,
(3) $\mathcal{A} \circ\left(\bigcup_{i=1}^{k} \mathcal{B}_{i}\right)=\bigcup_{i=1}^{k}\left(\mathcal{A} \circ \mathcal{B}_{i}\right)$,
(4) $\mathcal{A} \circ\left(\bigcap_{i=1}^{k} \mathcal{B}_{i}\right) \sqsubseteq \bigcap_{i=1}^{k}\left(\mathcal{A} \circ \mathcal{B}_{i}\right)$.

Proof. (1)-(2) immediate.
(3) Let $x \in X$. If $x \neq y z$, then $C_{\mathcal{A} \circ\left(\cup_{i=1}^{k} \mathcal{B}_{i}\right)}(x)=0=C_{\bigcup_{i=1}^{k}\left(\mathcal{A} \circ \mathcal{B}_{i}\right)}(x)$. Thus we have

$$
\mathcal{A} \circ\left(\bigcup_{i=1}^{k} \mathcal{B}_{i}\right)=\bigcup_{i=1}^{k}\left(\mathcal{A} \circ \mathcal{B}_{i}\right)
$$

If $x=y z$ for some $x, y \in X$, then

$$
\begin{aligned}
C_{\mathcal{A} \circ\left(\bigcup_{i=1}^{k} \mathcal{B}_{i}\right)}(x) & =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\bigcup_{i=1}^{k} \mathcal{B}_{i}}(z)\right\} \\
& =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge\left(\bigvee_{i=1}^{k} C_{\mathcal{B}_{i}}(z)\right)\right\} \\
& =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge\left(C_{\mathcal{B}_{1}}(z) \bigvee \ldots \bigvee C_{\mathcal{B}_{n}}(z)\right)\right\} \\
& =\left(\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\mathcal{B}_{1}}(z)\right\}\right) \bigvee \ldots \bigvee\left(\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\mathcal{B}_{n}}(z)\right\}\right) \\
& =\bigvee_{i=1}^{k} C_{\mathcal{A o}^{\prime}}(x)=C_{\bigcup_{i=1}^{k}\left(\mathcal{A}_{\circ} \mathcal{B}_{i}\right)}(x) .
\end{aligned}
$$

Thus $\mathcal{A} \circ\left(\bigcup_{i=1}^{k} \mathcal{B}_{i}\right)=\bigcup_{i=1}^{k}\left(\mathcal{A} \circ \mathcal{B}_{i}\right)$.
(4) Let $x \in X$. If $x \neq y z$ for any $y, z \in X$, then the result is obvious. Otherwise, there exist $y, z \in X$ such that $x=y z$. Thus

$$
\begin{aligned}
C_{\mathcal{A}\left(\cap_{i=1}^{k} \mathcal{B}\right)}(x) & =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\bigcap_{i=1}^{k} \mathcal{B}}(z)\right\} \\
& =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge\left(\bigwedge_{i=1}^{k} C_{\mathcal{B}_{i}}(z)\right)\right\} \\
& =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge\left(C_{\mathcal{B}_{1}}(z) \bigwedge \cdots \bigwedge C_{\mathcal{B}_{n}}(z)\right)\right\} \\
& \leq\left(\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\mathcal{B}_{1}}(z)\right\}\right) \bigwedge \ldots \bigwedge\left(\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\mathcal{B}_{n}}(z)\right\}\right) \\
& =\bigwedge_{i=1}^{k} C_{\mathcal{A}^{\prime} \mathcal{B}_{i}}=C_{\bigcap_{i=1}^{k}\left(\mathcal{A o}^{\prime}\right)}(x) .
\end{aligned}
$$

So $\mathcal{A} \circ\left(\bigcap_{i=1}^{k} \mathcal{B}_{i}\right) \sqsubseteq \bigcap_{i=1}^{k}\left(\mathcal{A} \circ \mathcal{B}_{i}\right)$.
Proposition 3.4. Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in M(X)$. If $\mathcal{A} \sqsubseteq \mathcal{B}$, then we get

$$
\mathcal{A} \circ \mathcal{C} \sqsubseteq \mathcal{B} \circ \mathcal{C} \text { and } \mathcal{C} \circ \mathcal{A} \sqsubseteq \mathcal{C} \circ \mathcal{B} .
$$

Proof. Let $x \in X$. If $x \neq y z$ for any $y, z \in X$, then $C_{\mathcal{A} \circ \mathcal{C}}(x)=0 \leq C_{\mathcal{B} \circ \mathcal{C}}(x)$. Otherwise,

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{B}}(x) & =\bigvee_{x=y z}\left\{C_{\mathcal{A}}(y) \bigwedge C_{\mathcal{C}}(z)\right\} \\
& \leq \bigvee_{x=y z}\left\{C_{\mathcal{B}}(y) \bigwedge C_{\mathcal{C}}(z)\right\} \quad\left[\text { Since } C_{\mathcal{A}}(y) \leq C_{\mathcal{B}}(y)\right] \\
& =C_{\mathcal{B} \circ \mathcal{C}}(x) .
\end{aligned}
$$

Thus $\mathcal{A} \circ \mathcal{C} \sqsubseteq \mathcal{B} \circ \mathcal{C}$.
Similarly, we may prove $C_{\mathcal{C} \circ \mathcal{A}} \sqsubseteq C_{\mathcal{C} \circ \mathcal{B}}$.
Remark 3.5. If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in M(X)$ such that $x y=y$ for every $x, y \in X$, then $\mathcal{A} \circ \mathcal{C}=\mathcal{B} \circ \mathcal{C}=\mathcal{C}$. Analogously, $\mathcal{C} \circ \mathcal{A}=\mathcal{C} \circ \mathcal{B}=\mathcal{C}$ is such that $x y=x$ for every $x, y \in X$.

Proposition 3.6. Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in M(X)$. Then $\mathcal{A} \circ \mathcal{C}=\mathcal{B} \circ \mathcal{C} \nRightarrow \mathcal{A}=\mathcal{B}$ and $\mathcal{C} \circ \mathcal{A}=\mathcal{C} \circ \mathcal{B} \nRightarrow \mathcal{A}=\mathcal{B}$.

Proof. The collection of multisets over a semigroup X is not cancellative because there may exists $y \in X$ such that $C_{\mathcal{A}}(y)<C_{\mathcal{B}}(y)$.
Proposition 3.7. Let $\mathcal{A}, \mathcal{B} \in M(X)$. If $\mathcal{A} \sqsubseteq \mathcal{B}$, then $\mathcal{A}^{m} \sqsubseteq \mathcal{B}^{m}$.
Proof. Let $x \in X$. Suppose $x \neq \prod_{i=1}^{m} x_{i}$. Since $\mathcal{A} \sqsubseteq \mathcal{B}$ implies $C_{\mathcal{A}}(x) \leq C_{\mathcal{B}}(x)$ for all $x \in X, C_{\mathcal{A}^{m}}(x)=0 \leq C_{\mathcal{B}^{m}}(x)$. Suppose $x=\prod_{i=1}^{m} x_{i}$ for some $x_{i} \in X$. Then we have

$$
\bigvee\left\{\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{A}}\left(x_{i}\right) \mid x=\prod_{i=1}^{m} x_{i}\right\} \leq \bigvee\left\{\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{B}}\left(x_{i}\right) \mid x=\prod_{i=1}^{m} x_{i}\right\}
$$

Thus $\mathcal{A}^{m} \sqsubseteq \mathcal{B}^{m}$.
Definition 3.8. Let \mathcal{A} and \mathcal{B} be multisets over semigroups X_{1} and X_{2} respectively. The Cartesian product of \mathcal{A} and \mathcal{B}, denoted by $\mathcal{A} \times \mathcal{B}$, is a function

$$
C_{\mathcal{A} \times \mathcal{B}}: X_{1} \times X_{2} \longrightarrow \mathbb{N}_{\geq 0}
$$

defined by

$$
C_{\mathcal{A} \times \mathcal{B}}(x, y)=\left\{C_{\mathcal{A}}(x) \wedge C_{\mathcal{B}}(y) \mid x \in X_{1}, y \in X_{2}\right\} .
$$

Proposition 3.9. Let $\mathcal{A}, \mathcal{B}, \mathcal{C} \in M(X)$. Then
(1) $\mathcal{A} \times(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \times \mathcal{B}) \cup(\mathcal{A} \times \mathcal{C})$,
(2) $\mathcal{A} \times(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \times \mathcal{B}) \cap(\mathcal{A} \times \mathcal{C})$.

Proof. Straightforward.
Proposition 3.10. Let $\mathcal{A} \in M\left(X_{1}\right)$ and $\mathcal{B} \in M\left(X_{2}\right)$. Then $(\mathcal{A} \times \mathcal{B})^{m}=\mathcal{A}^{m} \times \mathcal{B}^{m}$.
Proof. Let $(x, y) \in X_{1} \times X_{2}$. Suppose $(x, y) \neq \prod_{i=1}^{m}\left(x_{i}, y_{i}\right)$. Then we get

$$
C_{(\mathcal{A} \times \mathcal{B})^{m}}(x, y)=0=C_{\mathcal{A}^{m}}(x, y) \times C_{\mathcal{B}^{m}}(x, y) .
$$

Thus $(\mathcal{A} \times \mathcal{B})^{m}=\mathcal{A}^{m} \times \mathcal{B}^{m}$. Suppose $(x, y)=\prod_{i=1}^{m}\left(x_{i}, y_{i}\right)$ for some $\left(x_{i}, y_{i}\right) \in$ $X_{1} \times X_{2}$. Then

$$
\begin{aligned}
& C_{(\mathcal{A} \times \mathcal{B})^{m}}(x, y) \\
&= \bigvee\left\{\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{A} \times \mathcal{B}}\left(x_{i}, y_{i}\right) \mid \prod_{i=1}^{m}\left(x_{i}, y_{i}\right)=(x, y), x_{i} \in X_{1}, y_{i} \in X_{2}\right\} \\
&= \bigvee\left\{\bigwedge_{i \in\{1, \ldots, m\}}\left(C_{\mathcal{A}}\left(x_{i}\right) \bigwedge C_{\mathcal{B}}\left(y_{i}\right)\right) \mid \prod_{i=1}^{m}\left(x_{i}, y_{i}\right)=(x, y), x_{i} \in X_{1}, y_{i} \in X_{2}\right\} \\
&= \bigvee\left\{\left(\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{A}}\left(x_{i}\right)\right) \wedge\left(\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{B}}\left(y_{i}\right)\right) \mid \prod_{i=1}^{m} x_{i}=x,\right. \\
&= \bigvee\left\{\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{A}}\left(x_{i}\right) \mid x_{i} \in X_{1}, \prod_{i=1}^{m} x_{i}=x\right\} \\
&\left.\prod_{i=1}^{m} y_{i}=y, x_{i} \in X_{1}, y_{i} \in X_{2}\right\} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \wedge \bigvee\left\{\bigwedge_{i \in\{1, \ldots, m\}} C_{\mathcal{B}}\left(y_{i}\right) \mid y_{i} \in X_{2}, \prod_{i=1}^{m} y_{i}=y\right\} \\
= & C_{\mathcal{A}^{m}}(x) \bigwedge_{\mathcal{B}^{m}}(y) \\
= & C_{\mathcal{A}^{m} \times \mathcal{B}^{m}}(x, y) .
\end{aligned}
$$

Thus $(\mathcal{A} \times \mathcal{B})^{m}=\mathcal{A}^{m} \times \mathcal{B}^{m}$.
Definition 3.11. Let \mathcal{A} be a multiset over a set X and $n \in \mathbb{Z}^{+}$. Then the sets

$$
\mathcal{A}_{n}=\left\{x \in X \mid C_{\mathcal{A}}(x) \geq n\right\} \text { and } \mathcal{A}_{n}^{>}=\left\{x \in X \mid C_{\mathcal{A}}(x)>n\right\}
$$

are called n-level sets and strong n-level sets of \mathcal{A}.
Clearly for $n \geq C_{\mathcal{A}}(x), \mathcal{A}_{n}^{>}$is always empty.
Proposition 3.12. Let $A, B \in M(X)$ and $n \in \mathbb{Z}^{+}$. Then $(\mathcal{A} \circ \mathcal{B})_{n}^{>}=\mathcal{A}_{n}^{>} \cdot \mathcal{B}_{n}^{>}$for every $n<C_{\mathcal{A}}(x)$.
Proof. Let $x \in(\mathcal{A} \circ \mathcal{B})_{n}^{>}$

$$
\begin{aligned}
& \Longleftrightarrow C_{\mathcal{A} \circ \mathcal{B}}(x)>n \\
& \Longleftrightarrow \bigvee_{x=a b}\left(C_{\mathcal{A}}(a) \wedge C_{\mathcal{B}}(b)\right)>n \\
& \Longleftrightarrow C_{\mathcal{A}}\left(a_{o}\right) \wedge C_{\mathcal{B}}\left(b_{o}\right)>n \text { for some } a_{o}, b_{o} \in X \text { such that } x=a_{o} b_{o} \\
& \Longleftrightarrow C_{\mathcal{A}}\left(a_{o}\right)>n \text { and } C_{\mathcal{B}}\left(b_{o}\right)>n \\
& \Longleftrightarrow a_{o} \in \mathcal{A}_{n}^{>} \text {and } b_{o} \in \mathcal{B}_{n}^{>} \\
& \Longleftrightarrow x=a_{o} b_{o} \in \mathcal{A}_{n}^{>} \cdot \mathcal{B}_{n}^{>} .
\end{aligned}
$$

4. Multisemigroup and ideals

Definition 4.1. Let a map $\cdot: X \times X \longrightarrow X$ be a composition law such that (X, \cdot) forms a semigroup. A multiset \mathcal{A} constructed from X is called a multisemigroup, if

$$
C_{\mathcal{A}}(a b)=C_{\mathcal{A}}(a) \bigwedge C_{\mathcal{A}}(b) \forall a, b \in X .
$$

Particularly, if $C_{\mathcal{A}}(x)=1, \forall x \in X$, such a multisemigroup is called a semigroup. Undeniably, every semigroup is a multisemigroup in an obvious manner, however, not every multisemigroup is a semigroup. The set of all multisemigroups over a semigroup X is denoted by $M S(X)$.
Example 4.2. Let $X=\{0,1,2,3,4,5\}$ be a semigroup with the multiplication (See the below table). Let $t_{i} \in \mathbb{N}_{\geq 0}, 0 \leq i \leq 2$ be such that $t_{0}>t_{1}>t_{2}$. Define a multiset

$$
\begin{gathered}
C_{\mathcal{A}}: X \longrightarrow \mathbb{N}_{\geq 0} \text { as follows : } \\
C_{\mathcal{A}}(0)=t_{0}, C_{\mathcal{A}}(1)=C_{\mathcal{A}}(5)=t_{1}, C_{\mathcal{A}}(2)=C_{\mathcal{A}}(3)=C_{\mathcal{A}}(4)=t_{2} .
\end{gathered}
$$

Then clearly, \mathcal{A} is a multisemigroup of X. However, if $C_{\mathcal{A}}(5)<t_{2}$, then \mathcal{A} is not a multisemigroup of X.

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	1	1	1	1
2	0	1	2	3	1	1
3	0	1	1	1	2	3
4	0	1	4	5	1	1
5	0	1	1	1	4	5

Theorem 4.3. Let $\mathcal{A} \in M(X)$. Then $\mathcal{A} \in M S(X)$ if and only if $\mathcal{A} \circ \mathcal{A} \sqsubseteq \mathcal{A}$.
Proof. Let $\mathcal{A} \in M S(X)$ and $a \in X$. If $a \neq x y$ for any $x, y \in X$, then $C_{\mathcal{A} \circ \mathcal{A}}(a)=$ $0 \leq C_{A}(a)$. If such exists, let $a=x y$ for some $x, y \in X$. Then

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{A}}(a) & =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y)\right\} \\
& \leq \bigvee_{a=x y}\left\{C_{\mathcal{A}}(x y)\right\} \\
& =\bigvee\left\{C_{\mathcal{A}}(a)\right\}=C_{\mathcal{A}}(a) .
\end{aligned}
$$

Thus $\mathcal{A} \circ \mathcal{A} \sqsubseteq \mathcal{A}$.
Conversely, let $\mathcal{A} \circ \mathcal{A} \sqsubseteq \mathcal{A}$ and $x, y \in X$. Then $x y \in X$. Let $a=x y$. Then

$$
\begin{aligned}
C_{\mathcal{A}}(x y)=C_{\mathcal{A}}(a) & \geq C_{\mathcal{A} \circ \mathcal{A}}(a) \\
& =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y)\right\} \\
& \geq C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y)
\end{aligned}
$$

Thus $\mathcal{A} \in M S(X)$.
Theorem 4.4. Let X be a semigroup with identity e. If $\mathcal{A} \in M S(X)$ such that $C_{\mathcal{A}}(e) \geq C_{\mathcal{A}}(a)$ for all $a \in X$, then $\mathcal{A} \circ \mathcal{A}=\mathcal{A}$.

Proof. For any $a \in X$, we have

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{A}}(a) & =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y)\right\} \\
& =\bigvee_{a=a e}\left\{C_{\mathcal{A}}(a) \bigwedge C_{\mathcal{A}}(e)\right\} \\
& \geq C_{\mathcal{A}}(a) \bigwedge C_{\mathcal{A}}(e) \\
& =C_{\mathcal{A}}(a) .
\end{aligned}
$$

This shows that $\mathcal{A} \sqsubseteq \mathcal{A} \circ \mathcal{A}$. Since $\mathcal{A} \circ \mathcal{A} \sqsubseteq \mathcal{A}$ by Theorem 4.1, we have that $\mathcal{A} \circ \mathcal{A}=\mathcal{A}$.

Remark 4.5. It follows from Definition 3.2 and Theorem 4.3 that $\mathcal{A}^{m}=\mathcal{A}$ $\forall m \in \mathbb{Z}^{+}$.

Theorem 4.6. Let $\mathcal{A}, \mathcal{B} \in M S(X)$. Then $\mathcal{A} \bigcap \mathcal{B} \in M S(X)$.
Proof. Let $\mathcal{A}, \mathcal{B} \in M S(X)$ and $x, y \in X$. Then

$$
\begin{aligned}
C_{\mathcal{A} \cap \mathcal{B}}(x y) & =C_{\mathcal{A}}(x y) \bigwedge C_{\mathcal{B}}(x y) \\
& \geq\left[C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y)\right] \bigwedge\left[C_{\mathcal{B}}(x) \bigwedge C_{\mathcal{B}}(y)\right] \\
& =\left[C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{B}}(x)\right] \bigwedge\left[C_{\mathcal{A}}(y) \bigwedge C_{\mathcal{B}}(y)\right] \\
& =C_{\mathcal{A} \cap \mathcal{B}}(x) \wedge C_{\mathcal{A} \cap \mathcal{B}}(y) .
\end{aligned}
$$

Thus $\mathcal{A} \bigcap \mathcal{B} \in M S(X)$.
Remark 4.7. Let $\left\{\mathcal{A}_{i}: i \in I\right\}$ be a non-empty family of multisemigroups over a semigroup X. Then $\bigcap_{i \in I} \mathcal{A}_{i}$ is a multisemigroup over X.

The union of any two multisemigroups may not be a multisemigroup as is shown in the following.
Example 4.8. By Example 4.1, let $\mathcal{A}=[1,2,4]_{3,2,2}$ and $\mathcal{B}=[1,3]_{2,1}$. Then $\mathcal{A} \bigcup \mathcal{B}=$ $[1,2,3,4]_{3,2,1,2}$. Clearly, $C_{\mathcal{A} \cup \mathcal{B}}(4.3)=C_{\mathcal{A} \cup \mathcal{B}}(5)=0 \nsupseteq 1=C_{\mathcal{A} \cup \mathcal{B}}(4) \wedge C_{\mathcal{A} \cup \mathcal{B}}(3)$.
Proposition 4.9. Let X be a left zero semigroup. If $\mathcal{A} \in M S(X)$ such that $C_{\mathcal{A}}(x)>$ $C_{\mathcal{A}}(y)$ and also interchangeably satisfies the inequality, then \mathcal{A} is a constant function.
Proof. Let $x, y \in X$. Then $x y=x$ and $y x=y$. Thus

$$
\begin{array}{rlrl}
C_{\mathcal{A}}(x) & =C_{\mathcal{A}}(x y) & & \\
& \geq C_{\mathcal{A}}(y) & \left(C_{\mathcal{A}}(x)>C_{\mathcal{A}}(y)\right) \\
& =C_{\mathcal{A}}(y x) & & \\
& \geq C_{\mathcal{A}}(x) . & \left(C_{\mathcal{A}}(y)>C_{\mathcal{A}}(x)\right)
\end{array}
$$

So $C_{\mathcal{A}}(x)=C_{\mathcal{A}}(y)$ for all $x, y \in X$. Hence the proof is complete.
Similarly, we can prove for right zero semigroup.
Remark 4.10. If $\mathcal{A} \in M S(X)$ with a fixed element $a \in X$ and setting $x y=a$ for all $x, y \in X$, then $C_{\mathcal{A}}(x y)=C_{\mathcal{A}}(y x)$ for all $x, y \in X$.
Definition 4.11. Let X be a semigroup with identity e and $\mathcal{A} \in M S(X)$. Then the subsemigroup \mathcal{A}_{e} is a constant function defined as follows:

$$
\mathcal{A}_{e}=\left\{x \in X \mid C_{\mathcal{A}}(x)=C_{\mathcal{A}}(e)\right\} .
$$

Proposition 4.12. Let X be a semigroup with identity e and $\mathcal{A}, \mathcal{B} \in M S(X)$. Then $\mathcal{A}_{e} \cap \mathcal{B}_{e} \subseteq(\mathcal{A} \cap \mathcal{B})_{e}$.
Proof. Let $x \in \mathcal{A}_{e} \cap \mathcal{B}_{e}$. Then $x \in \mathcal{A}_{e}$ and $x \in \mathcal{B}_{e}$.
$\Longrightarrow C_{\mathcal{A}}(x)=C_{\mathcal{A}}(e) \forall x \in X$ and $C_{\mathcal{B}}(x)=C_{\mathcal{B}}(e) \forall x \in X$
$\Longrightarrow C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{B}}(x)=C_{\mathcal{A}}(e) \bigwedge C_{\mathcal{B}}(e) \forall x \in X$
$\Longrightarrow C_{\mathcal{A} \cap \mathcal{B}}(x)=C_{\mathcal{A} \cap \mathcal{B}}(e) \forall x \in X$
$\Longrightarrow x \in(\mathcal{A} \cap \mathcal{B})_{e}$.
Thus $\mathcal{A}_{e} \cap \mathcal{B}_{e} \subseteq(\mathcal{A} \cap \mathcal{B})_{e}$.

Theorem 4.13. Let $\mathcal{A} \in M(X)$. Then $\mathcal{A} \in M S(X)$ if and only if every $\mathcal{A}_{n} \neq \varnothing$ is a subsemigroup of X.

Proof. Let $\mathcal{A} \in M S(X)$ and $x, y \in \mathcal{A}_{n} \forall n \in \mathbb{Z}^{+}$. Then $C_{\mathcal{A}}(x) \geq n$ and $C_{\mathcal{A}}(y) \geq n$. It follows from Definition 4.1 that $C_{\mathcal{A}}(x y) \geq C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y) \geq n$. Thus $x y \in \mathcal{A}_{n}$. So \mathcal{A}_{n} is a subsemigroup of X.

Conversely, let $n \in \mathbb{Z}^{+}$be such that $\mathcal{A}_{n} \neq \varnothing$ and \mathcal{A}_{n} is a subsemigroup of X. Assume that $C_{\mathcal{A}}(x y) \nsupseteq C_{\mathcal{A}}(x) \wedge C_{\mathcal{A}}(y)$. Then there exist $n_{0} \in \mathbb{Z}^{+}$such that $C_{\mathcal{A}}(x y)<n_{0} \leq C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{A}}(y)$ for some $n_{0} \in \mathbb{Z}^{+}$implies $x, y \in \mathcal{A}_{n_{0}}$ but $x y \notin \mathcal{A}_{n_{0}}$. This is a contradiction. Thus the proof is complete.

Proposition 4.14. Let $\mathcal{A} \in M S\left(X_{1}\right)$ and $\mathcal{B} \in M S\left(X_{2}\right)$. Then $\mathcal{A} \times \mathcal{B} \in M S\left(X_{1} \times X_{2}\right)$.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$. Then

$$
\begin{aligned}
C_{\mathcal{A} \times \mathcal{B}}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =C_{\mathcal{A} \times \mathcal{B}}\left(x_{1} x_{2}, y_{1} y_{2}\right) \\
& =C_{\mathcal{A}}\left(x_{1} x_{2}\right) \bigwedge C_{\mathcal{B}}\left(y_{1} y_{2}\right) \\
& \geq\left(C_{\mathcal{A}}\left(x_{1}\right) \bigwedge C_{\mathcal{A}}\left(x_{2}\right)\right) \bigwedge\left(C_{\mathcal{B}}\left(y_{1}\right) \bigwedge C_{\mathcal{B}}\left(y_{2}\right)\right) \\
& =\left(C_{\mathcal{A}}\left(x_{1}\right) \bigwedge C_{\mathcal{B}}\left(y_{1}\right)\right) \bigwedge\left(C_{\mathcal{A}}\left(x_{2}\right) \bigwedge C_{\mathcal{B}}\left(y_{2}\right)\right) \\
& =C_{\mathcal{A} \times \mathcal{B}}\left(x_{1}, y_{1}\right) \bigwedge C_{\mathcal{A} \times \mathcal{B}}\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Thus $\mathcal{A} \times \mathcal{B} \in M S\left(X_{1} \times X_{2}\right)$.
Remark 4.15. If $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are multisemigroups over X_{1}, \ldots, X_{k} respectively, then $\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{k}$ is a multisemigroups over $X_{1} \times \ldots \times X_{k}$.

Theorem 4.16. Let $\mathcal{A} \in M S\left(X_{1}\right)$ and $\mathcal{B} \in M S\left(X_{2}\right)$. If $\mathcal{A}=\mathcal{B}$, then $\mathcal{A} \times \mathcal{B}=\mathcal{B} \times \mathcal{A}$.
Proof. Suppose $\mathcal{A}=\mathcal{B}$ and $x, y \in X_{1}$. Then

$$
\begin{aligned}
C_{\mathcal{A} \times \mathcal{B}}(x, y) & =C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{B}}(y) \\
& =C_{\mathcal{B}}(x) \bigwedge C_{\mathcal{A}}(y) \\
& =C_{\mathcal{B} \times \mathcal{A}}(x, y)
\end{aligned}
$$

Thus $\mathcal{A} \times \mathcal{B}=\mathcal{B} \times \mathcal{A}$.

However, the converse problem above does not hold. For example, let

$$
C_{\mathcal{A} \times \mathcal{B}}(x, y)=\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{B}}(y) \mid x \in X_{1}, y \in X_{2}\right\}
$$

and

$$
C_{\mathcal{B} \times \mathcal{A}}(y, x)=\left\{C_{\mathcal{B}}(y) \bigwedge C_{\mathcal{A}}(x) \mid x \in X_{1}, y \in X_{2}\right\}
$$

Then

$$
C_{\mathcal{A} \times \mathcal{B}}(x, y)=C_{\mathcal{B} \times \mathcal{A}}(y, x)
$$

Thus we obtain $\mathcal{A} \times \mathcal{B}=\mathcal{B} \times \mathcal{A}$ but $\mathcal{A} \neq \mathcal{B}$, if $x \neq y$.

Definition 4.17. Let X be a semigroup and \mathcal{A} be a multisemigroup over X. A submultisemigroup \mathcal{J} of \mathcal{A} is called a left multi-ideal of \mathcal{A}, if $C_{\mathcal{J}}(a b) \geq C_{\mathcal{J}}(b) \forall a, b \in$ X. Analogously, \mathcal{J} is called a right multi-ideal of \mathcal{A}, if $C_{\mathcal{J}}(a b) \geq C_{\mathcal{J}}(a)$.

Equivalently, a submultisemigroup \mathcal{J} of \mathcal{A} is called a left (right) multi-ideal, if $\mathcal{A} \circ \mathcal{J} \sqsubseteq \mathcal{J}(\mathcal{J} \circ \mathcal{A} \sqsubseteq \mathcal{J})$.

A submultisemigroup \mathcal{J} of \mathcal{A} is called a multi-ideal, if it is a left and a right multi-ideal of \mathcal{A}.
Remark 4.18. (1) The union of any collection of left(right) multi-ideals of \mathcal{A} is a left(right) multi-ideal of \mathcal{A}.
(2) The product of two left(right) multi-ideals of \mathcal{A} is a left(right) multi-ideal of \mathcal{A}.
(3) The intersection of any collection of left(right) multi-ideals of \mathcal{A} is also a left(right) multi-ideal of \mathcal{A}.
(4) If \mathcal{J} and \mathcal{K} are two left(right) multi-ideals of \mathcal{A}, then $\mathcal{J} \cap \mathcal{K}$ is a left(right) multi-ideal of \mathcal{A}.
(5) If X is a right zero semigroup, then \mathcal{J} is a left multi-ideal of \mathcal{A}. However, \mathcal{J} is a right multi-ideal of \mathcal{A} if X is a left zero semigroup.
(6) The intersection of a left multi-ideal and a right multi-ideal of \mathcal{A} need not be a multi-ideal of \mathcal{A}.

Example 4.19. Let $X=\{1,2,3,4,5\}$ be a semigroup with the following multiplication table below:

.	1	2	3	4	5
1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	3	3	5
4	1	1	3	4	5
5	1	1	3	3	5

Let $\mathcal{A}=[1,2,3,4,5]_{5,3,2,1,4}$ and $\mathcal{J}=[1,3,4,5]_{4,2,1,3}$ imply that

$$
C_{\mathcal{J}}(1)=4, C_{\mathcal{J}}(2)=0, C_{\mathcal{J}}(3)=2, C_{\mathcal{J}}(4)=1, C_{\mathcal{J}}(5)=3
$$

Then it is easy to verify that \mathcal{J} is a multi ideal of \mathcal{A}.
Proposition 4.20. Let X be a semigroup. Then every left(right) multi-ideal is a multisemigroup.
Proof. Let \mathcal{J} be a $\operatorname{left(right)~multi-ideal~of~} \mathcal{A}$. Since $\mathcal{J} \sqsubset \mathcal{A}$, we get

$$
\mathcal{J} \circ \mathcal{J} \sqsubseteq \mathcal{A} \circ \mathcal{J}(\mathcal{J} \circ \mathcal{A})
$$

Then $\mathcal{J} \circ \mathcal{J} \sqsubseteq \mathcal{A} \circ \mathcal{J}(\mathcal{J} \circ \mathcal{A}) \sqsubseteq \mathcal{J}$. Thus $\mathcal{J} \circ \mathcal{J} \sqsubseteq \mathcal{J}$.
The converse of the preceding Proposition may not be true in general. For example, let $X=\{\varepsilon, \alpha, \beta, \gamma\}$ be a semigroup with the following multiplication table below:
Let $\mathcal{J}=[\varepsilon, \alpha, \beta, \gamma]_{3,2,3,1}$ and let $\mathcal{A}=[\varepsilon, \alpha, \beta, \gamma]_{4,2,3,2}$. Then it is easy to verify that \mathcal{J} is a multisemigroup over X but it is not a left multi-ideal of \mathcal{A}, since $C_{\mathcal{J}}(\gamma \beta)=C_{\mathcal{J}}(\alpha)=2 \nsucceq 3=C_{\mathcal{J}}(\beta)$.

\cdot	ε	α	β	γ
ε	ε	ε	ε	ε
α	ε	ε	ε	ε
β	ε	ε	ε	α
γ	ε	ε	α	β

Proposition 4.21. Let X be a semigroup. Then \mathcal{J} is a left multi-ideal of \mathcal{A} if and only if $\mathcal{A} \circ \mathcal{J} \sqsubseteq \mathcal{J}$.

Proof. Let \mathcal{J} be a left multi-ideal of \mathcal{A} and $a \in X$. If $a \neq x y$ for any $x, y \in X$, then it is obvious that $\mathcal{A} \circ \mathcal{J} \sqsubseteq \mathcal{J}$. Suppose $a=x y$ for some $x, y \in X$. Then

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{J}}(a) & =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J}}(y)\right\} \\
& =\bigvee_{a=x y}\left\{C_{\mathcal{J}}(y)\right\} \\
& \leq \bigvee_{a=x y}\left\{C_{\mathcal{J}}(x y)\right\} \\
& =\bigvee\left\{C_{\mathcal{J}}(a)\right\}=C_{\mathcal{J}}(a)
\end{aligned}
$$

Thus $\mathcal{A} \circ \mathcal{J} \sqsubseteq \mathcal{J}$.
Conversely, let $\mathcal{A} \circ \mathcal{J} \sqsubseteq \mathcal{J}$ and $x, y \in X$. Then $x y \in X$. Let $a=x y$. Then

$$
\begin{aligned}
C_{\mathcal{J}}(x y)=C_{\mathcal{J}}(a) & \geq C_{\mathcal{A} \circ \mathcal{J}}(a) \\
& =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J}}(y)\right\} \\
& \geq C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J}}(y) \\
& =C_{\mathcal{J}}(y)
\end{aligned}
$$

Thus \mathcal{J} is a left multi-ideal of \mathcal{A}.
Similarly, we can prove for right multi-ideal of \mathcal{A}.
Remark 4.22. Let X be a commutative semigroup. If \mathcal{J} is a submultisemigroup of \mathcal{A}, then $\mathcal{A} \circ \mathcal{J}=\mathcal{J} \circ \mathcal{A} \sqsubseteq \mathcal{J}$.

Proposition 4.23. Let X be a semigroup. If \mathcal{J} and \mathcal{K} are two left(right) multiideals of \mathcal{A}, then $\mathcal{J} \times \mathcal{K}$ is a left (right) multi-ideal of $\mathcal{A} \times \mathcal{A}$.

Proof. Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X \times X$. Then

$$
\begin{aligned}
C_{\mathcal{J} \times \mathcal{K}}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & =C_{\mathcal{J} \times \mathcal{K}}\left(x_{1} y_{1}, x_{2} y_{2}\right) \\
& =C_{\mathcal{J} \times \mathcal{K}}\left(x_{1} y_{1}\right) \bigwedge C_{\mathcal{J} \times \mathcal{K}}\left(x_{2} y_{2}\right) \\
& \geq C_{\mathcal{J}}\left(y_{1}\right) \bigwedge C_{\mathcal{K}}\left(y_{2}\right) \\
& =C_{\mathcal{J} \times \mathcal{K}}\left(y_{1}, y_{2}\right) . \\
& 215
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
C_{\mathcal{J} \times \mathcal{K}}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & =C_{\mathcal{J} \times \mathcal{K}}\left(x_{1} y_{1}, x_{2} y_{2}\right) \\
& =C_{\mathcal{J} \times \mathcal{K}}\left(x_{1} y_{1}\right) \bigwedge C_{\mathcal{J} \times \mathcal{K}}\left(x_{2} y_{2}\right) \\
& \geq C_{\mathcal{J}}\left(x_{1}\right) \bigwedge C_{\mathcal{K}}\left(x_{2}\right) \\
& =C_{\mathcal{J} \times \mathcal{K}}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Proposition 4.24. Let X be a semigroup. Then \mathcal{J} is a left multi-ideal of \mathcal{A} if and only if $\mathcal{J} \times \mathcal{J}$ is a left multi-ideal of $\mathcal{A} \times \mathcal{A}$.

Proof. Let \mathcal{J} be a submultisemigroup of \mathcal{A}. If \mathcal{J} is a left multi-ideal of \mathcal{A}, then by Proposition 4.23, $\mathcal{J} \times \mathcal{J}$ is a left multi-ideal of $\mathcal{A} \times \mathcal{A}$.

Conversely, suppose $\mathcal{J} \times \mathcal{J}$ is a left multi-ideal of $\mathcal{A} \times \mathcal{A}$ and $x_{1}, x_{2}, y_{1}, y_{2} \in X$. Then

$$
\begin{aligned}
C_{\mathcal{J}}\left(x_{1} y_{1}\right) \bigwedge C_{\mathcal{J}}\left(x_{2} y_{2}\right) & =C_{\mathcal{J} \times \mathcal{J}}\left(x_{1} y_{1}, x_{2} y_{2}\right) \\
& =C_{\mathcal{J} \times \mathcal{J}}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \\
& \geq C_{\mathcal{J}}\left(y_{1}, y_{2}\right) \\
& =C_{\mathcal{J}}\left(y_{1}\right) \bigwedge C_{\mathcal{J}}\left(y_{2}\right)
\end{aligned}
$$

Now, setting $x_{1}=x, x_{2}=a, y_{1}=y$ and $y_{2}=a$ such that $a a=a$ in the above inequality and noticing that $C_{\mathcal{J}}(a) \geq C_{\mathcal{J}}(x) \forall x \in X$, we have $C_{\mathcal{J}}(x y) \geq C_{\mathcal{J}}(y)$. Thus \mathcal{J} is a left multi-ideal of \mathcal{A}.

Similarly, we can prove for right multi-ideal of \mathcal{A}.
Proposition 4.25. Let X be a left zero semigroup. If \mathcal{J} is a left multi-ideal of \mathcal{A}, then $C_{\mathcal{J}}(x)=C_{\mathcal{J}}(y)$ for all $x, y \in X$.

Proof. Let $x, y \in X$. Then $x y=x$ and $y x=y$. Thus

$$
\begin{aligned}
C_{\mathcal{J}}(x) & =C_{\mathcal{J}}(x y) \\
& \geq C_{\mathcal{J}}(y) \\
& =C_{\mathcal{J}}(y x) \\
& \geq C_{\mathcal{J}}(x)
\end{aligned}
$$

So $C_{\mathcal{J}}(x)=C_{\mathcal{J}}(y)$ for all $x, y \in X$.

Similarly, we can prove for right multi-ideal of \mathcal{A} over a right zero semigroup.
Proposition 4.26. Let X be a semigroup and $E(X)$ be the set of all idempotent elements of X such that $a b=a$ and $b a=b$. If \mathcal{J} is a left multi-ideal of \mathcal{A}, then $C_{\mathcal{J}}(a)=C_{\mathcal{J}}(b)$ for all $a, b \in E(X)$.

Proof. Suppose $a, b \in E(X)$. Then $a b=a$ and $b a=b$. Thus

$$
\begin{aligned}
C_{\mathcal{J}}(a) & =C_{\mathcal{J}}(a b) \\
& \geq C_{\mathcal{J}}(b) \\
& =C_{\mathcal{J}}(b a) \\
& \geq C_{\mathcal{J}}(a)
\end{aligned}
$$

So $C_{\mathcal{J}}(a)=C_{\mathcal{J}}(b)$.
Similarly, we can prove for right multi-ideal of \mathcal{A}.
Proposition 4.27. Let X be a semigroup. If \mathcal{J} is a right multi-ideal and \mathcal{K} is a left multi-ideal of \mathcal{A}, then $\mathcal{J} \circ \mathcal{K} \sqsubseteq \mathcal{J} \cap \mathcal{K}$.
Proof. Let \mathcal{J} and \mathcal{K} be a right multi-ideal and a left multi-ideal of \mathcal{A}, and $a \in X$. If $a \neq x y$ for any $x, y \in X$, then $C_{\mathcal{J} \circ \mathcal{K}}(a)=0 \leq C_{\mathcal{J} \cap \mathcal{K}}(a)$. Suppose $a=x y$ for some $x, y \in X$. Then

$$
\begin{aligned}
C_{\mathcal{J} \circ \mathcal{K}}(a) & =\bigvee_{a=x y}\left\{C_{\mathcal{J}}(x) \bigwedge C_{\mathcal{K}}(y)\right\} \\
& \leq \bigvee_{a=x y}\left\{C_{\mathcal{J}}(x y) \bigwedge C_{\mathcal{K}}(x y)\right\} \\
& =C_{\mathcal{J}}(a) \bigwedge C_{\mathcal{K}}(a) \\
& =C_{\mathcal{J} \cap \mathcal{K}}(a)
\end{aligned}
$$

Thus $\mathcal{J} \circ \mathcal{K} \sqsubseteq \mathcal{J} \cap \mathcal{K}$.
Proposition 4.28. Let X be a semigroup. If \mathcal{J} is a multi-ideal of \mathcal{A} and \mathcal{B} is a submultisemigroup of \mathcal{A}, then $\mathcal{B} \cap(\mathcal{A} \circ \mathcal{J})(\mathcal{B} \cap(\mathcal{J} \circ \mathcal{A}))$ is a multi-ideal of multisemigroup \mathcal{B}.

Proof. Suppose \mathcal{J} is a left multi-ideal of \mathcal{A} and $\mathcal{B} \sqsubseteq \mathcal{A}$. Then we have

$$
\mathcal{B} \circ(\mathcal{B} \cap(\mathcal{A} \circ \mathcal{J}))=(\mathcal{B} \circ \mathcal{B}) \cap(\mathcal{B} \circ(\mathcal{A} \circ \mathcal{J})) \sqsubseteq \mathcal{B} \cap(\mathcal{A} \circ \mathcal{J})
$$

Thus $\mathcal{B} \cap(\mathcal{A} \circ \mathcal{J})$ is a left multi-ideal of \mathcal{B}. Also, we get

$$
(\mathcal{B} \cap(\mathcal{J} \circ \mathcal{A})) \circ \mathcal{B}=(\mathcal{B} \circ \mathcal{B}) \cap((\mathcal{J} \circ \mathcal{A}) \circ \mathcal{B}) \sqsubseteq \mathcal{B} \cap(\mathcal{J} \circ \mathcal{A})
$$

So $\mathcal{B} \cap(\mathcal{J} \circ \mathcal{A})$ is a right multi-ideal of \mathcal{B}.
Proposition 4.29. Let X be a semigroup. If \mathcal{J} is a left multi-ideal of \mathcal{A}, then $C_{\mathcal{J}}\left(a^{n}\right) \leq C_{\mathcal{J}}\left(a^{1+n}\right), \forall n \in \mathbb{Z}^{+}$.

Proof. For any $n \in \mathbb{Z}^{+}$, we have

$$
\begin{aligned}
C_{\mathcal{J}}\left(a^{1+n}\right) & \geq C_{\mathcal{A} \circ \mathcal{J}}\left(a^{1+n}\right) \\
& =\bigvee_{a^{1+n}=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J}}(y)\right\} \\
& \geq C_{\mathcal{A}}(a) \bigwedge C_{\mathcal{J}}\left(a^{n}\right) \\
& =C_{\mathcal{J}}\left(a^{n}\right)
\end{aligned}
$$

Then the result holds.

Similarly, we can prove for right multi-ideal of \mathcal{A}.
Proposition 4.30. Let X be a semigroup. If \mathcal{J} is a left(right) multi-ideal of \mathcal{A}, then every non-empty \mathcal{J}_{n} of \mathcal{J} is a left(right) ideal of X.

Proof. Suppose $\mathcal{J}_{n} \neq \varnothing$. Let $a, b \in \mathcal{J}_{n} \forall n \in \mathbb{Z}^{+}$. Then $C_{\mathcal{J}}(a) \geq n$ and $C_{\mathcal{J}}(b) \geq n$ imply $C_{\mathcal{J}}(a b) \geq C_{\mathcal{J}}(a) \bigwedge C_{\mathcal{J}}(b) \geq n$. Thus $a b \in \mathcal{J}_{n}$. So \mathcal{J}_{n} is a subsemigroup of X. Now, let $x \in X$ and $a \in \mathcal{J}_{n} \forall n \in \mathbb{Z}^{+}$. Then $C_{\mathcal{J}}(x a) \geq C_{\mathcal{J}}(a) \geq n$ $\left(C_{\mathcal{J}}(a x) \geq C_{\mathcal{J}}(a) \geq n\right)$. Thus \mathcal{J}_{n} is a left (right) ideal of X.

Proposition 4.31. Let X be a semigroup. If \mathcal{J} is a left(right) multi-ideal of \mathcal{A}, then every non-empty $\mathcal{J}_{n}^{>}$of \mathcal{J} is a left(right) ideal of X.

Proof. Assume that \mathcal{J} is left multi-ideal of \mathcal{A}. Let $\mathcal{J}_{n}^{>} \neq \varnothing$ be strong n-level sets of \mathcal{J}. We show that $\mathcal{J}_{n}^{>}$is a left ideal of X. Suppose, if possible, $\mathcal{J}_{n}^{>}$is not a left ideal of X. Then $X \cdot \mathcal{J}_{n}^{>} \nsubseteq \mathcal{J}_{n}^{>}$. This implies that there exists $z \in X \cdot \mathcal{J}_{n}^{>}$but $z \notin \mathcal{J}_{n}^{>}$. Thus let $z=x y_{0}$ for some $y_{0} \in \mathcal{J}_{n}^{>}$and $x \in X$. Since $y_{0} \in \mathcal{J}_{n}^{>}, C_{\mathcal{J}}\left(y_{0}\right)>n$. So $C_{\mathcal{J}}(z)=C_{\mathcal{J}}\left(x y_{0}\right) \geq C_{\mathcal{J}}\left(y_{0}\right)>n$. Hence, $z \in \mathcal{J}_{n}^{>}$, which is a contradiction. This shows that $\mathcal{J}_{n}^{>}$is a left ideal of X.

Remark 4.32. The non-empty $\mathcal{J}_{n}, \mathcal{J}_{n}^{>}$of \mathcal{J} may not necessarily be an ideal of X.
Proposition 4.33. Let X be a semigroup. Suppose \mathcal{J} is a left(right) multi-ideal of \mathcal{A}. Then two n-level left(right) ideals $\mathcal{J}_{n_{1}}, \mathcal{J}_{n_{2}}$ of \mathcal{J} with $n_{1}<n_{2}$ are equal if and only if there is no $x \in X$ such that $n_{1} \leq C_{\mathcal{J}}(x)<n_{2}$.

Proof. Assume that $\mathcal{J}_{n_{1}}=\mathcal{J}_{n_{2}}$ for $n_{1}<n_{2}$ and if there exists $x \in X$ such that $n_{1} \leq C_{\mathcal{J}}(x)<n_{2}$, then $\mathcal{J}_{n_{2}} \subset \mathcal{J}_{n_{1}}$. This is a contradiction.

Conversely, suppose there is no $x \in X$ such that $n_{1} \leq C_{\mathcal{J}}(x)<n_{2}$. We have that $n_{1}<n_{2}$ implies $\mathcal{J}_{n_{2}} \subseteq \mathcal{J}_{n_{1}}$. If $x \in \mathcal{J}_{n_{1}}$, then $C_{\mathcal{J}}(x) \geq n_{1}$. Since $C_{\mathcal{J}}(x) \nless n_{2}$, we have $C_{\mathcal{J}}(x) \geq n_{2}$ or $x \in \mathcal{J}_{n_{2}}$. Thus $\mathcal{J}_{n_{1}}=\mathcal{J}_{n_{2}}$. So the result holds.

Proposition 4.34. Let \mathcal{J} be a left(right) multi-ideal of \mathcal{A}. If $n_{1}, n_{2} \in \operatorname{Im}(J)$ such that $\mathcal{J}_{n_{1}}=\mathcal{J}_{n_{2}}$, then $n_{1}=n_{2}$.

Proof. Assume that $n_{1} \neq n_{2}$, say $n_{1}<n_{2}$. Then there exists $x \in X$ such that $C_{\mathcal{J}}(x)=n_{1}<n_{2}$. Thus $x \in \mathcal{J}_{n_{1}}$ and $x \notin \mathcal{J}_{n_{2}}$. So $\mathcal{J}_{n_{1}} \neq \mathcal{J}_{n_{2}}$, a contradiction. Hence the result holds.

Definition 4.35. Let X be a semigroup and $\mathcal{A} \in M S(X)$. The smallest left(right) multi-ideal of \mathcal{A} containing \mathcal{J} is called the left(right) multi-ideal of \mathcal{A} generated by \mathcal{J}.

By Remark 4.18 (3), it follows that the intersection of all multi-ideals of \mathcal{A} containing \mathcal{J} is a multi-ideal generated by \mathcal{J}.

Proposition 4.36. Let X be a semigroup. Then $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}$ is the left multi-ideal of \mathcal{A} generated by \mathcal{J}.

Proof. Let $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ be the collection of all left multi-ideals of \mathcal{A} containing \mathcal{J}. Since $C_{\mathcal{H}_{i}}(y) \leq C_{\mathcal{H}_{i}}(x y)$, we get

$$
\begin{aligned}
C_{\mathcal{A}^{\mathcal{H}}}(a) & =\bigvee_{a=x y}\left(C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{H}_{i}}(y)\right) \\
& \leq \bigvee_{a=x y} C_{\mathcal{H}_{i}}(x y) \\
& =C_{\mathcal{H}_{i}}(a)
\end{aligned}
$$

Since $\mathcal{A} \circ \mathcal{H}_{i} \sqsubseteq \mathcal{H}_{i}$ for each $i \in I, \mathcal{A} \circ \mathcal{J} \sqsubseteq \bigcap_{i \in I} \mathcal{H}_{i}$. As a result, $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \sqsubseteq \bigcap_{i \in I} \mathcal{H}_{i}$. since \mathcal{A} is a multisemigroup, $\mathcal{A} \circ \mathcal{A} \sqsubseteq \mathcal{A}$. Then we have
$\mathcal{A} \circ(\mathcal{J} \cup \mathcal{A} \circ \mathcal{J})=\mathcal{A} \circ \mathcal{J} \cup \mathcal{A} \circ(\mathcal{A} \circ \mathcal{J})=\mathcal{A} \circ \mathcal{J} \cup(\mathcal{A} \circ \mathcal{A}) \circ \mathcal{J} \sqsubseteq \mathcal{A} \circ \mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \sqsubseteq \mathcal{J} \cup \mathcal{A} \circ \mathcal{J}$.

Moreover, we get

$$
\begin{aligned}
C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}}(a b) \geq C_{\mathcal{A} \circ(\mathcal{J} \cup \mathcal{A} \circ \mathcal{J})}(a b) & =\bigvee_{a b=x y}\left(C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}}(y)\right) \\
& \geq C_{\mathcal{A}}(a) \bigwedge C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}}(b) \\
& =C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}}(b)
\end{aligned}
$$

Thus $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}$ is a left multi-ideal of \mathcal{A} containing \mathcal{J}, that is,

$$
\bigcap_{i \in I} \mathcal{H}_{i} \sqsubseteq \mathcal{J} \cup \mathcal{A} \circ \mathcal{J}
$$

So $\bigcap_{i \in I} \mathcal{H}_{i}=\mathcal{J} \cup \mathcal{A} \circ \mathcal{J}$.

Similarly, we can prove for right multi-ideal of \mathcal{A} generated by \mathcal{J}.

Proposition 4.37. Let X be a semigroup. Then $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$ is the multi-ideal of \mathcal{A} generated by \mathcal{J}.

Proof. Let $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ be the collection of all multi-ideals of \mathcal{A} containing \mathcal{J}. We can show $\mathcal{A} \circ \mathcal{J} \sqsubseteq \bigcap_{i \in I} \mathcal{H}_{i}$ and $\mathcal{J} \circ \mathcal{A} \sqsubseteq \bigcap_{i \in I} \mathcal{H}_{i}$ by the same way as shown in Proposition 219
4.36. Since $\mathcal{A} \circ \mathcal{H}_{i} \circ \mathcal{A}=\left(\mathcal{A} \circ \mathcal{H}_{i}\right) \circ \mathcal{A}$, we have

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{H}_{i} \circ \mathcal{A}}(a) & =\bigvee_{a=x y}\left(C_{\mathcal{A} \circ \mathcal{H}_{i}}(x) \bigwedge C_{\mathcal{A}}(y)\right) \\
& =\bigvee_{a=x y}\left(\left(\bigvee_{x=p q}\left(C_{\mathcal{A}}(p) \bigwedge C_{\mathcal{H}_{i}}(q)\right)\right) \bigwedge C_{\mathcal{A}}(y)\right) \\
& =\bigvee_{a=x y}\left(\bigvee_{x=p q} C_{\mathcal{H}_{i}}(q)\right) \\
& \leq \bigvee_{a=x y}\left(\bigvee_{x=p q} C_{\mathcal{H}_{i}}(p q)\right) \\
& =\bigvee_{a=x y}\left(C_{\mathcal{H}_{i}}(x)\right) \\
& \leq \bigvee_{a=x y}\left(C_{\mathcal{H}_{i}}(x y)\right)=C_{\mathcal{H}_{i}}(a) .
\end{aligned}
$$

Since $\mathcal{A} \circ \mathcal{J} \circ \mathcal{A} \sqsubseteq \bigcap_{i \in I} \mathcal{H}_{i}$ for each $i \in I$, we have

$$
\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A} \sqsubseteq \bigcap_{i \in I} \mathcal{H}_{i}
$$

Since \mathcal{A} is a multisemigroup, we get

$$
\begin{aligned}
& \mathcal{A} \circ(\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}) \\
= & \mathcal{A} \circ \mathcal{J} \cup \mathcal{A} \circ(\mathcal{A} \circ \mathcal{J}) \cup \mathcal{A} \circ(\mathcal{J} \circ \mathcal{A}) \cup \mathcal{A} \circ(\mathcal{A} \circ \mathcal{J} \circ \mathcal{A}) \\
= & \mathcal{A} \circ \mathcal{J} \cup\left(\mathcal{A} \circ \mathcal{A}_{\mathcal{R}}\right) \circ \mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A} \cup(\mathcal{A} \circ \mathcal{A}) \circ \mathcal{J} \circ \mathcal{A} \\
\sqsubseteq & \mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A} .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(a b) & \geq C_{\mathcal{A} \circ(\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A})}(a b) \\
& =\bigvee\left(C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(y)\right) \\
& \geq C_{\mathcal{A}}(a) \bigwedge C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(b) \\
& =C_{\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(b) .
\end{aligned}
$$

Then $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$ is a left multi-ideal of \mathcal{A}. Similarly, we can show that $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$ is a right multi-ideal of \mathcal{A}. Thus $\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$ is a multi-ideal of \mathcal{A} containing \mathcal{J}, that is, $\bigcap_{i \in I} \mathcal{H}_{i} \sqsubseteq \mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$. So $\bigcap_{i \in I} \mathcal{H}_{i}=\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$.
Example 4.38. Let $X=\{a, b, c, d, e\}$ be a semigroup with the following multiplication (See the below table). Let $\mathcal{A}=[a, b, c, d, e]_{7,6,5,4,5}$ and $\mathcal{J}=[a, b, c, d, e]_{3,2,1,4,5}$. Then

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{J}}(a) & =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J}}(y)\right\} \\
& =\bigvee\left\{C_{\mathcal{J}}(a), C_{\mathcal{J}}(c)\right\}=3
\end{aligned}
$$

.	a	b	c	d	e
a	a	d	a	d	e
b	e	b	c	e	e
c	c	b	c	b	e
d	e	d	a	e	e
e	e	e	e	e	e

Similarly, we can easily check that that

$$
\begin{aligned}
& C_{\mathcal{A} \circ \mathcal{J}}(b)=C_{\mathcal{A} \circ \mathcal{J}}(d)=4, C_{\mathcal{A} \circ \mathcal{J}}(c)=3, C_{\mathcal{J} \circ \mathcal{A}}(a)=C_{\mathcal{J} \circ \mathcal{A}}(d)=4, \\
& C_{\mathcal{J} \circ \mathcal{A}}(b)=C_{\mathcal{J} \circ \mathcal{A}}(c)=2, C_{\mathcal{A} \circ \mathcal{J}}(e)=C_{\mathcal{J} \circ \mathcal{A}}(e)=5 .
\end{aligned}
$$

Also, we get

$$
\begin{aligned}
C_{\mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(a) & =\bigvee_{a=x y}\left\{C_{\mathcal{A}}(x) \bigwedge C_{\mathcal{J} \circ \mathcal{A}}(y)\right\} \\
& =\bigvee\left\{C_{\mathcal{J} \circ \mathcal{A}}(a), C_{\mathcal{J} \circ \mathcal{A}}(c) .\right\}=4
\end{aligned}
$$

We can analogously show that

$$
C_{\mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(b)=C_{\mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(c)=C_{\mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(d)=4, C_{\mathcal{A} \circ \mathcal{J} \circ \mathcal{A}}(e)=5
$$

Let $\mathcal{G}=\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$. Then we have

$$
C_{\mathcal{G}}(a)=C_{\mathcal{G}}(b)=C_{\mathcal{G}}(c)=C_{\mathcal{G}}(d)=4, C_{\mathcal{G}}(e)=5
$$

It is easily checked that \mathcal{G} is a multi-ideal of \mathcal{A}. Let \mathcal{K} be a multi-ideal of \mathcal{A} containing \mathcal{J}. Then $C_{\mathcal{K}}(a)=C_{\mathcal{K}}(d c) \geq C_{\mathcal{K}}(d) \geq C_{\mathcal{J}}(d)=4=C_{\mathcal{G}}(a)$. Similarly, we can show that $C_{\mathcal{G}}(b) \leq C_{\mathcal{K}}(b), C_{\mathcal{G}}(c) \leq C_{\mathcal{K}}(c), C_{\mathcal{G}}(d) \leq C_{\mathcal{K}}(d)$, and $C_{\mathcal{G}}(e) \leq C_{\mathcal{K}}(e)$. Thus $\mathcal{G}=\mathcal{J} \cup \mathcal{A} \circ \mathcal{J} \cup \mathcal{J} \circ \mathcal{A} \cup \mathcal{A} \circ \mathcal{J} \circ \mathcal{A}$ such that $C_{\mathcal{G}}(a)=C_{\mathcal{G}}(b)=C_{\mathcal{G}}(c)=C_{\mathcal{G}}(d)=4$, and $C_{\mathcal{G}}(e)=5$ is the multi-ideal generated by \mathcal{J}.

5. Conclusion

Using multiset theory, we introduced the concept of multisemigroups and left(right) multi-ideals, and several properties were investigated. In addition, we discussed the relationships between multisemigroups and left(right) multi-ideals, and showed by an example that every multisemigroup is not a left(right) multi-ideal. Finally, we described multi-ideals generated by multisets.

6. Acknowledgement

The authors are grateful to the anonymous reviewers for their constructive suggestions on this paper.

References

[1] W. Blizard, The development of multiset theory, Modern Logic 1 (1991) 319-352.
[2] D. Singh, A. M. Ibrahim, T. Yohanna and JJ. N. Singh, A systematization of fundamentals of multisets, Lecturas Matematicas 29 (2008) 33-48.
[3] D. Singh, A. M. Ibrahim, T. Yohanna and J. N. Singh, An overview of the application of multisets, Novisad journal of Mathematics 33 (2) (2007) 73-92.
[4] M. A. Kazim and M. Naseeruddin, On almost semigroup, The Alig. Bull. Math. 2 (1972) 1-7.
[5] M. Akram, N. Yaqoob and M. Khan, On (m, n)-ideals in LA-semigroups, Applied Mathematical Sciences 7 (44) (2013) 2187-2191.
[6] M. Gulistan, N. Yaqoob and M. Shahzad, A note on H_{v}-LA-semigroup, University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics 77 (3) (2015) 93106.
[7] G. Kudryavsteva and V. Mazorchuk On multisemigroups, Port. Math. (N.S) 72 (1) (2015) 47-80.
[8] L. Forsberg, Multtisemigroups with multiplicities and complete ordered semi-rings, Beitr Algebra Geom. 58 (2016) 405-426.
[9] R. Chinram, S. Baupradist, N. Yaqoob and P. Petchkaew, Left and right magnifying elements in some generalized partial transformation semigroups, Communications in Algebra (2021) 1-32 doi:10.1080/00927872.2021.1890104.
[10] N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991) 203-236.
[11] J. N. Mordeson, D. S. Malik and N. Kuroki, Fuzzy semigroups, Studies in Fuzziness and Soft Computing 131 (2003) 40-313.
[12] M. Shabir and M. I. Ali, On soft ideals and generalized fuzzy ideals in semigroups, New Math. Nat. Comp. 5 (3) (2009) 599-615.
[13] M. Khan, Y. B. Jun, M. Gulistan and N. Yaqoob, The generalized version of Jun's cubic sets in semigroups, Journal of Intelligent and Fuzzy Systems 28 (2015) 947-960.
[14] A. M. Ibrahim, J. A. Awolola and A. J. Alkali, An extension of the concept of n-level sets to multisets. Ann. Fuzzy Math. Inform. 11(6) (2016) 855-862.

JOHNSON AWOLOLA (remsonjay@yahoo.com)
Department of mathematics, college of science, university of Nevşehir, postal code 50350, Nevşehir, Turkey
MUSA IBRAHIM (amibrahim@abu.edu.ng)
Department of mathemathics, faculty of physical sciences, Ahmadu Bello university, Zaria, Nigeria

