Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 3, (December 2021) pp. 239-256
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.3.239

@TFMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Numerical approximation of the quenching time for a non-Newtonian filtration equation with singular boundary flux

Camara Gninlfan Modeste, n'Guessan Koffi, Coulibaly Adama, Toure Kidjegbo Augustin

Reprinted from the
Annals of Fuzzy Mathematics and Informatics Vol. 22, No. 3, December 2021

Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 3, (December 2021) pp. 239-256
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.3.239
@FMI
© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Numerical approximation of the quenching time for a non-Newtonian filtration equation with singular boundary flux

Camara Gninlfan Modeste, n'Guessan Koffi, Coulibaly Adama, Toure Kidjegbo Augustin

Received 21 June 2021; Revised 28 July 2021; Accepted 7 August 2021
AbSTRACT. This paper concerns the study of the numerical approximation for the following initial-boundary value problem .

$$
\left\{\begin{array}{l}
u_{t}=\left(\left|u_{x}\right|^{p-2} u_{x}\right)_{x}+(1-u)^{-h}, \quad 0<x<1, t>0 \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u^{-q}(1, t), \quad t>0 \\
u(x, 0)=u_{0}(x)>0, \quad 0 \leq x \leq 1
\end{array}\right.
$$

where $p \geq 2, h>0, q>0 . u_{0}:[0,1] \rightarrow(0,1)$ and satisfies compatiblity conditions. We find some conditions under which the solution of a discrete form of above problem quenches in a finite time and estimate its discrete quenching time. We also establish the convergence of the discrete quenching time to the theoretical one when the mesh size tends to zero. Finally, we give some numerical experiments for a best illustration of our analysis.

2020 AMS Classification: $35 \mathrm{~B} 50,35 \mathrm{~K} 55,35 \mathrm{~K} 20,65 \mathrm{M} 06$
Keywords: Non-Newtonian filtration equations, Discretization, Discrete quenching time, Convergence.

Corresponding Author: Camara Gninlfan Modeste (camaragninlfan@gmail.com)

1. Introduction

In this paper, we consider the following boundary value problem

$$
\begin{gather*}
u_{t}=\left(\left|u_{x}\right|^{p-2} u_{x}\right)_{x}+(1-u)^{-h}, \quad 0<x<1, t>0, \tag{1.1}\\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u^{-q}(1, t), \quad t>0, \tag{1.2}\\
u(x, 0)=u_{0}(x)>0, \quad 0 \leq x \leq 1, \tag{1.3}
\end{gather*}
$$

where, $p \geq 2, h>0, q>0$. $u_{0}:[0,1] \rightarrow(0,1)$ and satisfies some compatibility conditions such that $u_{0}^{\prime}(0)=0, u_{0}^{\prime}(1)=-u_{0}^{-q}(1), u_{0}^{\prime}(x) \leq 0$ and $\left(\left|u_{0}^{\prime}(x)\right|^{p-2} u_{0}^{\prime}(x)\right)^{\prime}+\left(1-u_{0}(x)\right)^{-h} \geq 0,0 \leq x \leq 1$. The quenching behavior describes the phenomenon that there exists a finite time T_{q} such that the solution of the problem (1.1)-(1.3) satisfied the following definition

Definition 1.1. We say that the classical solution u of the problem (1.1)-(1.3) quenches in a finite time if there exists a finite time T_{q} such that $\|u(., t)\|_{\infty}<1$ for $t \in\left[0, T_{q}\right)$ but

$$
\lim _{t \rightarrow T_{q}}\|u(., t)\|_{\infty}=1
$$

where $\|u(., t)\|_{\infty}=\max _{0 \leq x \leq 1}|u(x, t)|$. The time T_{q} is called the quenching time of the solution u.

The problem (1.1)-(1.3) may be rewritten in the following form

$$
\begin{gather*}
u_{t}=(p-1)\left|u_{x}\right|^{p-2} u_{x x}+(1-u)^{-h}, \quad 0<x<1, t>0 \tag{1.4}\\
u_{x}(0, t)=0, \quad u_{x}(1, t)=-u^{-q}(1, t), \quad t>0 \tag{1.5}\\
u(x, 0)=u_{0}(x)>0, \quad 0 \leq x \leq 1 \tag{1.6}
\end{gather*}
$$

where, $p \geq 2, h>0, q>0$. $u_{0}:[0,1] \rightarrow(0,1)$ and satisfies some compatibility conditions such that $u_{0}^{\prime}(0)=0, u_{0}^{\prime}(1)=-u_{0}^{-q}(1), u_{0}^{\prime}(x) \leq 0$
and $(p-1)\left|u_{0}^{\prime}(x)\right|^{p-2} u_{0}^{\prime \prime}(x)+\left(1-u_{0}(x)\right)^{-h} \geq 0,0 \leq x \leq 1$. Equation (1.4) is known as the classical non-Newtonian filtration equation that incorporates the effects of nonlinear reaction source and nonlinear boundary outflux. The variable u representes the speed of the fluid flow. Kawarada first studied the quenching phenomenon for semilinear heart equation $u_{t}=u_{x x}+(1-u)^{-1}$. He obtained the results that, when the solution reaches level $u=1$, the reaction term and the time derivative blow up. Since then, the theoretical study of quenching phenomena for semilinear parabolic equations have been the subject of investigations of many researchers(See for examples $[1,2,3,4,5,6,7,8,9,10]$ and the references therein).

In the problem (1.4)-(1.6), the authors prove under certain conditions that quenching occurs in finite time and they show that the only quenching point is $x=0$. They have also established the bounds for quenching rate and the lower bound for the quenching time (See $[7,8]$).

In this paper, we are interesting in the numerical study of the phenomenon of quenching using a discrete form of the problem (1.4)-(1.6). This method of study has been used by many researchers (See $[11,12,13,14,15,16,17,18]$). We give some conditions under which the solution of the discrete form of the problem (1.4)-(1.6) quenches in finite time and estimate its discrete quinching time. We also prove that the discrete quenching time converges to the real one when the mesh size goes to zero.

This paper is organised as follows. In the next section, we give some properties concerning our discrete sheme. In section 3, under some conditions, we prove that the solution of a discrete form of the problem (1.4)-(1.6) quenches in a finite time and estimate its discrete quenching time. In section 4, we show that the quenching
time converges to the theoretical one when the mesh size goes to zero. Finally, in the last section, we give some numerical results to illustrate our analysis.

2. Properties of the discrete scheme

In this section, we give some lemmas which will be used later. We start by the construction of the semidiscrete scheme. Let $I \geq 3$ be a positive integer and let $s=1 / I$. Define the grid $x_{i}=i s, 0 \leq i \leq I$. Approximate the solution u of problem (1.4)-(1.6) by the solution $U_{s}^{(n)}=\left(U_{0}^{(n)}, U_{1}^{(n)}, \ldots, U_{I}^{(n)}\right)^{T}$ and the initial condition u_{0} by the initial condition $\varphi_{s}=\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{I}\right)^{T}$ the following discrete equations

$$
\begin{gather*}
\delta_{t} U_{i}^{(n)}=(p-1)\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{2} U_{i}^{(n)}+\left(1-U_{i}^{(n)}\right)^{-h}, 0 \leq i \leq I-1 \tag{2.1}\\
\delta_{t} U_{I}^{(n)}=(p-1)\left|\left(U^{-q}\right)_{I}^{(n)}\right|^{p-2} \delta_{*}^{2} U_{I}^{(n)}+\left(1-U_{I}^{(n)}\right)^{-h} \tag{2.2}\\
U_{i}^{(0)}=\varphi_{i}>0, \quad 0 \leq i \leq I \tag{2.3}
\end{gather*}
$$

where $n \geq 0, p \geq 2, q>0, h>0$,

$$
\begin{gathered}
\delta_{t} U_{i}^{(n)}=\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}, \quad 0 \leq i \leq I, \\
\delta^{2} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-2 U_{i}^{(n)}+U_{i-1}^{(n)}}{s^{2}}, \quad 1 \leq i \leq I-1, \\
\delta^{2} U_{0}^{(n)}=\frac{2 U_{1}^{(n)}-2 U_{0}^{(n)}}{s^{2}}, \quad \delta_{*}^{2} U_{I}^{(n)}=\delta^{2} U_{I}^{(n)}-\frac{2}{s}\left(U^{-q}\right)_{I}^{(n)}, \quad \delta^{2} U_{I}^{(n)}=\frac{2 U_{I-1}^{(n)}-2 U_{I}^{(n)}}{s^{2}}, \\
\delta^{0} U_{0}^{(n)}=0, \delta^{0} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-U_{i-1}^{(n)}}{2 s}, \quad 1 \leq i \leq I-1, \\
0<\varphi_{s}<1, \quad \varphi_{i+1}<\varphi_{i}, \quad 0 \leq i \leq I-1 .
\end{gathered}
$$

In order to permit the discrete solution to reproduce the properties of the continuous one when the time t approaches the quenching time T_{q}, we need to adapt the size of the time step. We choose

$$
\Delta t_{n}=\min \left(\frac{s^{2}}{2(p-1) \max \{a(j-1,1)\}}, \tau\left(1-\left\|U_{s}^{(n)}\right\|_{\infty}\right)^{h+1}\right)
$$

with $0<\tau<1$ and $a(j-1,1)=\left(\frac{\left|U_{j+1}^{(n)}-U_{j-1}^{(n)}\right|}{2 s}\right)^{p-2}$ for $2 \leq j \leq I$.
Let us notice that the restriction on the time step ensures the nonnegativity of the discrete solution when this one is decreasing.
Lemma 2.1. Let $\alpha_{s}^{(n)}, a_{s}^{(n)}, \gamma_{s}^{(n)}$ and let $V_{s}^{(n)}$ be the three sequences with $n \geq 0$; $\alpha_{s}^{(n)} \geq 0 ; a_{s}^{(n)} \leq 0 ; \gamma_{s}^{(n)} \leq 0$ such that

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)} \geq 0,0 \leq i \leq I \tag{2.4}\\
V_{i}^{(0)} \geq 0, \quad 0 \leq i \leq I \tag{2.5}\\
241
\end{gather*}
$$

Then we have

$$
\begin{equation*}
V_{i}^{(n)} \geq 0,0 \leq i \leq I, n \geq 0, \text { when } \Delta t_{n} \leq \frac{s^{2}}{2\left\|\alpha_{s}^{(n)}\right\|_{\infty}}, 1 \leq i \leq I \tag{2.6}
\end{equation*}
$$

Proof. A straightforward computation shows that for $1 \leq i \leq I-1$,

$$
\begin{aligned}
& V_{i}^{(n+1)} \\
\geq & \left(1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\right) V_{i}^{(n)}+\frac{\Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\left(V_{i+1}^{(n)}+V_{i-1}^{(n)}\right)-\Delta t_{n} a_{i}^{(n)} V_{i}^{(n)}, \\
& V_{0}^{(n+1)} \geq\left(1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\right) V_{0}^{(n)}+\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}} V_{1}^{(n)}-\Delta t_{n} a_{0}^{(n)} V_{0}^{(n)}, \\
& V_{I}^{(n+1)} \\
\geq & \left(1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\right) V_{I}^{(n)}+\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}} V_{I-1}^{(n)}-\frac{2 a_{I}^{(n)} \gamma_{I}^{(n)}}{s} V_{I}^{(n)}-\Delta t_{n} a_{I}^{(n)} V_{I}^{(n)} .
\end{aligned}
$$

If $V_{s}^{(n)} \geq 0$, then using an argument of recursion, we easily see that $V_{s}^{(n+1)} \geq 0$, because $1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}} \geq 0, a_{s}^{(n)} \leq 0, \gamma_{s}^{(n)} \leq 0, \alpha_{s}^{(n)} \geq 0$. This ends the proof.

A direct consequence of the above result is the following comparison Lemma.
Lemma 2.2. $\operatorname{Let} a_{s}^{(n)}, \alpha_{s}^{(n)}, V_{s}^{(n)}$ and $W_{s}^{(n)}$ be four sequences, with $n \geq 0$, $a_{s}^{(n)} \leq 0, \alpha_{s}^{(n)} \geq 0$, such that

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)}< \tag{2.7}\\
\delta_{t} W_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} W_{i}^{(n)}+a_{i}^{(n)} W_{i}^{(n)}, 0 \leq i \leq I \\
V_{i}^{(0)}<W_{i}^{(0)}, \quad 0 \leq i \leq I \tag{2.8}
\end{gather*}
$$

Then we have

$$
V_{i}^{(n)}<W_{i}^{(n)}, 0 \leq i \leq I, n \geq 0, \text { when } \Delta t_{n} \leq \frac{s^{2}}{2\left\|\alpha_{s}^{(n)}\right\|_{\infty}}, 1 \leq i \leq I
$$

Proof. Define the sequence $Z_{s}^{(n)}=W_{s}^{(n)}-V_{s}^{(n)}$. A straightforward calculation gives $\delta_{t} W_{i}^{(n)}-\delta_{t} V_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2}\left(W_{i}^{(n)}-V_{i}^{(n)}\right)+a_{i}^{(n)}\left(W_{i}^{(n)}-V_{i}^{(n)}\right)>0,0 \leq i \leq I$,
which is equivalent to

$$
\delta_{t} Z_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} Z_{i}^{(n)}+a_{i}^{(n)} Z_{i}^{(n)}>0,0 \leq i \leq I
$$

Knowing that $Z_{s}^{(0)}>0$, from Lemma (2.1), we have $Z_{s}^{(n)}>0$, which implies that $V_{i}^{(n)}<W_{i}^{(n)}, 0 \leq i \leq I$, and the proof is complete.

Lemma 2.3. Let $a_{s}^{(n)}, \alpha_{s}^{(n)}, V_{s}^{(n)}$ and $W_{s}^{(n)}$ be four sequences, with $n \geq 0$, $a_{s}^{(n)} \leq 0, \alpha_{s}^{(n)} \geq 0$, such that

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)} \leq \tag{2.9}\\
242
\end{gather*}
$$

$$
\begin{gather*}
\delta_{t} W_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} W_{i}^{(n)}+a_{i}^{(n)} W_{i}^{(n)}, 0 \leq i \leq I, \\
V_{i}^{(0)} \leq W_{i}^{(0)}, \quad 0 \leq i \leq I . \tag{2.10}
\end{gather*}
$$

Then we have

$$
V_{i}^{(n)} \leq W_{i}^{(n)}, 0 \leq i \leq I, n \geq 0, \text { when } \Delta t_{n} \leq \frac{s^{2}}{2\left\|\alpha_{s}^{(n)}\right\|_{\infty}}, 1 \leq i \leq I .
$$

The lemma below reveals the positivity of the discrete solution.
Lemma 2.4. Let $U_{s}^{(n)}, n \geq 0$, be the solution of the discrete problem (2.1)-(2.3). Then we have

$$
\begin{equation*}
U_{i}^{(n)}>0,0 \leq i \leq I \text {, when } \Delta t_{n}=\frac{s^{2}}{2\left\|\alpha_{s}^{(n)}\right\|_{\infty}}, 1 \leq i \leq I . \tag{2.11}
\end{equation*}
$$

Proof. A routine calculation reveals that for $1 \leq i \leq I-1$,

$$
\begin{aligned}
& U_{i}^{(n+1)} \\
\geq & \left(1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\right) U_{i}^{(n)}+\frac{\Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\left(U_{i+1}^{(n)}+U_{i-1}^{(n)}\right)-\Delta t_{n} a_{i}^{(n)} U_{i}^{(n)}, \\
& U_{0}^{(n+1)} \geq\left(1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\right) U_{0}^{(n)}+\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}} U_{1}^{(n)}-\Delta t_{n} a_{0}^{(n)} U_{0}^{(n)}, \\
& U_{I}^{(n+1)} \\
\geq & \left(1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}}\right) U_{I}^{(n)}+\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}} U_{I-1}^{(n)}-\frac{2 a_{I}^{(n)} \gamma_{I}^{(n)}}{s} U_{I}^{(n)}-\Delta t_{n} a_{I}^{(n)} U_{I}^{(n)} .
\end{aligned}
$$

If $U_{s}^{(n)}>0$, then using an argument of recursion, we easily see that $U_{s}^{(n+1)}>0$, because $1-\frac{2 \Delta t_{n}\left\|\alpha_{s}^{(n)}\right\|_{\infty}}{s^{2}} \geq 0, a_{s}^{(n)}<0, \gamma_{s}^{(n)}<0, \alpha_{s}^{(n)}>0$. This ends the proof.

Lemma 2.5. Let $U_{s}^{(n)}, n \geq 0$, be the solution of the discrete problem (2.1)-(2.3). Then we have

$$
\begin{equation*}
U_{i+1}^{(n)}<U_{i}^{(n)}, 0 \leq i \leq I-1 . \tag{2.12}
\end{equation*}
$$

Proof. Difine the vector $Z_{s}^{(n)}$ such that $Z_{i}^{(n)}=U_{i+1}^{(n)}-U_{i}^{(n)}, 0 \leq i \leq I-1$. We have $Z_{i}^{(n)}=U_{i+1}^{(n)}-U_{i}^{(n)}, 1 \leq i \leq I-2, \quad Z_{0}^{(n)}=U_{1}^{(n)}-U_{0}^{(n)}, Z_{I-1}^{(n)}=U_{I}^{(n)}-U_{I-1}^{(n)}$.
A straightforward computations reveals that

$$
\begin{aligned}
& \delta_{t} Z_{i}^{(n)}-(p-1)\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{2} Z_{i}^{(n)}+(p-1)(p-2)\left|\delta^{0} U_{i}^{(n)}\right|^{p-3} \delta^{2} U_{i+1}^{(n)} \delta^{0} Z_{i}^{(n)} \\
&-h\left(1-\theta_{i}^{(n)}\right)^{-h-1} Z_{i}^{(n)}=0,0 \leq i \leq I-2, \\
& \delta_{t} Z_{I-1}^{(n)}-(p-1)\left|U_{I}^{(n)}\right|^{-q(p-2)} \delta_{*}^{2} Z_{I-1}^{(n)}+q(p-1)(p-2)\left(U_{I}^{(n)}\right)^{-q(p-2)-1} \delta^{0}\left(U_{I}^{(n)}\right)^{-q(p-2)} \\
&-h\left(1-\xi_{I}^{(n)}\right)^{-h-1} Z_{I-1}^{(n)}=0,
\end{aligned}
$$

where $\theta_{i}^{(n)} \in\left(U_{i+1}^{(n)}, U_{i}^{(n)}\right)$ and $\xi_{I}^{(n)} \in\left(U_{I}^{(n)}, U_{I-1}^{(n)}\right)$.
Knowing that $Z_{s}^{(n)}<0$, from Lemma (2.1), we have $Z_{s}^{(n)}<0$, which implies that $U_{i+1}^{(n)}<U_{i}^{(n)}, 0 \leq i \leq I-1$, and we obtain the desired result.

Lemma 2.6. Let $U_{s}^{(n)}, n \geq 0$, be the solution of the problem (2.1)-(2.3) and the initial data at (2.3) verifies some compatibility conditions. Then $\delta_{t} U_{i}^{(n)} \geq 0$ for $0 \leq i \leq I$.

Proof. Consider the vector $Z_{s}^{(n)}$ such that $Z_{i}^{(n)}=\delta_{t} U_{i}^{(n)}$ for $0 \leq i \leq I$ A straightforward calculation gives

$$
\begin{array}{r}
\delta_{t} Z_{i}^{(n)}=(p-1)(p-2) \delta^{0} U_{i}^{(n)}\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{0} Z_{i}^{(n)} \delta^{2} U_{i}^{(n)}+(p-1)\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{2} Z_{i}^{(n)} \\
+h\left(1-U_{i}^{(n)}\right)^{-h-1} Z_{i}^{(n)}, 0 \leq i \leq I-1 \\
\delta_{t} Z_{I}^{(n)}=-q(p-1)(p-2)\left(U^{-q(p-2)-1}\right)_{I}^{(n)} Z_{I}^{(n)} \delta^{2} U_{I}^{(n)}+(p-1)\left(U^{-q(p-2)}\right)_{I}^{(n)} \delta^{2} Z_{I}^{(n)} \\
+\frac{2 q(p-1)^{2}}{s}\left(U^{-q(p-1)-1}\right)_{I}^{(n)} Z_{I}^{(n)}+h\left(1-U_{I}^{(n)}\right)^{-h-1} Z_{I}^{(n)} .
\end{array}
$$

We finally have

$$
\begin{array}{r}
\delta_{t} Z_{i}^{(n)}-(p-1)(p-2) \delta^{0} U_{i}^{(n)}\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{0} Z_{i}^{(n)} \delta^{2} U_{i}^{(n)}-(p-1)\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{2} Z_{i}^{(n)} \\
-h\left(1-U_{i}^{(n)}\right)^{-h-1} Z_{i}^{(n)}=0,0 \leq i \leq I-1
\end{array}
$$

$$
\delta_{t} Z_{I}^{(n)}+q(p-1)(p-2)\left(U^{-q(p-2)-1}\right)_{I}^{(n)} Z_{I}^{(n)} \delta^{2} U_{I}^{(n)}-(p-1)\left(U^{-q(p-2)}\right)_{I}^{(n)} \delta^{2} Z_{I}^{(n)}
$$

$$
-\frac{2 q(p-1)^{2}}{s}\left(U^{-q(p-1)-1}\right)_{I}^{(n)} Z_{I}^{(n)}-h\left(1-U_{I}^{(n)}\right)^{-h-1} Z_{I}^{(n)}=0
$$

Knowing that $Z_{i}^{(0)}=(p-1)\left|\delta^{0} \varphi_{i}\right|^{p-2} \delta^{2} \varphi_{i}+\left(1-\varphi_{i}\right)^{-h} \geq 0,0 \leq i \leq I$, from Lemma (2.1), we have $Z_{s}^{(n)} \geq 0$, which implies that $\delta_{t} U_{i}^{(n)} \geq 0,0 \leq i \leq I$, we have the wished result.

3. Quenching in the discrete problem

In this section, under some assumptions, we show that the solution $U_{s}^{(n)}$ of the problem (2.1)-(2.3) quenches in a finite time and estimate its discrete quenching time. To facilitate our discussion, we need to define the notion of numerical quenching.

Definition 3.1. We say that the solution $U_{s}^{(n)}$ of the problem (2.1)-(2.3) quenches in a finite time, if $\left\|U_{s}^{(n)}\right\|_{\infty}<1$ for $n \geq 0$ but $\lim _{n \rightarrow+\infty}\left\|U_{s}^{(n)}\right\|_{\infty}=1$ and

$$
T_{s}^{\Delta t}=\lim _{n \rightarrow+\infty} \sum_{i=0}^{n-1} \Delta t_{i}<+\infty
$$

We call $T_{s}^{\Delta t}$ the numerical quenching time of $U_{s}^{(n)}$.

Now let us set $W_{s}^{(n)}=1-U_{s}^{(n)}, n \geq 0$. The problem (1.4)-(1.6) may be rewritten in the following form

$$
\begin{gather*}
\delta_{t} W_{i}^{(n)}=(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2} W_{i}^{(n)} \tag{3.1}\\
-\left(W_{i}^{(n)}\right)^{-h}, 0 \leq i \leq I-1, n \geq 0 \\
\delta_{t} W_{I}^{(n)}=(p-1)\left|\left(1-W_{I}^{(n)}\right)\right|^{-q(p-1)} \delta^{2} W_{I}^{(n)} \tag{3.2}\\
+\frac{2(p-1)}{s}\left(1-W_{I}^{(n)}\right)^{-q(p-1)}-\left(W_{I}^{(n)}\right)^{-h}, n \geq 0 \\
W_{i}^{(0)}=\nu_{i}=1-\varphi_{i}>0,0 \leq i \leq I \tag{3.3}
\end{gather*}
$$

where $n \geq 0, p \geq 2, q>0, h>0$.
Lemma 3.2. Let $W_{s}^{(n)}, n \geq 0$, be a sequence such that $W_{s}^{(n)}>0$. Then we have for $0 \leq i \leq I$,

$$
\delta^{2}\left(W_{i}^{(n)}\right)^{-h} \geq-h\left(W_{i}^{(n)}\right)^{-h-1} \delta^{2} W_{i}^{(n)}, n \geq 0
$$

Proof. Applying Taylor's expansion, we obtain

$$
\begin{aligned}
& \delta^{2}\left(W_{i}^{(n)}\right)^{-h}=- h\left(W_{i}^{(n)}\right)^{-h-1} \delta^{2} W_{i}^{(n)}+\left(W_{i-1}^{(n)}-W_{i}^{(n)}\right)^{2} \frac{2 h(h+1)}{2 s^{2}}\left(\theta_{i}^{(n)}\right)^{-h-2} \\
&+\left(W_{i+1}^{(n)}-W_{i}^{(n)}\right)^{2} \frac{2 h(h+1)}{2 s^{2}}\left(\xi_{i}^{(n)}\right)^{-h-2}, 1 \leq i \leq I-1, n \geq 0 \\
& \delta^{2}\left(W_{0}^{(n)}\right)^{-h}=- h\left(W_{0}^{(n)}\right)^{-h-1} \delta^{2} W_{0}^{(n)}+\left(W_{1}^{(n)}-W_{0}^{(n)}\right)^{2} \frac{2 h(h+1)}{2 s^{2}}\left(\theta_{0}^{(n)}\right)^{-h-2}, n \geq 0 \\
& \delta^{2}\left(W_{I}^{(n)}\right)^{-h}=-h\left(W_{I}^{(n)}\right)^{-h-1} \delta^{2} W_{I}^{(n)}+\left(W_{I-1}^{(n)}-W_{I}^{(n)}\right)^{2} \frac{2 h(h+1)}{2 s^{2}}\left(\theta_{I}^{(n)}\right)^{-h-2}, n \geq 0
\end{aligned}
$$

where $\theta_{0}^{(n)}$ is an intermediate value between $W_{1}^{(n)}$ and $W_{0}^{(n)}, \theta_{i}^{(n)}$ is an intermediate value between $W_{i-1}^{(n)}$ and $W_{i}^{(n)}$, for $1 \leq i \leq I-1, \theta_{I}^{(n)}$ is an intermediate value between $W_{I-1}^{(n)}$ and $W_{I}^{(n)}, \xi_{i}^{(n)}$ is an intermediate value between $W_{i}^{(n)}$ and $W_{i+1}^{(n)}$, $1 \leq i \leq I-1$. The result follows taking into account the fact that $W_{s}^{(n)}>0$

Theorem 3.3. Let $U_{s}^{(n)}$ be the solution of the problem (2.1)-(2.3) and assume that there exists a constant $A \in(0,1]$ such that the initial data at (3.3) verifies the hypothesis

$$
\begin{gather*}
(p-1)\left|\delta^{0} \nu_{i}\right|^{p-2} \delta^{2} \nu_{i}-\left(\nu_{i}\right)^{-h} \leq-A\left(\nu_{i}\right)^{-h}, \quad 0 \leq i \leq I-1 \tag{3.4}\\
(p-1)\left|\left(1-\nu_{I}\right)\right|^{-q(p-2)} \delta^{2} \nu_{I}+\frac{2(p-1)}{s}\left(1-\nu_{I}\right)^{-q(p-1)} \tag{3.5}\\
-\left(\nu_{I}\right)^{-h} \leq-A\left(\nu_{I}\right)^{-h} \\
245
\end{gather*}
$$

Then there exists a finite time $T_{s}^{\Delta t}$ such that $U_{s}^{(n)}$ quenches in this time and we have the following estimate

$$
\begin{gathered}
T_{s}^{\Delta t} \leq \frac{\left(1-\left\|\varphi_{s}\right\|_{\infty}\right)^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}} \\
\text { where } \Delta t_{n}=\min \left(\frac{s^{2}}{2(p-1) \max _{2 \leq j \leq I}\{a(j-1,1)\}}, \tau\left\|W_{s}^{(n)}\right\|_{i n f}^{h+1}\right), \text { with } 0<\tau<1 \\
\left\|W_{s}^{(n)}\right\|_{\text {inf }}=1-\left\|U_{s}^{(n)}\right\|_{\infty},\left\|\nu_{s}\right\|_{\text {inf }}=1-\left\|\varphi_{s}\right\|_{\infty} \text { and } \\
\tau^{\prime}=A \min \left(\frac{s^{2}\left\|\nu_{s}\right\|_{\text {inf }}^{-h-1}}{2(p-1) \max _{2 \leq j \leq I}\{a(j-1,1)\}}, \tau\right)
\end{gathered}
$$

Proof. Consider the vector $J_{s}^{(n)}, n \geq 0$ such that

$$
J_{i}^{(n)}=\delta_{t} W_{i}^{(n)}+A\left(W_{i}^{(n)}\right)^{-h}, \quad 0 \leq i \leq I
$$

A straightforward computation gives

$$
\begin{aligned}
& \delta_{t} J_{i}^{(n)}-(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2} J_{i}^{(n)} \\
= & \delta_{t}^{2} W_{i}^{(n)}-h A\left(W_{i}^{(n)}\right)^{-h-1} \delta_{t} W_{i}^{(n)}-(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2}\left(\delta_{t} W_{i}^{(n)}\right) \\
& +A(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2}\left(W_{i}^{(n)}\right)^{-h} .
\end{aligned}
$$

From Lemma (3.2), we can show that $\delta^{2}\left(W_{i}^{(n)}\right)^{-h} \geq-h\left(W_{i}^{(n)}\right)^{-h-1} \delta^{2} W_{i}^{(n)}$, which implies that

$$
\begin{aligned}
& \quad \delta_{t} J_{i}^{(n)}-(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2} J_{i}^{(n)} \\
& \leq \delta_{t}^{2} W_{i}^{(n)}-h A\left(W_{i}^{(n)}\right)^{-h-1} \delta_{t} W_{i}^{(n)}-(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2}\left(\delta_{t} W_{i}^{(n)}\right) \\
&+h A(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2}\left(W_{i}^{(n)}\right)^{-h-1} \delta^{2} W_{i}^{(n)}
\end{aligned}
$$

Using(3.1) and (3.2), we arrive at

$$
\begin{aligned}
& \delta_{t} J_{i}^{(n)}-(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2} J_{i}^{(n)} \leq h\left(W_{i}^{(n)}\right)^{-h-1} J_{i}^{(n)}, \quad 0 \leq i \leq I-1, \\
& \delta_{t} J_{I}^{(n)}-(p-1)\left|\left(1-W_{I}^{(n)}\right)\right|^{-q(p-2)} \delta^{2} J_{I}^{(n)}-h\left(W_{I}^{(n)}\right)^{-h-1} J_{I}^{(n)} \\
& \leq-\frac{2 q(p-1)^{2}}{s}\left(W_{I}^{(n)}\right)^{-q(p-1)-1} g\left(W_{I}^{(n)}\right)
\end{aligned}
$$

where $g\left(W_{I}^{(n)}\right)=-\delta_{t} W_{I}^{(n)}+\frac{A h}{q(p-1)}\left(1-W_{I}^{(n)}\right)\left(W_{I}^{(n)}\right)^{-h-1} \geq 0$. It is not hard to see that

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-(p-1)\left|\delta^{0} W_{i}^{(n)}\right|^{p-2} \delta^{2} J_{i}^{(n)}-h\left(W_{i}^{(n)}\right)^{-h-1} J_{i}^{(n)} \leq 0, \quad 0 \leq i \leq I-1, \\
\delta_{t} J_{I}^{(n)}-(p-1)\left|1-W_{I}^{(n)}\right|^{-q(p-2)} \delta^{2} J_{I}^{(n)}-h\left(W_{I}^{(n)}\right)^{-h-1} J_{I}^{(n)} \leq 0
\end{gathered}
$$

From (3.4) and (3.5), we see that $J_{s}^{(0)} \leq 0$. We deduce from Lemma (2.1) that $J_{s}^{(n)} \leq 0$, for $n \geq 0$, which implies that

$$
\begin{equation*}
\delta_{t} W_{i}^{(n)} \leq-A\left(W_{i}^{(n)}\right)^{-h}, \quad 0 \leq i \leq I \tag{3.6}
\end{equation*}
$$

These estimate may be rewritten in the following form

$$
W_{i}^{(n+1)} \leq W_{i}^{(n)}-A \Delta t_{n}\left(W_{i}^{(n)}\right)^{-h}
$$

Therefore

$$
\begin{equation*}
W_{i}^{(n+1)} \leq W_{i}^{(n)}\left(1-A \Delta t_{n}\left(W_{i}^{(n)}\right)^{-h-1}\right) \tag{3.7}
\end{equation*}
$$

which implies that

$$
\left\|W_{s}^{(n+1)}\right\|_{i n f} \leq\left\|W_{s}^{(n)}\right\|_{i n f}\left(1-A \Delta t_{n}\left\|W_{s}^{(n)}\right\|_{i n f}^{-h-1}\right), n \geq 0
$$

From Lemma (2.6), $\left\|W_{s}^{(n+1)}\right\|_{i n f} \leq\left\|W_{s}^{(n)}\right\|_{i n f}$. By induction, we obtain

$$
\left\|W_{s}^{(n)}\right\|_{i n f} \leq\left\|W_{s}^{(0)}\right\|_{i n f}=\left\|\nu_{s}\right\|_{i n f}
$$

Then we have

$$
\left\|W_{s}^{(n)}\right\|_{i n f}^{-h-1} \geq\left\|\nu_{s}\right\|_{i n f}^{-h-1}
$$

and with $A \Delta t_{n}\left\|W_{s}^{(n)}\right\|_{i n f}^{-h-1} \geq \tau^{\prime}$, we arrive at

$$
\left\|W_{s}^{(n+1)}\right\|_{i n f} \leq\left\|W_{s}^{(n)}\right\|_{i n f}\left(1-\tau^{\prime}\right)
$$

By induction, we get

$$
\left\|W_{s}^{(n)}\right\|_{i n f} \leq\left\|W_{s}^{(0)}\right\|_{i n f}\left(1-\tau^{\prime}\right)^{n}, n \geq 0
$$

which leads us to

$$
\left\|W_{s}^{(n)}\right\|_{i n f} \leq\left\|\nu_{s}\right\|_{i n f}\left(1-\tau^{\prime}\right)^{n}, n \geq 0
$$

Since the term on the right hand side of the above inequality tends to zero as n approaches infinity, we conclude that $\left\|W_{s}^{(n)}\right\|_{\text {inf }}$ tends to zero, therefore, $\left\|U_{s}^{(n)}\right\|_{\infty}$ tends to 1 . Now, let us estimate the numerical quenching time. It is not hard to see that

$$
\sum_{n=0}^{+\infty} \Delta t_{n} \leq \sum_{n=0}^{+\infty} \tau\left\|W_{s}^{(n)}\right\|_{i n f}^{h+1} \leq \tau\left\|\nu_{s}\right\|_{i n f}^{h+1} \sum_{n=0}^{+\infty}\left(\left(1-\tau^{\prime}\right)^{h+1}\right)^{n}
$$

Using the fact that the series $\sum_{n=0}^{+\infty}\left(\left(1-\tau^{\prime}\right)^{h+1}\right)^{n}$ converges towards $\frac{\tau\left\|\nu_{s}\right\|_{i n f}^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}}$.
We deduce that

$$
T_{s}^{\Delta t}=\sum_{n=0}^{+\infty} \Delta t_{n} \leq \frac{\tau\left\|\nu_{s}\right\|_{i n f}^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}}
$$

Since $\left\|\nu_{s}\right\|_{i n f}=1-\left\|\varphi_{s}\right\|_{\infty}$, we have

$$
T_{s}^{\Delta t}=\sum_{n=0}^{+\infty} \Delta t_{n} \leq \frac{\tau\left(1-\left\|\varphi_{s}\right\|_{\infty}\right)^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}}
$$

We conclude the proof.

Remark 3.4. Using Taylor's expansion, we get

$$
\left(1-\tau^{\prime}\right)^{h+1}=1-(h+1) \tau^{\prime}+O\left(\tau^{\prime}\right)
$$

which implies that

$$
\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{h+1}}=\frac{\tau}{\tau^{\prime}} \frac{1}{(h+1)} \leq \frac{C}{(h+1)}
$$

If we take $\tau=\frac{s^{2}}{2(p-1)}$, we have

$$
\frac{\tau^{\prime}}{\tau}=A \min \left(\frac{\left\|\nu_{s}\right\|_{i n f}^{-h-1}}{\max _{2 \leq j \leq I}\{a(j-1 ; 1)\}}, 1\right)
$$

and therefore

$$
\frac{\tau}{\tau^{\prime}}=\frac{1}{A} \min \left(\max _{2 \leq j \leq I}\{a(j-1,1)\}\left\|\nu_{s}\right\|_{i n f}^{h+1}, 1\right)
$$

then

$$
\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{h+1}} \leq \frac{C}{(h+1)}=\frac{C}{A(h+1)} \min \left(\max _{2 \leq j \leq I}\{a(j-1,1)\}\left\|\nu_{s}\right\|_{i n f}^{h+1}, 1\right)
$$

We conclude that $\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{h+1}}$ is bounded.

Remark 3.5.

$$
\left\|W_{s}^{(n+1)}\right\|_{i n f} \leq\left\|W_{s}^{(n)}\right\|_{i n f}\left(1-\tau^{\prime}\right)
$$

we get

$$
\left\|W_{s}^{(n)}\right\|_{i n f} \leq\left\|W_{s}^{(q)}\right\|_{i n f}\left(1-\tau^{\prime}\right)^{n-q}, \text { for } n \geq q
$$

which implies that

$$
\sum_{n=q}^{+\infty} \Delta t_{n} \leq \tau\left\|\nu_{s}\right\|_{i n f}^{h+1} \sum_{n=q}^{+\infty}\left(\left(1-\tau^{\prime}\right)^{h+1}\right)^{n-q}
$$

we deduce that

$$
T_{s}^{\Delta t}-t_{q} \leq \frac{\tau\left\|W_{s}^{(n)}\right\|_{i n f}^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}} \text { with } \Delta t_{q}=\sum_{j=0}^{q-1} \Delta t_{j}
$$

and since $\left\|W_{s}^{(n)}\right\|_{i n f}=1-\left\|U_{s}^{(n)}\right\|_{\infty}$, we have

$$
T_{s}^{\Delta t}-t_{q} \leq \frac{\tau\left(1-\left\|U_{s}^{(n)}\right\|_{\infty}\right)^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}} \text { with } \Delta t_{q}=\sum_{j=0}^{q-1} \Delta t_{j}
$$

In the sequel, we take $\tau=\frac{s^{2}}{2(p-1)}$.

4. Convergence of the discrete quennching time

In this section, under some assumptions, we show that the discrete quenching time converges to the real one when the mesh size goes to zero. We denote by :

$$
u_{s}\left(t_{n}\right)=\left(u\left(x_{0}, t_{n}\right), u\left(x_{1}, t_{n}\right), \ldots, u\left(x_{I}, t_{n}\right)\right)^{T} \text { and }\left\|U_{s}^{(n)}\right\|_{\infty}=\max _{0 \leq i \leq I} \mid U_{i}^{(n)}
$$

In order to obtain the convergence of discrete quenching time, we firstly prove the following theorem about the convergence of the discrete scheme.
Theorem 4.1. Assume that the problem (1.4)-(1.6) has a solution $u \in C^{4,2}([0,1] \times$ $[0, T])$ such that $\sup _{t \in[0, T]}\|u(., t)\|_{i n f}=\lambda<1$. Suppose that the initial data at (2.3) satisfies

$$
\begin{equation*}
\left\|\varphi_{s}-u_{s}(0)\right\|_{\infty}=o(1) \quad \text { as } \quad s \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Then for s sufficiently small, the problem (2.1)-(2.3) has a unique solution $U_{s}^{(n)}, 0 \leq n \leq J$ such that
(4.2) $\max _{0 \leq n \leq J}\left\|U_{s}^{(n)}-u_{s}\left(t_{n}\right)\right\|_{\infty}=O\left(\left\|\varphi_{s}-u_{s}(0)\right\|_{\infty}+s+\Delta t_{n}\right) \quad$ as $\quad s \rightarrow 0$.

Where J is such that $\sum_{j=1}^{J-1} \Delta t_{j} \leq T$ and $t_{n}=\sum_{j=0}^{n-1} \Delta t_{j}$.
Proof. For each s, the discrete problem (2.1)-(2.3) has a unique solution $U_{s}^{(n)}$. Let $N \leq J$, the greatest value of n. There exists a positive real $\rho($ with $\lambda<\rho<1)$ such that

$$
\begin{equation*}
\left\|U_{s}^{(n)}-u_{s}\left(t_{n}\right)\right\|_{\infty}<\frac{\rho-\lambda}{2}, \text { for } n<N \tag{4.3}
\end{equation*}
$$

We know that $N \geq 1$ because of (4.1). Due to the fact $u \in C^{4,2}([0,1] \times[0, T])$. By the triangular inequality, we obtain

$$
\left\|U_{s}^{(n)}\right\|_{\infty} \leq\left\|u_{s}\left(t_{n}\right)\right\|_{\infty}+\left\|U_{s}^{(n)}-u_{s}\left(t_{n}\right)\right\|_{\infty}, n<N
$$

which implies that

$$
\begin{equation*}
\left\|U_{s}^{(n)}\right\|_{\infty} \leq \lambda+\frac{\rho-\lambda}{2}=\frac{\rho+\lambda}{2}<1, n<N \tag{4.4}
\end{equation*}
$$

Since $u \in C^{4,2}([0,1] \times[0, T])$. Applying Taylor's expansion, we obtain

$$
\begin{aligned}
& \delta_{t} u\left(x_{i}, t_{n}\right)-(p-1)\left|\delta^{0} u\left(x_{i}, t_{n}\right)\right|^{p-2} \delta^{2} u\left(x_{i}, t_{n}\right) \\
&=\left(1-u\left(x_{i}, t_{n}\right)\right)^{-h}+ \\
&+\frac{h^{2}(p-1)\left|\delta^{0} u\left(x_{i}, t_{n}\right)\right|^{p-2}}{12} u_{x x x x}\left(\widetilde{x}_{i}, t_{n}\right) \\
&+\frac{\Delta t_{n}}{2} \delta_{t t} u\left(x_{i}, \widetilde{t}_{n}\right), 0 \leq i \leq I-1, \\
&=\left(1-u\left(x_{I}, t_{n}\right)\right)^{-h}+\frac{2(p-1)}{h}\left|u^{-q}\left(x_{i}, t_{n}\right)\right|^{p-2} u^{-q}\left(x_{I}, t_{n}\right) \\
&+\frac{h(p-1)}{3}\left|u^{-q}\left(x_{i}, t_{n}\right)\right|^{p-2} u_{x x x}\left(\widetilde{x}_{I}, t_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{h^{2}(p-1)}{12}\left|u^{-q}\left(x_{i}, t_{n}\right)\right|^{p-2} u_{x x x x}\left(\widetilde{x}_{I}, t_{n}\right) \\
& +\frac{\Delta t_{n}}{2} \delta_{t t} u\left(x_{i}, \widetilde{t}_{n}\right) .
\end{aligned}
$$

Let $e_{s}^{(n)}=U_{s}^{(n)}-u_{s}\left(t_{n}\right)$ be the error of discretization. Using Taylor's expansion, we have for $n<N$,

$$
\begin{aligned}
& \delta_{t} e_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} e_{i}^{(n)} \\
= & h\left(1-\theta_{i}^{(n)}\right)^{-h-1} e_{i}^{(n)}+\frac{h^{2}}{12} \alpha_{i}^{(n)} u_{x x x x}\left(\widetilde{x}_{i}, t_{n}\right)-\frac{\Delta t_{n}}{2} \delta_{t t} u\left(x_{i}, \widetilde{t}_{n}\right), \quad 0 \leq i \leq I-1, \\
& \delta_{t} e_{I}^{(n)}-\alpha_{I}^{(n)} \delta^{2} e_{I}^{(n)} \\
= & h\left(1-\xi_{I}^{(n)}\right)^{-h-1} e_{I}^{(n)}+\frac{2}{h} q \alpha_{I}^{(n)}\left(\xi_{I}^{(n)}\right)^{-q-1} e_{I}^{(n)}-\frac{h}{3} \alpha_{I}^{(n)} u_{x x x}\left(\widetilde{x}_{I}, t\right) \\
& \quad+\frac{h^{2}}{12} \alpha_{I}^{(n)} u_{x x x x}\left(\widetilde{x}_{I}, t\right)-\frac{\Delta t_{n}}{2} \delta_{t t} u\left(x_{i}, \widetilde{t}_{n}\right),
\end{aligned}
$$

where $\theta_{i}^{(n)}$ an intermediate value between $u\left(x_{i}, t_{n}\right)$ and $U_{i}^{(n)}$ for $i \in\{0, \cdots, I-1\}$ and $\xi_{I}^{(n)}$ is an intermediate value between $u\left(x_{I}, t_{n}\right)$ and $U_{I}^{(n)}$. Since $\alpha(x, t) u_{x x x}(x, t)$, $\alpha(x, t) u_{x x x x}(x, t), u_{t t}(x, t)$ are bounded, there existes a positive constant $K>0$ such that

$$
\begin{gather*}
\delta_{t} e_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} e_{i}^{(n)} \leq\left(1-\theta_{i}^{(n)}\right)\left|e_{i}^{(n)}\right|+ \tag{4.5}\\
K s^{2}+K \Delta t_{n}, 0 \leq i \leq I-1, n<N, \\
\delta_{t} e_{I}^{(n)}-\alpha_{I}^{(n)} \delta^{2} e_{I}^{(n)} \leq\left(\left(1-\xi_{I}^{(n)}\right)+\frac{2}{h} q \alpha_{I}^{(n)}\left(\xi_{I}^{(n)}\right)^{-q-1}\right) e_{I}^{(n)} \tag{4.6}\\
+K s+K \Delta t_{n}, n<N .
\end{gather*}
$$

Set $L=\left(1-\frac{\rho+\lambda}{2}\right)+\frac{2}{h} q \alpha_{I}^{(n)}\left(\frac{\rho+\lambda}{2}\right)^{-q-1}$; and introduce the vector $W_{s}^{(n)}$ defined as follows

$$
W_{i}^{(n)}=e^{(L+1) t_{n}}\left(\left\|\varphi_{s}-u_{s}(0)\right\|_{\infty}+K s+K \Delta t_{n}\right), \quad 0 \leq i \leq I, n<N .
$$

A direct calculation yields

$$
\begin{gather*}
\delta_{t} W_{i}^{(n)}-\alpha_{i}^{(n)} \delta^{2} W_{i}^{(n)}>\left(1-\theta_{i}^{(n)}\right) W_{i}^{(n)}+ \tag{4.7}\\
K s^{2}+K \Delta t_{n}, 0 \leq i \leq I-1, n<N, \\
\delta_{t} W_{I}^{(n)}-\alpha_{I}^{(n)} \delta^{2} W_{I}^{(n)}>\left(\left(1-\xi_{I}^{(n)}\right)+\frac{2}{h} q \alpha_{I}^{(n)}\left(\xi_{I}^{(n)}\right)^{-q-1}\right) W_{I}^{(n)} \tag{4.8}\\
+K s+K \Delta t_{n}, \\
W_{0}^{(n)}>e_{0}^{(n)}, \quad W_{I}^{(n)}>e_{I}^{(n)}, n<N \tag{4.9}\\
W_{i}^{(0)}>e_{i}^{(0)}, \quad 0 \leq i \leq I . \tag{4.10}
\end{gather*}
$$

Applying comparison Lemma (2.2), we arrive at

$$
W_{i}^{(n)}>e_{i}^{(n)}, \quad 0 \leq i \leq I .
$$

In the same way, we also prove that

$$
W_{i}^{(n)}>-e_{i}^{(n)}, \quad 0 \leq i \leq I
$$

which implies that

$$
W_{i}^{(n)}>\left|e_{i}^{(n)}\right|, 0 \leq i \leq I
$$

We deduce that
(4.11) $\left\|U_{s}^{(n)}-u_{s}\left(t_{n}\right)\right\|_{\infty} \leq e^{(L+1) t_{n}}\left(\left\|\varphi_{s}-u_{s}(0)\right\|_{\infty}+K s+K \Delta t_{n}\right), n<N$.

Now, let us show that $N=J$. Suppose that $N<J$. If we replace n by N in (4.11), and taking into account the inequality (4.3), we obtain

$$
\begin{gather*}
\frac{\rho-\lambda}{2} \leq\left\|U_{s}^{(N)}-u_{s}\left(t_{N}\right)\right\|_{\infty} \leq \tag{4.12}\\
e^{(L+1) T}\left(\left\|\varphi_{s}-u_{s}(0)\right\|_{\infty}+K s+K \Delta t_{n}\right) .
\end{gather*}
$$

Since the term on the right hand side of the above inequality goes to zero as s tends to zero, we deduce that $\frac{\rho-\lambda}{2} \leq 0$, which is impossible. Consequently $N=J$, and we conclude the proof.

Theorem 4.2. Suppose that the solution u of the problem (1.4)-(1.6) quenches in a finite time T_{q} such that $u \in C^{4,2}\left([0,1] \times\left[0, T_{q}\right)\right)$ and the initial condition at (2.3) satisfies

$$
\left\|\varphi_{s}-u_{s}(0)\right\|_{\infty}=\circ(1) \quad s \rightarrow 0
$$

Under the assumptions of the Theorem (3.3), the discrete problem (2.1)-(2.3) has a solution $U_{s}^{(n)}$ which quenches in a finite time $T_{s}^{\Delta t}$ and the following relation holds

$$
\lim _{s \rightarrow 0} T_{s}^{\Delta t}=T_{q}
$$

Proof. The Remark (3.4) allows us to say that $\frac{\tau}{1-\left(1-\tau^{\prime}\right)^{h+1}}$ is bounded. Letting $0<\varepsilon<\frac{T_{q}}{2}$. Then exists a positive real $\gamma=\rho-\lambda($ with $\lambda<\rho<1)$ such that

$$
\begin{equation*}
\frac{\tau(1-z)^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}} \leq \frac{\varepsilon}{2}, \quad \text { for } z \in[1-\gamma, 1) \tag{4.13}
\end{equation*}
$$

Since u quenches in a finite time T_{q}, there exists a time $T_{1} \in\left(T_{q}-\frac{\varepsilon}{2}, T_{q}\right)$ and $s_{0}(\varepsilon)>0$ such that $1-\frac{\gamma}{2} \leq\left\|u\left(., t_{n}\right)\right\|_{\infty}<1$ with $t_{n} \in\left[T_{1}, T_{q}\left[, s \leq s_{0}(\varepsilon)\right.\right.$. Let $T_{2}=\frac{T_{1}+T_{q}}{2}$ and q be a positive integer such that $t_{q}=\sum_{n=0}^{q-1} \Delta t_{n} \in\left[T_{1}, T_{2}\right]$, for $s \leq s_{0}(\varepsilon)$. We have

$$
1-\frac{\gamma}{2} \leq\left\|u_{s}\left(t_{n}\right)\right\|_{\infty}<1, \text { for } n \leq q, s \leq s_{0}(\varepsilon)
$$

It follows from Theorem (4.1) that the discrete problem (2.1)-(2.3) has a solution $U_{s}^{(n)}$ which verifies

$$
\left\|U_{s}^{(n)}-u_{s}\left(t_{n}\right)\right\|_{\infty}<\frac{\gamma}{2}, \text { for } n \leq q, s \leq s_{0}(\varepsilon)
$$

Using the triangle inequality, we get

$$
\left\|U_{s}^{(q)}\right\|_{\infty} \geq\left\|u_{s}\left(t_{n}\right)\right\|_{\infty}-\left\|U_{s}^{(q)}-u_{s}\left(t_{q}\right)\right\|_{\infty} \geq 1-\frac{\gamma}{2}-\frac{\gamma}{2}, s \leq s_{0}(\varepsilon)
$$

which implies that

$$
\left\|U_{s}^{(q)}\right\|_{\infty} \geq 1-\gamma, s \leq s_{0}(\varepsilon)
$$

From Theorem (3.3), $U_{s}^{(n)}$ quenches at the time $T_{s}^{\Delta t}$. It follows from Remark (3.5) and (4.13) that

$$
\left|T_{s}^{\Delta t}-t_{q}\right| \leq \frac{\tau\left(1-\left\|U_{s}^{(q)}\right\|_{\infty}\right)^{h+1}}{1-\left(1-\tau^{\prime}\right)^{h+1}}<\frac{\varepsilon}{2}
$$

because, we have $\left\|U_{s}^{(q)}\right\|_{\infty} \geq 1-\frac{\gamma}{2}$, for $s \leq s_{0}(\varepsilon)$. We deduce that for $s \leq s_{0}(\varepsilon)$,

$$
\left|T_{s}^{\Delta t}-T_{q}\right| \leq\left|T_{s}^{\Delta t}-t_{q}\right|+\left|t_{q}-T_{q}\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

which leads us to the desired result.

5. Numerical experiments

In this section, we present some numerical approximations to the quenching time of the problem (1.4)-(1.6). We use the following explicit scheme

$$
\begin{aligned}
& \frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}^{e}} \\
= & (p-1)\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{2} U_{i}^{(n)}+\left(1-U_{i}^{(n)}\right)^{-h}, \quad 0 \leq i \leq I-1, \\
& \frac{U_{I}^{(n+1)}-U_{I}^{(n)}}{\Delta t_{n}^{e}} \\
= & (p-1)\left|\left(U^{-q}\right)_{I}^{(n)}\right|^{p-2} \delta^{2} U_{I}^{(n)}+(p-1)\left|\left(U^{-q}\right)_{I}^{(n)}\right|^{p-2}\left(\frac{-\left(U^{-q}\right)_{I}^{(n)}}{s}\right)+\left(1-U_{I}^{(n)}\right)^{-h}, \\
& U_{i}^{(0)}=\varphi_{i}>0, \quad 0 \leq i \leq I,
\end{aligned}
$$

where $n \geq 0, p \geq 2, h>0, q>0, \delta^{0} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-U_{i-1}^{(n)}}{2 s}, \delta^{2} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-2 U_{i}^{(n)}+U_{i-1}^{(n)}}{s^{2}}$, for $1 \leq i \leq I-1$,

$$
\begin{gathered}
\delta^{2} U_{I}^{(n)}=\frac{2}{s^{2}}\left(U_{I-1}^{(n)}-U_{I}^{(n)}\right) \\
\Delta t_{n}^{e}=\min \left(\frac{s^{2}}{2(p-1) \max \{a(j-1,1)\}}, \tau\left(1-\left\|U_{s}^{(n)}\right\|_{\infty}\right)^{h+1}\right)
\end{gathered}
$$

with $0<\tau<1$ and $a(j-1,1)=\left(\frac{\left|U_{j+1}^{(n)}-U_{j-1}^{(n)}\right|}{2 s}\right)^{p-2}$ for $2 \leq j \leq I$.
Now, approximate the solution u of the problem (1.4)-(1.6) by the solution $U_{s}^{(n)}=\left(U_{0}^{(n)}, U_{1}^{(n)}, \cdots, U_{I}^{(n)}\right)^{T}$ of the following implicit scheme

$$
\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}
$$

$$
\begin{aligned}
&=(p-1)\left|\delta^{0} U_{i}^{(n)}\right|^{p-2} \delta^{2} U_{i}^{(n+1)}+\left(1-U_{i}^{(n)}\right)^{-h}, \quad 0 \leq i \leq I-1 \\
& \frac{U_{I}^{(n+1)}-U_{I}^{(n)}}{\Delta t_{n}} \\
&=(p-1)\left|\left(U^{-q}\right)_{I}^{(n)}\right|^{p-2} \delta^{2} U_{I}^{(n+1)} \\
&+(p-1)\left|\left(U^{-q}\right)_{I}^{(n)}\right|^{p-2}\left(\frac{-\left(U^{-q}\right)_{I}^{(n)}}{s}\right) \\
&+\left(1-U_{I}^{(n)}\right)^{-h}, \\
& U_{i}^{(0)}=\varphi_{i}>0, \quad 0 \leq i \leq I
\end{aligned}
$$

where $n \geq 0, p \geq 2, h>0, q>0, \delta^{0} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-U_{i-1}^{(n)}}{2 s}$,

$$
\begin{gathered}
\delta^{2} U_{i}^{(n+1)}=\frac{U_{i+1}^{(n+1)}-2 U_{i}^{(n+1)}+U_{i-1}^{(n+1)}}{s^{2}} \\
\delta^{2} U_{I}^{(n+1)}=\frac{2}{s^{2}}\left(U_{I-1}^{(n+1)}-U_{I}^{(n+1)}\right), \Delta t_{n}=\tau\left(1-\left\|U_{s}^{(n)}\right\|_{\infty}\right)^{h+1}
\end{gathered}
$$

with $0<\tau<1$. In the following tables, in rows, we present the numerical quenching times, numbers of iterations, the CPU times and the orders of the approximations corresponding to meshes of $16,32,64,128,256,512,1024$. The numerical time $T^{n}=\sum_{j=0}^{n-1} \Delta t_{j}$ is computed at the first time when $\Delta t_{n}=\left|T^{n+1}-T^{n}\right| \leq 10^{-16}$. The order(s) of the method is computed from

$$
s_{0}^{\prime}=\frac{\log \left(\left(T_{4 s}-T_{2 s}\right) /\left(T_{2 s}-T_{s}\right)\right)}{\log (2)}
$$

For the numerical value, we take: $\varphi_{i}=0.5+\frac{1}{6 \pi} \cos \left(\frac{\pi(i s)}{2}\right)-\frac{1}{3}(i s)^{4.5}$, for $i=0, \cdots, I$.

Table 1: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method for $q=0,1, \quad p=2, \quad h=3$

I	T^{n}	n	$C P U$ time	s_{0}^{\prime}
16	0.010005572074890	3502	0.07	-
32	0.009983606857072	13308	0.26	-
64	0.009978123925230	50402	1.71	2.00
128	0.009976753714490	190260	14.21	2.00
256	0.009976411192172	715623	138.75	2.00
512	0.009976325554442	2680794	692.37	2.00
1024	0.009976304108366	9996366	3910.76	2.00

Table 2 : Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method for $q=0,1, \quad p=2, \quad h=3$

I	T^{n}	n	$C P U$ time	s_{0}^{\prime}
16	0.010005572074890	3502	0.29	-
32	0.009983606857072	13308	1.65	-
64	0.009978123925230	50402	63.75	2.00
128	0.009976753714490	190260	539.15	2.00
256	0.009976411192172	715623	6848.92	2.00
512	0.009976325554442	2680794	72578.25	2.00
1024	0.009976304108366	9996366	954792.15	2.00

Remark 5.1. The two tables show that the solution of the problem quenches in a finite time. We estimate this time at 10^{-2}.

In the following, we also give some plots to illustrate our analysis. For the different plots, we used both explicit and implicit schemes in the case where $I=32$ and $(q, p, h)=(0.1,2,3)$.
In the figures 1 and 2 , we can appreciate the quenching of the discrete solution and in the figures 3 and 4 , we observe that the discrete solution quenches at the finite time $T_{s}^{\Delta t}=10^{-2}$.

Figure

1. Evolution of the discrete solution (explicit scheme).

Figure
2. Evolution of the discrete solution (implicit scheme).

Figure
3. Evolution of the norm of the discrete solution according to the time (explicit scheme).

Figure
4. Evolution of the norm of the discrete solution according to the time (implicit scheme).

6. Conclusion

In this paper, we have studied the numerical quenching of the solution of the non-Newtonian filtration equation with singular boundary flux (1.1)-(1.3) and we have obtained good approximations of its quenching time.

We have constructed, by the finite difference method, the discrete problem (2.1)(2.3) associated to the continuous problem (1.1)-(1.3). We have shown that under some conditions, the solution of the discrete problem (2.1)-(2.3) quenches in finite time and we have estimated its discrete quenching time. We have also established the convergence of the discrete time towards the theoretical time when the spatial and temporal discretization steps tend towards zero. Finally, we have given some numerical experiments to illustrate our analysis.

References

[1] K. Deng and M. XU, Quenching for a nonlinear diffusion equation with a singular boundary condition, Z. Andew. Math. Phys. 50 (1999) 575-584.
[2] K. Deng and C. Zhao, Blow-up versus quenching, communication in Applied Analysis 7 (1) (2003) 87-100.
[3] H. Kawarada, On solutions of initial boundary problem $u_{t}=u_{x x}+(1-u)^{-1}$, Plubl. Res. Inst. Math. Sci. 10 (1975) 729-736.
[4] H. A. Levine, The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAMJ. Math. Anal. 14 (1983) 1139-1153.
[5] N. Ozalp and B. Selcuk, The quenching behavior of a nonlinear parabolic equation with singular boundary condition, Hacet. J. Math. Stat. 44 (3) (2015) 615-621.
[6] B. Selcuk and N. Ozalp, The quenching behavior of a semilinear heart equation with a singular boundary outflux, Q. Appl. Math. 72 (4) (2014) 747-752.
[7] Y. Yang, J. X. Yin and C. H. Jin, Quenching phenomenon of positive radial solutions for p-Laplacian with singular boundary flux, J. Dyn. Control Syst. (2015) 653-660.
[8] Y. Ying, Quenching phenomenon for a non-Newtonian filtration equation with singular boundary flux, Bound. Value Probl. (2015) 2015:233 11 pages.
[9] C. L. Zaho, Blow-up and quenching for solutions of some parabolic equations, Ph. D. thesis, University of Louisiana, Lafayette 2000.
[10] Y. H. Zhi and C. L. MU, The quenchin behavior of a nonlinear parabolic equation with nonlinear boundary outflux, Appl. Math. Comput 184 (2) (2007) 624-630.
[11] L. M. Abia, J. C. López-Marcos and J. Martínez, On the blow-up time convergence of semmidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (4) (1998) 399-414.
[12] L. M. Abia, J. C. López-Marcos and J. Martínez, On the blow-up for semmidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 20 (1-2) (1996) 145-156.
[13] K. A. Adou, K. A. Touré and A. Coulibaly, On the numerical quenching time at blow-up, Adv. Math. Sci. J. 8 (2) (2019) 71-85.
[14] T. K. Boni, Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 795-800.
[15] K. B. Edja, K. A. Touré and B. J-C. Koua, Numerical quenching of a heat equation with nonlinear boundary conditions, J. Nonlinear Sci. Appl. 13 (2020) 65-74.
[16] K. N'Guessan and N. Diabaté, Numerical quenching solutions of a parabolic equation Mogeling Electrostatic Mens, Gen. Math. Notes 29 (1) (2015) 40-60.
[17] D. Nabongo and T. K. Boni, Quenching for semidiscretizations of heat equation with a singular boundary condition, Asymptot. Anal 59 (1) (2008) 27-38.
[18] K. C. N'Dri, K. A. Touré and G. Yoro, Numerical quenching versus blow-up for a nonlinear parabolic equation with nonlinear boundary outflux, Adv. Math.: Sci. J. 9 (1) (2020) 151-171.

Camara Gninlfan Modeste (camaragninlfan@gmail.com)
Université Félix Houphouët Boigny d'Abidjan, UFR-MI, 22 BP 582 Abidjan 22, Côte d'Ivoire

N'GUESSAN Koffi (nkrasoft@yahoo.fr)

Université Alassane Ouattara de Bouaké, UFR-SED, 01 BP V 18 Bouaké 01, Côte d'Ivoire

Coulibaly Adama (couliba@yahoo.fr)
Université Félix Houphouët Boigny d'Abidjan, UFR-MI, 22 BP 582 Abidjan 22, Côte d'Ivoire
Touré Kidjégbo Augustin (latoureci@gmail.com)
Institut National Polytechnique Houphouët-Boigny de Yamoussoukro, BP 2444 Yamoussoukro, Côte d'Ivoire

