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1. Introduction

Ward et al. [1] introduced a complete residuated lattice which is an algebraic
structure for many valued logic. Bělohlávek [2, 3] investigated the properties of
fuzzy Galois connections and fuzzy closure operators on a residuated lattice which
supports part of foundation of theoretic computer science. By using the concepts of
lower and upper approximation operators, information systems and decision rules
are investigated in complete residuated lattices [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

As a dual sense of complete residuated lattice, Zheng et al. [11] introduced a
complete co-residuated lattice as the generalization of t-conorm. Junsheng et al.
[12] investigated (�,&)-generalized fuzzy rough set on (L,�,&) where (L,&) is
a complete residuated lattice and (L,�) is a complete co-residuated lattice. Kim
and Ko [13] introduced the concepts of fuzzy join and meet complete lattices using
distance spaces instead of fuzzy partially ordered spaces in complete co-residuated
lattices. Moreover, Oh and Kim [14, 15] investigated the properties of Alexandrov
fuzzy topologies, distance functions, join preserving maps, join approximation maps
fuzzy complete lattices using distance functions instead of fuzzy partially orders in
complete co-residuated lattices.
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Bělohlávek [2, 3] introduced the notion of formal concepts with R ∈ LX×Y on
a complete residuated lattice (L,�,→). A formal fuzzy concept is a pair (A,B) ∈
LX × LY such that F (A) = B,G(B) = A where F : LX → LY , G : LY → LX are
defined as

F (A)(y) =
∧
x∈X(A(x)→ R(x, y)),

G(B)(x) =
∧
y∈Y (B(y)→ R(x, y)).

Moreover, (F,G) is a Galois connection, i.e., eLY (B,F (A)) = eLX (A,G(B)), where
eLY is a partially order defined as eLY (B,F (A)) =

∧
y∈Y (B(y)→ F (A)(y)).

Georgescu and Popescu [16] proposed attribute-oriented fuzzy concept lattices.
A attribute-oriented fuzzy concept is a pair (A,B) ∈ LX × LY such that F (A) =
B,G(B) = A, where F : LX → LY , G : LY → LX are defined as

F (A)(y) =
∨
x∈X(A(x)�R(x, y)),

G(B)(x) =
∧
y∈Y (R(x, y)→ B(y)).

Moreover, (F,G) is a adjunction, i.e., eLY (F (A), B) = eLX (A,G(B)).
Our aim of this paper, using the distance functions dLX instead of fuzzy partially

ordered sets eLX based on complete co-residuated lattices, we investigate adjunc-
tions, Galois connections and join (meet) preserving maps on Alexandrov topologies.
As applications of this paper, using adjunctions and Galois connections, we define a
formal fuzzy concept and an attribute-oriented fuzzy concept in Remark 3.5.

Rodabough [5] introduced the adjoint function theorem using the adjunctions.
He showed that (f→, f←) is an adjunction, where Zadeh’s powersets operators f→ :
LX → LY , f← : LY → LX are defined as

f→(A)(y) =
∨

f(x)=y

A(x), f→(B)(x) = B(f(x)).

As extensions of Zadeh’s powersets operators from fuzzy sets to fuzzy sets, four
types of operations [17, 18] are investigated. Using adjunctions, Galois connections
and distance functions, we study various operators from Alexandrov topologies to
Alexandrov topologies in co-residuated lattices.

2. Preliminaries

Definition 2.1 ([11, 12, 13, 14, 15]). An algebra (L,∧,∨,⊕,⊥,>) is called a com-
plete co-residuated lattice, if it satisfies the following conditions:

(C1) L = (L,∨,∧,⊥,>) is a complete lattice, where ⊥ is the bottom element and
> is the top element,

(C2) a = a⊕⊥, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L,
(C3) (

∧
i∈Γ ai)⊕ b =

∧
i∈Γ(ai ⊕ b).

Let (L,≤,⊕) be a complete co-residuated lattice. For each x, y ∈ L, we define

x	 y =
∧
{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z iff x ≥ (z 	 y).

For α ∈ L,A ∈ LX , we denote (α 	 A), (α ⊕ A), αX ∈ LX as (α 	 A)(x) =
α	A(x), (α⊕A)(x) = α⊕A(x), αX(x) = α.

Put n(x) = > 	 x. The condition n(n(x)) = x for each x ∈ L is called a double
negative law.
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Lemma 2.2 ([13, 14, 15]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated lat-
tice. For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, x⊕ y ≤ x⊕ z, y 	 x ≤ z 	 x and x	 z ≤ x	 y.
(2) (

∨
i∈Γ xi)	 y =

∨
i∈Γ(xi 	 y) and x	 (

∧
i∈Γ yi) =

∨
i∈Γ(x	 yi).

(3) (
∧
i∈Γ xi)	 y ≤

∧
i∈Γ(xi 	 y)

(4) x	 (
∨
i∈Γ yi) ≤

∧
i∈Γ(x	 yi).

(5) x	 x = ⊥, x	⊥ = x and ⊥	 x = ⊥. Moreover, x	 y = ⊥ iff x ≤ y.
(6) y ⊕ (x	 y) ≥ x, y ≥ x	 (x	 y) and (x	 y)⊕ (y 	 z) ≥ x	 z.
(7) x	 (y ⊕ z) = (x	 y)	 z = (x	 z)	 y.
(8) x	 y ≥ (x⊕ z)	 (y⊕ z), x	 y ≥ (x	 z)	 (y	 z), y	 x ≥ (z 	 x)	 (z 	 y)

and (x⊕ y)	 (z ⊕ w) ≤ (x	 z)⊕ (y 	 w).
(9) x⊕ y = ⊥ iff x = ⊥ and y = ⊥.
(10) (x⊕ y)	 z ≤ x⊕ (y 	 z) and (x	 y)⊕ z ≥ x	 (y 	 z).
(11) (

∨
i∈Γ xi)	 (

∨
i∈Γ yi) ≤

∨
i∈Γ(xi 	 yi).

(12) (
∧
i∈Γ xi)	 (

∧
i∈Γ yi) ≤

∨
i∈Γ(xi 	 yi).

(13) If L satisfies a double negative law and n(x) = > 	 x, then n(x ⊕ y) =
n(x)	 y = n(y)	 x and x	 y = n(y)	 n(x).

Definition 2.3 ([13, 14, 15]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated
lattice. Let X be a set. A function dX : X ×X → L is called a distance function if
it satisfies the following conditions:

(M1) dX(x, x) = ⊥ for all x ∈ X,
(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z) for all x, y, z ∈ X,
(M3) if dX(x, y) = dX(y, x) = ⊥, then x = y.
The pair (X, dX) is called a distance space.

Remark 2.4 ([13, 14, 15]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated
lattice. Define a function dL : L×L→ L as dL(x, y) = x	y. By Lemma 2.2 (5) and
(6), (L, dL) is a distance space. For τ ⊂ LX , we define a function dτ : τ × τ → L as
dτ (A,B) =

∨
x∈X(A(x)	B(x)). Then (τ, dτ ) is a distance space.

In this paper, we assume (L,∧,∨,⊕,	,⊥,>) is a complete co-residuated lattice.

Definition 2.5 ([15]). Let (X, dX) be a distance space and A ∈ LX .
(1) A point x0 is called a fuzzy join of A, denoted by x0 = tXA, if it satisfies
(J1) A(x) ≥ dX(x, x0),
(J2)

∨
x∈X(dX(x, y)	A(x)) ≥ dX(x0, y).

The pair (X, dX) is called fuzzy join complete, if tXA exists for each A ∈ LX .
A point x1 is called a fuzzy meet of A, denoted by x1 = uXA, if it satisfies
(M1) A(x) ≥ dX(x1, x),
(M2)

∨
x∈X(dX(y, x)	A(x)) ≥ dX(y, x1).

The pair (X, dX) is called fuzzy meet complete, if uXA exists for each A ∈ LX .
The pair (X, dX) is called fuzzy complete, if uXA and tXA exists for each A ∈ LX .

Theorem 2.6 ([15]). Let (X, dX) be a distance space and Φ ∈ LX .
(1) A point x0 is a fuzzy join of Φ iff

∨
x∈X(dX(x, y)	 Φ(x)) = dX(x0, y).

(2) A point x1 is a fuzzy meet of Φ iff
∨
x∈X(dX(y, x)	 Φ(x)) = dX(y, x1).

(3) If tXΦ is a fuzzy join of Φ ∈ LX , then it is unique. Moreover, if uXΦ is a
fuzzy meet of Φ ∈ LX , then it is unique.
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Definition 2.7 ([15]). (1) A subset τ ⊂ LX is called an Alexandrov topology on X,
provided that it satisfies the following conditions:

(A1) if Ai ∈ τ for all i ∈ I, then
∨
i∈I Ai,

∧
i∈I Ai ∈ τ ,

(A2) if A ∈ τ and α ∈ L, then αX , A	 α,A⊕ α ∈ τ .
The pair (X, τ) is called an Alexandrov topological space on X.

Theorem 2.8 ([15]). Let (X, dX) be a distance space. We define

τdX = {A ∈ LX | A(x)⊕ dX(x, y) ≥ A(y)}
τd−1
X

= {A ∈ LX | A(x)⊕ dX(y, x) ≥ A(y)}.

Then the properties hold.
(1) τdX and τd−1

X
are Alexandrov topologies.

(2) (τdX , dτdX ) and (τd−1
X
, dτ

d
−1
X

) are complete lattices.

(3) τdX = {
∨
x∈X A(x)⊕dX(x,−) | A ∈ LX} and τd−1

X
= {
∨
x∈X A(x)⊕dX(−, x) |

A ∈ LX}.

Definition 2.9 ([15]). Let (X, dX) and (Y, dY ) be distance spaces and f : X → Y
be a map. Define f∗ : LX → LY as

f∗(A)(y) =

{
>, if f−1({y}) = ∅,∧
A(x), if x ∈ f−1({y}).

(1) f is called a join (resp. meet) preserving map if f(tXA) = tLXf∗(A) (resp.
f(uXA) = uLXf∗(A)) for each A ∈ LX with tXA (resp.uXA) exists.

(2) f is called a join-meet (resp. meet-join) preserving map if f(tXA) = uLXf∗(A)
(resp. f(uXA) = tLXf∗(A)) for each A ∈ LX with tXA (resp.uXA) exists.

(3) f is called an (resp. dual) embedding map if f is injective an dX(x, y) =
dX(f(x), f(y)) (resp. dX(x, y) = dX(f(y), f(x))) for each x, y ∈ X.

Theorem 2.10 ([15]). Let (X, dX) be a distance space.
(1) Define f : (X, dX) → (τdX , dτdX ) as f(x) = (dX)x. Then f is an embedding

map. Moreover, if tXA exists, then

tτdX f
∗(A) =

∨
x∈X(dX(x,−))	A(x)) = f(tXA),

uτdX f
∗(A) =

∧
z∈X(A(z)⊕ dX(z,−)).

If A ∈ τdX , then uτdX f
∗(A) = A.

(2) Define g : (X, dX)→ (τd−1
X
, dτ

d
−1
X

) as g(x) = (dX)x. Then g is a dual embed-

ding map. Moreover, if uXA exists, then

tτ
d
−1
X

g∗(A) =
∨
x∈X(dX(−, x))	A(x)) = g(uXA),

uτ
d
−1
X

g∗(A) =
∧
z∈X(A(z)⊕ dX(−, z)).

If A ∈ τd−1
X

, then uτ
d
−1
X

g∗(A) = A.

Theorem 2.11 ([15]). Let (X, dX) and (Y, dY ) be distance spaces. Define f⊕, fs⊕ :
LX → LY and f←⊕ , f

s←
⊕ : LX → LY as

f⊕(A)(y) =
∧
x∈X(A(x)⊕ dY (f(x), y)),

fs⊕(A)(y) =
∧
x∈X(A(x)⊕ dY (y, f(x))),
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f←⊕ (B)(x) =
∧
z∈X(B(f(z))⊕ dX(z, x)),

fs←⊕ (B)(x) =
∧
z∈X(B(f(z))⊕ dX(x, z)).

Then the following properties hold.
(1) If f : (X, dX) → (Y, dY ) is a map with dX(x, y) ≥ dY (f(x), f(y)) for each

x, y ∈ X, then dY (tY fs⊕(A), f(tXA)) = ⊥ and dY (f(uXA),uY f⊕(A)) = ⊥, for
each A ∈ LX .

(2) dLX (B,A) ≥ dLY (f⊕(B), f⊕(A)) and dLX (B,A) ≥ dLY (fs⊕(B), fs⊕(A)).
(3) dLY (C,D) ≥ dLX (f←⊕ (C), f←⊕ (E)) and dLY (C,D) ≥ dLX (fs←⊕ (C), fs←⊕ (E)).
(4) f⊕(A) ∈ τdY and fs⊕(A) ∈ τd−1

Y
.

(5) f←⊕ (A) ∈ τdX and fs←⊕ (A) ∈ τd−1
X

.

3. Adjunctions, Galois connections and various operations

Definition 3.1. Let (X, dX) and (Y, dY ) be distance spaces. Let f : X → Y and
g : Y → X be maps.

(i) The pair (f, g) is called an adjunction, if for x, y ∈ X, dY (y, f(x)) = dX(g(y), x)
for each x ∈ X, y ∈ Y .

(ii) The pair (f, g) is called a Galois connection, if for x, y ∈ X, dY (f(x), y) =
dX(g(y), y) for each x ∈ X, y ∈ Y .

Theorem 3.2. Let (X, dX) and (Y, dY ) be distance spaces and f : (X, dX)→ (Y, dY )
be a map with dX(x, z) ≥ dY (f(x), f(z)) for each x, z ∈ X. Let f⊕, fs⊕ : LX → LY

and f←⊕ , f
s←
⊕ : LX → LY be defined as Theorem 2.11. Then the following properties

hold.
(1) fs⊕ : τd−1

X
→ τd−1

Y
and fs←⊕ : τd−1

Y
→ τd−1

X
are well-defined, dτ

d
−1
X

(A,A1) ≥
dτ
d
−1
Y

(fs⊕(A), fs⊕(A1)) and dτ
d
−1
Y

(B,B1) ≥ dτ
d
−1
X

(fs←⊕ (B), fs←⊕ (B1)).

(2) The pair (fs⊕, fs←⊕ ) is an adjunction, i.e., dτ
d
−1
Y

(B, fs⊕(A)) = dτ
d
−1
X

(fs←⊕ (B), A)

for each A ∈ τd−1
X
, B ∈ τd−1

Y
.

(3) f⊕ : τdX → τdY and f←⊕ : τdY → τdX are well-defined, dτdX (A,A1) ≥
dτdY (f⊕(A), f⊕(A1)) and dτdY (B,B1) ≥ dτdX (f←⊕ (B), f←⊕ (B1)).

(4) The pair (f⊕, f←⊕ ) is an adjunction, i.e., dτdY (B, f⊕(A)) = dτdY (f←⊕ (B), A)
for each A ∈ τdX , B ∈ τdY .

(5) Let f⊕ : τdX → τdY be a map in (4). Define g : τdY → τdX as g(B) =
∧
{A ∈

τdX | f⊕(A) ≥ B}. Then g = f←⊕ .
(6) Let f←⊕ : τdY → τdX be a map in (4). Define h : τdX → τdY as h(A) =

∨
{B ∈

τdY | f←⊕ (B) ≤ A}. Then h = f⊕.
(7) Let fs⊕ : τd−1

X
→ τd−1

Y
be a map in (1). Define g : τd−1

Y
→ τd−1

X
as g(B) =∧

{A ∈ τd−1
X
| fs⊕(A) ≥ B}. Then g = fs←⊕ .

(8) Let fs←⊕ : τd−1
Y
→ τd−1

X
be a map in (1). Define h : τd−1

X
→ τd−1

Y
as h(A) =∨

{B ∈ τd−1
Y
| f←s⊕(B) ≤ A}. Then h = fs⊕.

Proof. (1) For each A,A1 ∈ τd−1
X
, B,B1 ∈ τd−1

Y
, by Theorem 2.11, we have

dτ
d
−1
X

(A,A1) ≤ dτ
d
−1
Y

(fs⊕(A), fs⊕(A1)) and dτ
d
−1
Y

(B,B1) ≤ dτ
d
−1
X

(fs←⊕ (B), fs←⊕ (B1)).

(2) For each A ∈ τd−1
X
, B ∈ τd−1

Y
, we get
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dτ
d
−1
Y

(B, fs⊕(A)) =
∨
y∈X(B(y)	 fs⊕(A)(y))

=
∨
y∈X(B(y)	

∧
x∈X(A(x)⊕ dY (y, f(x))))

[By Lemma 2.2 (2,7)]
=
∨
x∈X

∨
y∈X((B(y)	 dY (y, f(x)))	A(x))

≥
∨
x∈X(B(f(x))	A(x))

≥
∨
y∈X(

∧
z∈X(B(f(z))⊕ dX(x, z))	A(x))

= dτ
d
−1
Y

(fs←⊕ (B), A).

Let a ≥ dτ
d
−1
Y

(fs←⊕ (B), A) be given. Then we get

a⊕A(x) ≥ fs←⊕ (B)(x) =
∧
z∈X

(B(f(z))⊕ dX(x, z)).

Thus we have
a⊕ fs⊕(A)(y) =

∧
x∈X(a⊕A(x)⊕ dY (y, f(x)))

≥
∧
x∈X(

∧
z∈X(B(f(z))⊕ dX(x, z))⊕ dY (y, f(x)))

≥
∧
z∈X(B(f(z))⊕

∧
x∈X(dY (f(x), f(z))⊕ dY (y, f(x))))

≥
∧
z∈X(B(f(z))⊕ dY (y, f(z)))

≥ B(y). [Because B ∈ τd−1
Y

]

So a ≥ B(y)	 fs⊕(A)(y). It implies dτ
d
−1
Y

(fs←⊕ (B), A) ≥ dτ
d
−1
X

(B, fs⊕(A)).

(3) and (4) are similarly proved as (1) and (2) respectively.
(5) Since dτdY (B, f⊕(f←⊕ (B))) = dτdY (f←⊕ (B), f←⊕ (B)) = ⊥, by (4), we get

f⊕(f←⊕ (B)) ≥ B and f←⊕ (B) ∈ τdX .

Then g(B) ≤ f←⊕ (B). Since dτdY (B, f⊕(
∧
i∈I Ai)) = dτdX (f←⊕ (B),

∧
i∈I Ai) =∨

i∈I dτdX (f←⊕ (B), Ai) =
∨
i∈I dτdY (B, f⊕(Ai)) = dτdY (B,

∧
i∈I f

⊕(Ai)), we have

f⊕(
∧
i∈I

Ai) =
∧
i∈I

f⊕(Ai).

Thus f⊕(g(B)) ≥ B. So we get

> = dτdY (B, f⊕(g(B))) = dτdY (f←⊕ (B), g(B)), f←⊕ (B) ≤ g(B).

Hence the result holds.
(6) Since dτdY (f←⊕ (f⊕(A)), A) = dτdX (f⊕(A), f⊕(A)) = ⊥, by (4), we have

f←⊕ (f⊕(A)) ≤ A and f⊕(A) ∈ τdY .

Then h(A) ≥ f⊕(B). Since dτdX (f←⊕ (
∨
i∈I Bi), A) = dτdY (

∨
i∈I Bi, f

⊕(A))

=
∨
i∈I dτdY (Bi, f

⊕(A)) =
∨
i∈I dτdX (f←⊕ (Bi), A) = dτdX (

∨
i∈I f

←
⊕ (Bi), A), we get

f←⊕ (
∨
i∈I

Bi) =
∨
i∈I

f←⊕ (Bi).

Thus f←⊕ (h(A)) ≤ A. So

> = dτdX (f←⊕ (h(A)), A) = dτdY (h(A), f⊕(A)), h(A) ≤ f←⊕ (B).

Hence the result holds.
(7) and (8) are similarly proved as (5) and (6) respectively. �
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Theorem 3.3. Let (X, dX) and (Y, dY ) be distance spaces and f : (X, dX)→ (Y, dY )
be a map with dX(x, z) ≥ dY (f(x), f(z)) for each x, z ∈ X. Then the following
properties hold.

(1) If fs⊕ : (τd−1
X
, dτ

d
−1
X

) → (τd−1
Y
, dτ

d
−1
Y

) and fs←⊕ : (τd−1
Y
, dτ

d
−1
Y

) → (τd−1
X
, dτ

d
−1
X

),

then for all U ∈ L
τ
d
−1
X and W ∈ L

τ
d
−1
Y ,

fs⊕(uτ
d
−1
X

U) = uτ
d
−1
Y

(fs⊕)∗(U) and tτ
d
−1
X

(fs←⊕ )∗(W) = fs←⊕ (tτ
d
−1
Y

W).

(2) If f⊕ : (τdX , dτdX ) → (τdY , dτdY ) and f←⊕ : (τdY , dτdY ) → (τdX , dτdX ), then
for all U ∈ LτdX and W ∈ LτdY ,

f⊕(uτdX U) = uτdY (f⊕)∗(U) and tτdX (f←⊕ )∗(W) = f←⊕ (tτdYW).

Proof. (1) Let U ∈ L
τ
d
−1
X . Then We have

dτ
d
−1
Y

(C,uτ
d
−1
Y

(fs⊕)∗(U)) =
∨
B∈τ

d
−1
Y

(dτ
d
−1
Y

(C,B)	 (fs⊕)∗(U)(B))

=
∨
B∈τ

d
−1
Y

(dτ
d
−1
Y

(C,B)	
∧
fs⊕(D)=B U(D))

=
∨
D∈τ

d
−1
X

(dτ
d
−1
Y

(C, fs⊕(D))	 U(D))

=
∨
D∈τ

d
−1
X

(dτ
d
−1
X

(fs←⊕ (C), D)	 U(D))

[By Theorem 3.2 (2)]
= dτ

d
−1
X

(fs←⊕ (C),uτ
d
−1
X

U))

= dτ
d
−1
Y

(C, fs⊕(uτ
d
−1
X

U)).

Thus we get fs⊕(uτ
d
−1
X

U) = uτ
d
−1
Y

(fs⊕)∗(U).

Now let W ∈ L
τ
d
−1
Y . Then we get

dτ
d
−1
X

(tτ
d
−1
X

(f←s⊕)∗(W), C) =
∨
D∈τ

d
−1
X

(dτ
d
−1
X

(D,C)	 (fs←⊕ )∗(W)(D))

=
∨
D∈τ

d
−1
X

(dτ
d
−1
X

(D,C)	
∧
fs←⊕ (E)=D(W(E))

=
∨
E∈τ

d
−1
Y

(dτ
d
−1
X

(fs←⊕ (E), C)	W(E))

=
∨
E∈τ

d
−1
Y

(dτ
d
−1
Y

(E, fs⊕(C))	W(E))

[By Theorem 3.2 (2)]
= dτ

d
−1
Y

(tτ
d
−1
Y

W, fs⊕(C))

= dτ
d
−1
X

(fs←⊕ (tτ
d
−1
Y

W), C).

Thus we have tτ
d
−1
X

(fs←⊕ )∗(W) = fs←⊕ (tτ
d
−1
Y

W).

(2) It is similarly proved as (1). �

Remark 3.4. Let ([0, 1],≤,∨,∧,⊕,	, 0, 1) be a complete co-residuated lattice de-
fined as n(x) = 1− x,

x⊕ y = (x+ y) ∧ 1, x	 y = (x− y) ∨ 0.

Let X,Y be sets and f : X → Y a function. Define dX ∈ LX×X , dY ∈ LY×Y as

dX(x, z) =

{
0, if z = x,
1, if z 6= x,

dY (y, w) =

{
0, if y = w,
1, if y 6= w.
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Then we easily show that dX and dY are distance functions. Since f is a function,
dX(x, z) ≥ dY (f(x), f(z)). Thus we have

τdX = {A ∈ LX | A(x)⊕ dX(x, y) ≥ A(y)} = LX = τd−1
X
.

Moreover, τdY = LY = τd−1
Y
. For f∗ in Definition 2.9, we obtain

f⊕(A)(y) =
∧
x∈X(A(x)⊕ dY (f(x), y)) = fs⊕(A)(y) = f∗(A)(y),

f←⊕ (B)(x) =
∧
z∈X(B(f(z))⊕ dX(z, x)) = B(f(x)) = fs←⊕ (B)(x).

For each A ∈ τdX = LX , B ∈ τdY = LY , we get

dLY (B, f⊕(A)) = dLY (B, f∗(A)) = dLX (f←⊕ (B), A) = dLX (f←(B), A).

So (f∗, f←) is an adjunction. It is the concept of Zadeh’s powerset operations (See
[5]).

From Theorem 3.3, it is clear that for all U ∈ LLX and W ∈ LLY ,

f⊕(uLXU) = uLY (f⊕)∗(U) and tLX (f←⊕ )∗(W) = f←⊕ (tLYW).

Remark 3.5. Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated lattice. Using
adjunctions and Galois connections, we will define a formal fuzzy concept and an
attribute-oriented fuzzy concept as follows:

Let F : LX → LY , G : LY → LX be maps where X is a set of objects and
Y is a set of attributes. If (F,G) is a Galois connection, i.e., dLY (F (A), B) =
dLX (G(B), A), then a formal fuzzy concept is a pair (A,B) ∈ LX × LY such that
F (A) = B,G(B) = A as a Bělohlávek’s sense (See [2, 3]).

If (F,G) is an adjunction, i.e., dLY (B,F (A)) = dLX (G(B), A), then an attribute-
oriented fuzzy concept is a pair (A,B) ∈ LX × LY such that F (A) = B,G(B) = A
as a Georgescu and Popescu’s sense (See [16]).

Theorem 3.6. Let (X, dX) and (Y, dY ) be distance spaces and f : X → Y be a
map. Define f	, fs	 : LX → LY and f←	 , f

s←
	 : LY → LX as

f	(A)(y) =
∨
x∈X(dY (f(x), y)	A(x)),

fs	(A)(y) =
∨
x∈X(dY (y, f(x))	A(x)),

f←	 (B)(x) =
∨
z∈X(dX(z, x)	B(f(z))),

fs←	 (B)(x) =
∨
z∈X(dX(x, z)	B(f(z))).

For each A,C ∈ LX and B,D ∈ LY , the followings hold.
(1) dLX (A,C) ≥ dLY (f	(C), f	(A)) and dLX (A,C) ≥ dLY (fs	(C), fs	(A)).
(2) dLY (B,D) ≥ dLX (f←	 (D), f←	 (B)) and dLY (B,D) ≥ dLX (fs←	 (D), fs←	 (B)).
(3) f	(A) ∈ τdY and fs	(A) ∈ τd−1

Y
.

(4) f←	 (B) ∈ τdY and fs←	 (B) ∈ τd−1
Y

.

Proof. (1) For A,C ∈ LX ,
dLY (f	(C), f	(A))

=
∨
x∈X(dY (f(x), y)	 C(x))	

∨
x∈X(dY (f(x), y)	A(x))

≤
∨
x∈X((dY (f(x), y)	C(x))	 (dY (f(x), y)	A(x))) [By Lemma 2.2 (8,11)]

≤
∨
x∈X(A(x)	 C(x)).

Similarly, dLX (A,C) ≥ dLY (fs	(C), fs	(A)).
(2) For B,C ∈ LY ,
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dLX (f←	 (C), f←	 (B))
=
∨
x∈X(dX(z, x)	 C(f(x)))	

∨
x∈X(dX(x, z)	B(f(x)))

≤
∨
x∈X((dX(x, z)	 C(f(x)))	 (dX(x, z)	B(f(x))))

[By Lemma 2.2 (8,11)]
≤
∨
x∈X(B(f(x))	 C(f(x))) ≤ dLY (B,C).

Similarly, dLY (B,C) ≥ dLX (fs←	 (C), fs←	 (A)).

(3) For A ∈ LX ,
A(x)⊕ f	(A)(y)⊕ dY (y, w)

= A(x)⊕ (
∨
x∈X(dY (f(x), y)	A(x)))⊕ dY (y, w)

≥ dY (f(x), y))⊕ dY (y, w) ≥ dY (f(x), w).
Then f	(A)(y)⊕ dY (y, w) ≥ f	(A)(w) and f	(A) ∈ τdX .

Other case is similarly proved.
(4) For B ∈ LY ,

B(f(z))⊕ fs←	 (B)(x)⊕ dX(w, x)
= B(f(z))⊕ (

∨
z∈X((dX(x, z)	B(f(z)))⊕ dX(w, x)

≥ dX(x, z))⊕ dX(w, x) ≥ dX(w, z).
Then fs←	 (B)(x)⊕ dX(w, x) ≥ fs←	 (B)(w) and fs←	 (B) ∈ τd−1

X
. �

Theorem 3.7. Let (X, dX) and (Y, dY ) be distance spaces and f : (X, dX)→ (Y, dY )
be a map with dX(x, y) ≤ dY (f(x), f(y)) for all x, y ∈ X. Let f	, fs	 : LX → LY

and f←	 , f
s←
	 : LY → LX be defined as Theorem 3.6. Then the following properties

hold.
(1) Two operations f	 : τd−1

X
→ τdY , fs←	 : τdY → τd−1

X
satisfy dτdY (f	(A), B) ≤

dτ
d
−1
X

(fs←	 (B), A) and f	(fs←	 (B)) ≤ B. Moreover, if f is surjective and dX(x, y) =

dY (f(x), f(y)) for all x, y ∈ X, then the pair (f	, fs←	 ) is a Galois connection, i.e.,
dτdY (f	(A), B) = dτ

d
−1
X

(fs←	 (B), A).

(2) Two operations fs	 : τdX → τd−1
Y

, f←	 : τd−1
Y
→ τdX satisfy dτ

d
−1
Y

(fs	(A), B) ≤
dτdX (f←	 (B), A). Moreover, if f is surjective and dX(x, y) = dY (f(x), f(y)) for all

x, y ∈ X, then the pair (fs	, f←	 ) is a Galois connection, i.e., dτ
d
−1
Y

(fs	(A), B) =

dτdX (f←	 (B), A).

Proof. (1) For A ∈ τd−1
X
, B ∈ τdY ,

dτdY (f	(A), B) =
∨
y∈Y (f	(A)(y)	B(y))

=
∨
y∈Y (

∨
x∈X(dY (f(x), y)	A(x))	B(y))

=
∨
x∈X(

∨
y∈Y (dY (f(x), y)	B(y))	A(x))

[By Lemma 2.2 (2,7)]
≥
∨
x∈X(

∨
z∈X(dY (f(x), f(z))	B(f(z)))	A(x))

≥
∨
x∈X(

∨
z∈X(dX(x, z)	B(f(z)))	A(x))

=
∨
x∈X(fs←	 (B)(x)	A(x)) = dτ

d
−1
X

(fs←	 (B), A).

Moreover, we get

⊥ = dτdY (f	(A), f	(A)) ≥ dτ
d
−1
X

(fs←	 (f	(A)), A) = ⊥.

Then fs←	 (f	(A))) ≤ A.
If f is surjective and dX(x, y) = dY (f(x), f(y)) for all x, y ∈ X, then we have
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dτdY (f	(A), B) =
∨
y∈Y (f	(A)(y)	B(y))

=
∨
y∈Y (

∨
x∈X(dY (f(x), y)	A(x))	B(y))

=
∨
x∈X(

∨
y∈Y (dY (f(x), y)	B(y))	A(x))

=
∨
x∈X(

∨
z∈X(dY (f(x), f(z))	B(f(z)))	A(x))

=
∨
x∈X(

∨
z∈X(dX(x, z)	B(f(z)))	A(x))

=
∨
x∈X(fs←	 (B)(x)	A(x)) = dτ

d
−1
X

(fs←	 (B), A).

Thus dτdY (f	(A), B) = dτ
d
−1
X

(fs←	 (B), A).

(2) It is similarly proved as (1). �

Theorem 3.8. Let (X, dX) and (Y, dY ) be distance spaces and f : (X, dX)→ (Y, dY )
be a surjective map with dX(x, z) = dY (f(x), f(z)) for each x, z ∈ X. Let f	, fs	 :
LX → LY and f←	 , f

s←
	 : LY → LX be defined as Theorem 3.6. Then the following

properties hold.
(1) If f	 : (τd−1

X
, dτ

d
−1
X

)→ (τdY , dτdY ) and fs←	 : (τdY , dτdY )→ (τd−1
X
, dτ

d
−1
X

), then

for all U ∈ L
τ
d
−1
X and W ∈ LτdY ,

f	(uτ
d
−1
X

U) = tτdY (f	)∗(U) and tτ
d
−1
X

(fs←	 )∗(W) = fs←	 (uτdYW).

(2) If fs	 : (τdX , dτdX ) → (τd−1
Y
, dτ

d
−1
Y

) and f←	 : (τd−1
Y
, dτ

d
−1
Y

) → (τdX , dτdX ),

then for all U ∈ LτdX and W ∈ L
τ
d
−1
Y ,

fs	(uτdX U) = tτ
d
−1
Y

(fs	)∗(U) and tτdX (f←	 )∗(W) = f←	 (uτ
d
−1
Y

W).

(3) Let f	 : (τd−1
X
, dτ

d
−1
X

) → (τdY , dτdY ) be a map. Define g : (τdY , dτdY ) →
(τd−1

X
, dτ

d
−1
X

) as g(B) =
∧
{A ∈ τd−1

X
| f	(A) ≤ B}. Then g = fs←	 .

(4) Let fs	 : (τdX , dτdX ) → (τd−1
Y
, dτ

d
−1
Y

) be a map. Define h : (τd−1
Y
, dτ

d
−1
Y

) →
(τdX , dτdX ) as h(B) =

∧
{A ∈ τdX | fs	(A) ≤ B}. Then h = f←	 .

Proof. (1) Let U ∈ L
τ
d
−1
X . Then we have

dτdY (tτdY (f	)∗(U), C) =
∨
B∈τdY

(dτdY (B,C)	 (f	)∗(U)(B))

=
∨
B∈τdY

(dτdY (B,C)	
∧
f	(D)=B U(D))

=
∨
D∈τ

d
−1
X

(dτdY (f	(D), C)	 U(D))

=
∨
D∈τ

d
−1
X

(dτ
d
−1
X

(fs←	 (C), D)	 U(D))

[By Theorem 3.7 (1)]
= dτ

d
−1
X

(fs←	 (C),uτ
d
−1
X

U))

= dτdY (f	(uτ
d
−1
X

U), C).

Thus we get f	(uτ
d
−1
X

U) = tτdY (f	)∗(U)

Now let W ∈ L
τ
d
−1
Y . The we have

dτ
d
−1
X

(tτ
d
−1
X

(f←s	)∗(W), C) =
∨
D∈τ

d
−1
X

(dτ
d
−1
X

(D,C)	 (fs←	 )∗(W)(D))

=
∨
D∈τ

d
−1
X

(dτ
d
−1
X

(D,C)	
∧
fs←	 (E)=D(W(E))

=
∨
E∈τdY

(dτ
d
−1
X

(fs←	 (E), C)	W(E))
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=
∨
E∈τdY

(dτdY (f	(C), E)	W(E))

[By Theorem 3.7 (1)]
= dτdY (f	(C),uτdYW)

= dτ
d
−1
X

(fs←	 (uτdYW), C).

Thus we get tτ
d
−1
X

(fs←	 )∗(W) = fs←	 (uτdYW).

(3) Since dτdY (f	(fs←	 (B)), B) = dτdX (fs←	 (B), fs←	 (B)) = ⊥, by (1), we have

f	(fs←	 (B)) ≤ B and fs←	 (B) ∈ τd−1
X
.

Then g(B) ≤ fs←	 (B). Since dτdY (f	(
∧
i∈I Ai), B) = dτdX (fs←	 (B),

∧
i∈I Ai) =∨

i∈I dτdX (fs←	 (B), Ai) =
∨
i∈I dτdY (f	(Ai), B) = dτdY (

∨
i∈I f

	(Ai), B), we have

f	(
∧
i∈I Ai) =

∨
i∈I f

	(Ai). Thus f	(g(B)) ≤ B. So > = dτdY (f	(g(B)), B) =

dτdY (fs←	 (B), g(B)), fs←	 (B) ≤ g(B). Hence the result holds.

(2) and (4) are similarly proved as (1) and (3) respectively. �

Example 3.9. Let ([0, 1],≤,∨,∧,⊕,	, 0, 1) be a complete co-residuated lattice de-
fined as n(x) = 1− x,

x⊕ y = (x+ y) ∧ 1, x	 y = (x− y) ∨ 0.

Let X = {a, b, c} be a set and A,B ∈ [0, 1]X with

A(x) = 0.3, A(y) = 0.2, A(z) = 0.5, B(x) = 0.6, B(y) = 0.3, B(z) = 0.5.

Define dX ∈ LX×X as

dX =

 0 0.5 0.8
0.7 0 0.6
0.4 0.6 0


Then we easily show that dX is a distance function. Moreover,

A =
∧
x∈X(A(x)⊕ dX(x,−)) =

∧
x∈X(A(x)⊕ dX(−, x))

B =
∧
x∈X(B(x)⊕ dX(x,−)) =

∧
x∈X(B(x)⊕ dX(−, x)).

Thus by Theorem 2.8 (3), A,B ∈ τdX , A,B ∈ τd−1
X
.

(1) Define f : (X, dX)→ (τdX , dτdX ) as f(x) = (dX)x, where (dX)x(z) = dX(x, z)

in Theorem 2.10 (1). Moreover, dX(x, y) = dτdX (f(x), f(y)). By Theorem 3.2,

we obtain f⊕ : τdX → τdτdX
, f←⊕ : τdτdX

→ τdX ,where τdτdX
= {α ∈ LL

X |
α(A)⊕ dτdX (A,B) ≥ α(B)}. For A,B ∈ τdX ,

f⊕(A)(B) =
∧
x∈X(dτdX ((dX)x, B)⊕A(x)

= (0.3⊕ 0.3) ∧ (0.1⊕ 0.2) ∧ (0.3⊕ 0.5)
= 0.3,

f←⊕ (Ψ)(x) =
∧
z∈X(dX(z, x)⊕Ψ(f(z))),

f⊕(A)(f(−)) =
∧
z∈X(dτdX ((dX)z, (dX)−)⊕A(z))

=
∧
z∈X(dX(z,−)⊕A(z))

= (0.3, 0.2, 0.5),

f←⊕ (f⊕(A))(−) =
∧
z∈X(dX(z,−)⊕ f⊕(A)(f(z)))

=
∧
z∈X(dX(z,−)⊕A(z))
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= (0.3, 0.2, 0.5) = A.
Then dτdτdX

(Ψ, f⊕(A)) = dτdX (f←⊕ (Ψ), A), i.e., (f⊕, f←⊕ ) is an adjunction.

(2) Define g : (X, d−1
X ) → (τd−1

X
, dτ

d
−1
X

) as g(x) = (dX)x, where (dX)x(z) =

dX(z, x) in Theorem 2.10 (2). Moreover, d−1
X (x, y) = dτ

d
−1
X

(g(x), g(y)). By Theorem

3.2, we obtain gs⊕ : τd−1
X
→ τd−1

τ
d
−1
X

, gs←⊕ : τd−1
τ
d
−1
X

→ τd−1
X

. Then

gs⊕(A)(B) =
∧
x∈X(dτ

d
−1
X

(B, (dX)x)⊕A(x))

= (0.6⊕ 0.3) ∧ (0.3⊕ 0.2) ∧ (0.5⊕ 0.5)
= 0.5,

gs⊕(A)(g(−)) =
∧
x∈X(dτ

d
−1
X

(g(−), (dX)x)⊕A(x)

=
∧
x∈X(dX(x,−)⊕A(x) = A,

gs←⊕ (Ψ)(x) =
∧
z∈X(dX(x, z)⊕Ψ(f(z))),

gs←⊕ (gs⊕(A))(−) =
∧
z∈X(dX(−, z)⊕A(z)) = A.

Thus dτ
d
−1
τ
d
−1
X

(Ψ, gs⊕(A)) = dτ
d
−1
X

(gs←⊕ (Ψ), A), i.e., (gs⊕, gs←⊕ ) is an adjunction.

(3) Since f : (X, dX)→ (τdX , dτdX ) as f(x) = (dX)x, where dX(x, y) = dτdX (f(x), f(y))

for each x, y ∈ X, by Theorem 3.7 and (1), we obtain

f	 : τd−1
X
→ τdτdX

, fs←	 : τdτdX
→ τd−1

X
.

But f is not surjective and dτdτdX
(f	(C), D) ≤ dτ

d
−1
X

(fs←	 (D), C) and f	(fs←	 (D)) ≤
D. For A,B ∈ τd−1

X
,

f	(A)(B) =
∨
x∈X(dτdX ((dX)x, B)	A(x))

= (0.3	 0.3) ∨ (0.1	 0.2) ∨ (0.3	 0.5)
= 0,

f	(A)(f(−)) =
∨
x∈X(dτdX ((dX)x, (dX)−)	A(x))

=
∨
x∈X(dX)(x,−)	A(x)) = (0.5, 0.2, 0.5),

fs←	 (Ψ)(x) =
∨
z∈X(dX(x, z)	Ψ(f(z))),

fs←	 (f	(A))(−) =
∨
z∈X(dX(−, z)	 f	(A)(f(z)))

= (0.3, 0.2, 0.4)
< A.

(4) Since g : (X, d−1
X ) → (τd−1

X
, dτ

d
−1
X

) as g(x) = (dX)x, where d−1
X (x, y) =

dτ
d
−1
X

(g(x), g(y)) for each x, y ∈ X, by Theorem 3.7, we obtain

gs	 : τd−1
X
→ τd−1

τ
d
−1
X

, g←	 : τd−1
τ
d
−1
X

→ τd−1
X
.

But g is not surjective and dτ
d
−1
τ
d
−1
X

(gs	(C), D) ≤ dτ
d
−1
X

(g←	 (D), C) and gs	(g←	 (D)) ≤

D. For A,B ∈ τd−1
X

,
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gs	(A)(B) =
∨
x∈X(dτ−1

dX

(B, (dX)x)	A(x))

= (0.6	 0.3) ∨ (0.3	 0.2) ∨ (0.5	 0.5)
= 0.3,

gs	(A)(g(−)) =
∨
x∈X(dτ−1

dX

((dX)−, (dX)x)	A(x))

=
∨
x∈X(dX)(x,−)	A(x))

= (0.5, 0.2, 0.5),

g←	 (Ψ)(x) =
∨
z∈X(dX(z, x)	Ψ(g(z))),

g←	 (gs	(A))(−) =
∨
z∈X(dX(z,−)	 gs	(A)(g(z)))

= (0.5, 0.1, 0.4).
Then 0 = dτ

d
−1
τ
d
−1
X

(gs	(A), gs	(A)) < dτdX (g←	 (gs	(A)), A) = 0.2.

Let Y = {x, y, z} and f : X → Y be a function as f(a) = f(b) = x, f(c) = y.
Define dY ∈ LY×Y as

dY =

 0 0.4 0.9
0.3 0 0.5
0.7 0.4 0


Then dX(a, b) ≥ dY (f(a), f(b)) for all a, b ∈ X. The properties of Theorems 3.2 and
3.3 hold.

4. Conclusion

Using distance functions, we have investigated adjunctions, Galois connections
and join (meet) preserving maps between various operations based on co-residuated
lattices. As applications for adjunctions and Galois connections, we can define a
formal fuzzy concept and an attribute-oriented fuzzy concept in Remark 3.5. As
extensions of Rodabough’s the adjoint function theorem using the adjunctions, we
have studied various operators from Alexandrov topologies to Alexandrov topologies
in co-residuated lattices.

In the future, by using the concepts of adjunctions, Galois connections and join
(meet) preserving maps between various operations, information systems and deci-
sion rules are investigated in co-residuated lattices.

Funding: This work was supported by the Research Institute of Natural Science
of Gangneung-Wonju National University.
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[4] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht 1998.
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