Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 3, (December 2021) pp. 297-310
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.3.297

@FMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Adjunctions and Galois connections in complete co-residuated lattices

Ju-mok Oh, Yong Chan Kim

Reprinted from the
Annals of Fuzzy Mathematics and Informatics
Vol. 22, No. 3, December 2021

Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 3, (December 2021) pp. 297-310
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.3.297

@FMII

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Adjunctions and Galois connections in complete co-residuated lattices

Ju-mok Oh, Yong Chan Kim

Received 3 July 2021; Revised 25 August 2021; Accepted 24 September 2021
Abstract. In this paper, using distance function based on complete co-residuated lattices, we investigate adjunctions, Galois connections and join (meet) preserving maps between various operations as extensions of Zadeh powerset operations. We give their examples.

2020 AMS Classification: 03E72, 54A40, 54B10
Keywords: Complete co-residuated lattices, Distance functions, Adjunctions, Galois connections, Alexandrov topologies.

Corresponding Author: Yong Chan Kim (yck@gwnu.ac.kr)

1. Introduction

\mathbf{W} ard et al. [1] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Bělohlávek [2, 3] investigated the properties of fuzzy Galois connections and fuzzy closure operators on a residuated lattice which supports part of foundation of theoretic computer science. By using the concepts of lower and upper approximation operators, information systems and decision rules are investigated in complete residuated lattices $[1,2,3,4,5,6,7,8,9,10]$.

As a dual sense of complete residuated lattice, Zheng et al. [11] introduced a complete co-residuated lattice as the generalization of t-conorm. Junsheng et al. [12] investigated $(\odot, \&)$-generalized fuzzy rough set on $(L, \odot, \&)$ where $(L, \&)$ is a complete residuated lattice and (L, \odot) is a complete co-residuated lattice. Kim and Ko [13] introduced the concepts of fuzzy join and meet complete lattices using distance spaces instead of fuzzy partially ordered spaces in complete co-residuated lattices. Moreover, Oh and Kim [14, 15] investigated the properties of Alexandrov fuzzy topologies, distance functions, join preserving maps, join approximation maps fuzzy complete lattices using distance functions instead of fuzzy partially orders in complete co-residuated lattices.

Bělohlávek [2, 3] introduced the notion of formal concepts with $R \in L^{X \times Y}$ on a complete residuated lattice (L, \odot, \rightarrow). A formal fuzzy concept is a pair $(A, B) \in$ $L^{X} \times L^{Y}$ such that $F(A)=B, G(B)=A$ where $F: L^{X} \rightarrow L^{Y}, G: L^{Y} \rightarrow L^{X}$ are defined as

$$
\begin{aligned}
& F(A)(y)=\bigwedge_{x \in X}(A(x) \rightarrow R(x, y)), \\
& G(B)(x)=\bigwedge_{y \in Y}(B(y) \rightarrow R(x, y))
\end{aligned}
$$

Moreover, (F, G) is a Galois connection, i.e., $e_{L^{Y}}(B, F(A))=e_{L^{X}}(A, G(B))$, where $e_{L^{Y}}$ is a partially order defined as $e_{L^{Y}}(B, F(A))=\bigwedge_{y \in Y}(B(y) \rightarrow F(A)(y))$.

Georgescu and Popescu [16] proposed attribute-oriented fuzzy concept lattices. A attribute-oriented fuzzy concept is a pair $(A, B) \in L^{X} \times L^{Y}$ such that $F(A)=$ $B, G(B)=A$, where $F: L^{X} \rightarrow L^{Y}, G: L^{Y} \rightarrow L^{X}$ are defined as

$$
\begin{aligned}
& F(A)(y)=\bigvee_{x \in X}(A(x) \odot R(x, y)) \\
& G(B)(x)=\bigwedge_{y \in Y}(R(x, y) \rightarrow B(y))
\end{aligned}
$$

Moreover, (F, G) is a adjunction, i.e., $e_{L^{Y}}(F(A), B)=e_{L^{X}}(A, G(B))$.
Our aim of this paper, using the distance functions $d_{L^{X}}$ instead of fuzzy partially ordered sets $e_{L^{x}}$ based on complete co-residuated lattices, we investigate adjunctions, Galois connections and join (meet) preserving maps on Alexandrov topologies. As applications of this paper, using adjunctions and Galois connections, we define a formal fuzzy concept and an attribute-oriented fuzzy concept in Remark 3.5.

Rodabough [5] introduced the adjoint function theorem using the adjunctions. He showed that $\left(f^{\rightarrow}, f^{\leftarrow}\right)$ is an adjunction, where Zadeh's powersets operators f^{\rightarrow} : $L^{X} \rightarrow L^{Y}, f^{\leftarrow}: L^{Y} \rightarrow L^{X}$ are defined as

$$
f^{\rightarrow}(A)(y)=\bigvee_{f(x)=y} A(x), f^{\rightarrow}(B)(x)=B(f(x))
$$

As extensions of Zadeh's powersets operators from fuzzy sets to fuzzy sets, four types of operations [17, 18] are investigated. Using adjunctions, Galois connections and distance functions, we study various operators from Alexandrov topologies to Alexandrov topologies in co-residuated lattices.

2. Preliminaries

Definition 2.1 ($[11,12,13,14,15])$. An algebra $(L, \wedge, \vee, \oplus, \perp, \top)$ is called a complete co-residuated lattice, if it satisfies the following conditions:
(C1) $L=(L, \vee, \wedge, \perp, \top)$ is a complete lattice, where \perp is the bottom element and \top is the top element,
(C2) $a=a \oplus \perp, a \oplus b=b \oplus a$ and $a \oplus(b \oplus c)=(a \oplus b) \oplus c$ for all $a, b, c \in L$,
(C3) $\left(\bigwedge_{i \in \Gamma} a_{i}\right) \oplus b=\bigwedge_{i \in \Gamma}\left(a_{i} \oplus b\right)$.
Let (L, \leq, \oplus) be a complete co-residuated lattice. For each $x, y \in L$, we define

$$
x \ominus y=\bigwedge\{z \in L \mid y \oplus z \geq x\}
$$

Then $(x \oplus y) \geq z$ iff $x \geq(z \ominus y)$.
For $\alpha \in L, A \in L^{X}$, we denote $(\alpha \ominus A),(\alpha \oplus A), \alpha_{X} \in L^{X}$ as $(\alpha \ominus A)(x)=$ $\alpha \ominus A(x),(\alpha \oplus A)(x)=\alpha \oplus A(x), \alpha_{X}(x)=\alpha$.

Put $n(x)=\top \ominus x$. The condition $n(n(x))=x$ for each $x \in L$ is called a double negative law.

Lemma $2.2([13,14,15])$. Let $(L, \wedge, \vee, \oplus, \ominus, \perp, \top)$ be a complete co-residuated lattice. For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z, x \oplus y \leq x \oplus z, y \ominus x \leq z \ominus x$ and $x \ominus z \leq x \ominus y$.
(2) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \ominus y=\bigvee_{i \in \Gamma}\left(x_{i} \ominus y\right)$ and $x \ominus\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigvee_{i \in \Gamma}\left(x \ominus y_{i}\right)$.
(3) $\left(\bigwedge_{i \in \Gamma} x_{i}\right) \ominus y \leq \bigwedge_{i \in \Gamma}\left(x_{i} \ominus y\right)$
(4) $x \ominus\left(\bigvee_{i \in \Gamma} y_{i}\right) \leq \bigwedge_{i \in \Gamma}\left(x \ominus y_{i}\right)$.
(5) $x \ominus x=\perp, x \ominus \perp=x$ and $\perp \ominus x=\perp$. Moreover, $x \ominus y=\perp$ iff $x \leq y$.
(6) $y \oplus(x \ominus y) \geq x, y \geq x \ominus(x \ominus y)$ and $(x \ominus y) \oplus(y \ominus z) \geq x \ominus z$.
(7) $x \ominus(y \oplus z)=(x \ominus y) \ominus z=(x \ominus z) \ominus y$.
(8) $x \ominus y \geq(x \oplus z) \ominus(y \oplus z), x \ominus y \geq(x \ominus z) \ominus(y \ominus z), y \ominus x \geq(z \ominus x) \ominus(z \ominus y)$ and $(x \oplus y) \ominus(z \oplus w) \leq(x \ominus z) \oplus(y \ominus w)$.
(9) $x \oplus y=\perp$ iff $x=\perp$ and $y=\perp$.
(10) $(x \oplus y) \ominus z \leq x \oplus(y \ominus z)$ and $(x \ominus y) \oplus z \geq x \ominus(y \ominus z)$.
(11) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \ominus\left(\bigvee_{i \in \Gamma} y_{i}\right) \leq \bigvee_{i \in \Gamma}\left(x_{i} \ominus y_{i}\right)$.
(12) $\left(\bigwedge_{i \in \Gamma} x_{i}\right) \ominus\left(\bigwedge_{i \in \Gamma} y_{i}\right) \leq \bigvee_{i \in \Gamma}\left(x_{i} \ominus y_{i}\right)$.
(13) If L satisfies a double negative law and $n(x)=\top \ominus x$, then $n(x \oplus y)=$ $n(x) \ominus y=n(y) \ominus x$ and $x \ominus y=n(y) \ominus n(x)$.

Definition $2.3([13,14,15])$. Let $(L, \wedge, \vee, \oplus, \ominus, \perp, \top)$ be a complete co-residuated lattice. Let X be a set. A function $d_{X}: X \times X \rightarrow L$ is called a distance function if it satisfies the following conditions:
(M1) $d_{X}(x, x)=\perp$ for all $x \in X$,
(M2) $d_{X}(x, y) \oplus d_{X}(y, z) \geq d_{X}(x, z)$ for all $x, y, z \in X$,
(M3) if $d_{X}(x, y)=d_{X}(y, x)=\perp$, then $x=y$.
The pair $\left(X, d_{X}\right)$ is called a distance space.
Remark $2.4([13,14,15])$. Let $(L, \wedge, \vee, \oplus, \ominus, \perp, \top)$ be a complete co-residuated lattice. Define a function $d_{L}: L \times L \rightarrow L$ as $d_{L}(x, y)=x \ominus y$. By Lemma 2.2 (5) and (6), $\left(L, d_{L}\right)$ is a distance space. For $\tau \subset L^{X}$, we define a function $d_{\tau}: \tau \times \tau \rightarrow L$ as $d_{\tau}(A, B)=\bigvee_{x \in X}(A(x) \ominus B(x))$. Then $\left(\tau, d_{\tau}\right)$ is a distance space.

In this paper, we assume $(L, \wedge, \vee, \oplus, \ominus, \perp, \top)$ is a complete co-residuated lattice.
Definition 2.5 ([15]). Let $\left(X, d_{X}\right)$ be a distance space and $A \in L^{X}$.
(1) A point x_{0} is called a fuzzy join of A, denoted by $x_{0}=\sqcup_{X} A$, if it satisfies
(J1) $A(x) \geq d_{X}\left(x, x_{0}\right)$,
(J2) $\bigvee_{x \in X}\left(d_{X}(x, y) \ominus A(x)\right) \geq d_{X}\left(x_{0}, y\right)$.
The pair $\left(X, d_{X}\right)$ is called fuzzy join complete, if $\sqcup_{X} A$ exists for each $A \in L^{X}$. A point x_{1} is called a fuzzy meet of A, denoted by $x_{1}=\sqcap_{X} A$, if it satisfies
(M1) $A(x) \geq d_{X}\left(x_{1}, x\right)$,
(M2) $\bigvee_{x \in X}\left(d_{X}(y, x) \ominus A(x)\right) \geq d_{X}\left(y, x_{1}\right)$.
The pair $\left(X, d_{X}\right)$ is called fuzzy meet complete, if $\sqcap_{X} A$ exists for each $A \in L^{X}$.
The pair $\left(X, d_{X}\right)$ is called fuzzy complete, if $\sqcap_{X} A$ and $\sqcup_{X} A$ exists for each $A \in L^{X}$.
Theorem 2.6 ([15]). Let $\left(X, d_{X}\right)$ be a distance space and $\Phi \in L^{X}$.
(1) A point x_{0} is a fuzzy join of Φ iff $\bigvee_{x \in X}\left(d_{X}(x, y) \ominus \Phi(x)\right)=d_{X}\left(x_{0}, y\right)$.
(2) A point x_{1} is a fuzzy meet of Φ iff $\bigvee_{x \in X}\left(d_{X}(y, x) \ominus \Phi(x)\right)=d_{X}\left(y, x_{1}\right)$.
(3) If $\sqcup_{X} \Phi$ is a fuzzy join of $\Phi \in L^{X}$, then it is unique. Moreover, if $\sqcap_{X} \Phi$ is a fuzzy meet of $\Phi \in L^{X}$, then it is unique.

Definition 2.7 ([15]). (1) A subset $\tau \subset L^{X}$ is called an Alexandrov topology on X, provided that it satisfies the following conditions:
(A1) if $A_{i} \in \tau$ for all $i \in I$, then $\bigvee_{i \in I} A_{i}, \bigwedge_{i \in I} A_{i} \in \tau$,
(A2) if $A \in \tau$ and $\alpha \in L$, then $\alpha_{X}, A \ominus \alpha, A \oplus \alpha \in \tau$.
The pair (X, τ) is called an Alexandrov topological space on X.
Theorem 2.8 ([15]). Let $\left(X, d_{X}\right)$ be a distance space. We define

$$
\begin{aligned}
& \tau_{d_{X}}=\left\{A \in L^{X} \mid A(x) \oplus d_{X}(x, y) \geq A(y)\right\} \\
& \tau_{d_{X}^{-1}}=\left\{A \in L^{X} \mid A(x) \oplus d_{X}(y, x) \geq A(y)\right\}
\end{aligned}
$$

Then the properties hold.
(1) $\tau_{d_{X}}$ and $\tau_{d_{X}^{-1}}$ are Alexandrov topologies.
(2) $\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$ and $\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$ are complete lattices.
(3) $\tau_{d_{X}}=\left\{\bigvee_{x \in X} A(x) \oplus d_{X}(x,-) \mid A \in L^{X}\right\}$ and $\tau_{d_{X}^{-1}}=\left\{\bigvee_{x \in X} A(x) \oplus d_{X}(-, x) \mid\right.$ $\left.A \in L^{X}\right\}$.
Definition 2.9 ([15]). Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces and $f: X \rightarrow Y$ be a map. Define $f^{*}: L^{X} \rightarrow L^{Y}$ as

$$
f^{*}(A)(y)= \begin{cases}\top, & \text { if } f^{-1}(\{y\})=\varnothing \\ \bigwedge A(x), & \text { if } x \in f^{-1}(\{y\})\end{cases}
$$

(1) f is called a join (resp. meet) preserving map if $f\left(\sqcup_{X} A\right)=\sqcup_{L^{X}} f^{*}(A)$ (resp. $\left.f\left(\sqcap_{X} A\right)=\sqcap_{L^{x}} f^{*}(A)\right)$ for each $A \in L^{X}$ with $\sqcup_{X} A$ (resp. $\Pi_{X} A$) exists.
(2) f is called a join-meet (resp. meet-join) preserving map if $f\left(\sqcup_{X} A\right)=\Pi_{L^{x}} f^{*}(A)$ (resp. $\left.f\left(\sqcap_{X} A\right)=\sqcup_{L^{x}} f^{*}(A)\right)$ for each $A \in L^{X}$ with $\sqcup_{X} A$ (resp. $\sqcap_{X} A$) exists.
(3) f is called an (resp. dual) embedding map if f is injective an $d_{X}(x, y)=$ $d_{X}(f(x), f(y))\left(\right.$ resp. $\left.d_{X}(x, y)=d_{X}(f(y), f(x))\right)$ for each $x, y \in X$.
Theorem 2.10 ([15]). Let $\left(X, d_{X}\right)$ be a distance space.
(1) Define $f:\left(X, d_{X}\right) \rightarrow\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$ as $f(x)=\left(d_{X}\right)_{x}$. Then f is an embedding map. Moreover, if $\sqcup_{X} A$ exists, then

$$
\begin{aligned}
\sqcup_{\tau_{d_{X}}} f^{*}(A) & \left.=\bigvee_{x \in X}\left(d_{X}(x,-)\right) \ominus A(x)\right)=f\left(\sqcup_{X} A\right), \\
\sqcap_{\tau_{d_{X}}} f^{*}(A) & =\bigwedge_{z \in X}\left(A(z) \oplus d_{X}(z,-)\right) .
\end{aligned}
$$

If $A \in \tau_{d_{X}}$, then $\sqcap_{\tau_{d_{X}}} f^{*}(A)=A$.
(2) Define $g:\left(X, d_{X}\right) \rightarrow\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$ as $g(x)=\left(d_{X}\right)^{x}$. Then g is a dual embedding map. Moreover, if $\sqcap_{X} A$ exists, then

$$
\begin{aligned}
& \left.\sqcup_{\tau_{d_{X}^{-1}}} g^{*}(A)=\bigvee_{x \in X}\left(d_{X}(-, x)\right) \ominus A(x)\right)=g\left(\sqcap_{X} A\right) \\
& \sqcap_{\tau_{d_{X}^{-1}}} g^{*}(A)=\bigwedge_{z \in X}\left(A(z) \oplus d_{X}(-, z)\right)
\end{aligned}
$$

If $A \in \tau_{d_{X}^{-1}}$, then $\sqcap_{\tau_{d_{X}^{-1}}} g^{*}(A)=A$.
Theorem 2.11 ([15]). Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces. Define $f^{\oplus}, f^{s \oplus}$: $L^{X} \rightarrow L^{Y}$ and $f_{\oplus}^{\leftarrow}, f_{\oplus}^{s \leftarrow}: L^{X} \rightarrow L^{Y}$ as

$$
\begin{aligned}
& f^{\oplus}(A)(y)=\bigwedge_{x \in X}\left(A(x) \oplus d_{Y}(f(x), y)\right) \\
& f^{s \oplus}(A)(y)=\bigwedge_{x \in X}\left(A(x) \oplus d_{Y}(y, f(x))\right) \\
& 300
\end{aligned}
$$

$$
\begin{aligned}
& f_{\oplus}^{\leftarrow}(B)(x)=\bigwedge_{z \in X}\left(B(f(z)) \oplus d_{X}(z, x)\right) \\
& f_{\oplus}^{s \leftarrow}(B)(x)=\bigwedge_{z \in X}\left(B(f(z)) \oplus d_{X}(x, z)\right)
\end{aligned}
$$

Then the following properties hold.
(1) If $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a map with $d_{X}(x, y) \geq d_{Y}(f(x), f(y))$ for each $x, y \in X$, then $d_{Y}\left(\sqcup_{Y} f^{s \oplus}(A), f\left(\sqcup_{X} A\right)\right)=\perp$ and $d_{Y}\left(f\left(\sqcap_{X} A\right), \sqcap_{Y} f^{\oplus}(A)\right)=\perp$, for each $A \in L^{X}$.
(2) $d_{L^{X}}(B, A) \geq d_{L^{Y}}\left(f^{\oplus}(B), f^{\oplus}(A)\right)$ and $d_{L^{X}}(B, A) \geq d_{L^{Y}}\left(f^{s \oplus}(B), f^{s \oplus}(A)\right)$.
(3) $d_{L^{Y}}(C, D) \geq d_{L^{x}}\left(f_{\oplus}^{\leftarrow}(C), f \overleftarrow{\oplus}(E)\right)$ and $d_{L^{Y}}(C, D) \geq d_{L^{x}}\left(f_{\oplus}^{s \leftarrow}(C), f_{\oplus}^{s \leftarrow}(E)\right)$.
(4) $f^{\oplus}(A) \in \tau_{d_{Y}}$ and $f^{s \oplus}(A) \in \tau_{d_{Y}^{-1}}$.
(5) $f_{\oplus}^{\leftarrow}(A) \in \tau_{d_{X}}$ and $f_{\oplus}^{s} \leftarrow(A) \in \tau_{d_{X}^{-1}}$.

3. Adjunctions, Galois connections and various operations

Definition 3.1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps.
(i) The pair (f, g) is called an adjunction, if for $x, y \in X, d_{Y}(y, f(x))=d_{X}(g(y), x)$ for each $x \in X, y \in Y$.
(ii) The pair (f, g) is called a Galois connection, if for $x, y \in X, d_{Y}(f(x), y)=$ $d_{X}(g(y), y)$ for each $x \in X, y \in Y$.

Theorem 3.2. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces and $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be a map with $d_{X}(x, z) \geq d_{Y}(f(x), f(z))$ for each $x, z \in X$. Let $f^{\oplus}, f^{s \oplus}: L^{X} \rightarrow L^{Y}$ and $f \oplus, f_{\oplus}^{s \leftarrow}: L^{X} \rightarrow L^{Y}$ be defined as Theorem 2.11. Then the following properties hold.
(1) $f^{s \oplus}: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{Y}^{-1}}$ and $f_{\oplus}^{s \leftarrow}: \tau_{d_{Y}^{-1}} \rightarrow \tau_{d_{X}^{-1}}$ are well-defined, $d_{\tau_{d_{X}^{-1}}}\left(A, A_{1}\right) \geq$ $d_{\tau_{d_{Y}^{-1}}^{1}}\left(f^{s \oplus}(A), f^{s \oplus}\left(A_{1}\right)\right)$ and $d_{\tau_{d_{Y}^{-1}}}\left(B, B_{1}\right) \geq d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(B), f_{\oplus}^{s \leftarrow}\left(B_{1}\right)\right)$.
(2) The pair $\left(f^{s \oplus}, f_{\oplus}^{s \leftarrow}\right)$ is an adjunction, i.e., $d_{\tau_{d_{Y}^{-1}}}\left(B, f^{s \oplus}(A)\right)=d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(B), A\right)$ for each $A \in \tau_{d_{X}^{-1}}, B \in \tau_{d_{Y}^{-1}}$.
(3) $f^{\oplus}: \tau_{d_{X}} \rightarrow \tau_{d_{Y}}$ and $f_{\oplus}^{\leftarrow}: \tau_{d_{Y}} \rightarrow \tau_{d_{X}}$ are well-defined, $d_{\tau_{d_{X}}}\left(A, A_{1}\right) \geq$ $d_{\tau_{d_{Y}}}\left(f^{\oplus}(A), f^{\oplus}\left(A_{1}\right)\right)$ and $d_{\tau_{d_{Y}}}\left(B, B_{1}\right) \geq d_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}(B), f_{\oplus}^{\leftarrow}\left(B_{1}\right)\right)$.
(4) The pair $\left(f^{\oplus}, f \overleftarrow{\oplus}\right)$ is an adjunction, i.e., $d_{\tau_{d_{Y}}}\left(B, f^{\oplus}(A)\right)=d_{\tau_{d_{Y}}}\left(f_{\oplus}^{\leftarrow}(B), A\right)$ for each $A \in \tau_{d_{X}}, B \in \tau_{d_{Y}}$.
(5) Let $f^{\oplus}: \tau_{d_{X}} \rightarrow \tau_{d_{Y}}$ be a map in (4). Define $g: \tau_{d_{Y}} \rightarrow \tau_{d_{X}}$ as $g(B)=\bigwedge\{A \in$ $\left.\tau_{d_{X}} \mid f^{\oplus}(A) \geq B\right\}$. Then $g=f_{\oplus}^{\leftarrow}$.
(6) Let $f_{\oplus}^{\leftarrow}: \tau_{d_{Y}} \rightarrow \tau_{d_{X}}$ be a map in (4). Define $h: \tau_{d_{X}} \rightarrow \tau_{d_{Y}}$ as $h(A)=\bigvee\{B \in$ $\left.\tau_{d_{Y}} \mid f_{\oplus}^{\leftarrow}(B) \leq A\right\}$. Then $h=f^{\oplus}$.
(7) Let $f^{s \oplus}: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{Y}^{-1}}$ be a map in (1). Define $g: \tau_{d_{Y}^{-1}} \rightarrow \tau_{d_{X}^{-1}}$ as $g(B)=$ $\bigwedge\left\{A \in \tau_{d_{X}^{-1}} \mid f^{s \oplus}(A) \geq B\right\}$. Then $g=f_{\oplus}^{s \leftarrow}$.
(8) Let $f_{\oplus}^{s \leftarrow}: \tau_{d_{Y}^{-1}} \rightarrow \tau_{d_{X}^{-1}}$ be a map in (1). Define $h: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{Y}^{-1}}$ as $h(A)=$ $\bigvee\left\{B \in \tau_{d_{Y}^{-1}} \mid f_{s \oplus}^{\leftarrow}(B) \leq A\right\}$. Then $h=f^{s \oplus}$.
Proof. (1) For each $A, A_{1} \in \tau_{d_{X}^{-1}}, B, B_{1} \in \tau_{d_{Y}^{-1}}$, by Theorem 2.11, we have
$d_{\tau_{d_{X}^{-1}}}\left(A, A_{1}\right) \leq d_{\tau_{d_{Y}^{-1}}}\left(f^{s \oplus}(A), f^{s \oplus}\left(A_{1}\right)\right)$ and $d_{\tau_{d_{Y}^{-1}}}\left(B, B_{1}\right) \leq d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(B), f_{\oplus}^{s \leftarrow}\left(B_{1}\right)\right)$.
(2) For each $A \in \tau_{d_{X}^{-1}}, B \in \tau_{d_{Y}^{-1}}$, we get

$$
\begin{aligned}
d_{\tau_{d_{Y}}^{-1}}\left(B, f^{s \oplus}(A)\right)= & \bigvee_{y \in X}\left(B(y) \ominus f^{s \oplus}(A)(y)\right) \\
= & \bigvee_{y \in X}\left(B(y) \ominus \bigwedge_{x \in X}\left(A(x) \oplus d_{Y}(y, f(x))\right)\right) \\
& \quad \operatorname{By}^{\operatorname{Lemma} 2.2(2,7)]} \\
= & \bigvee_{x \in X} \bigvee_{y \in X}\left(\left(B(y) \ominus d_{Y}(y, f(x))\right) \ominus A(x)\right) \\
\geq & \bigvee_{x \in X}(B(f(x)) \ominus A(x)) \\
\geq & \bigvee_{y \in X}\left(\bigwedge_{z \in X}\left(B(f(z)) \oplus d_{X}(x, z)\right) \ominus A(x)\right) \\
= & d_{\tau_{d_{Y}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(B), A\right) .
\end{aligned}
$$

Let $a \geq d_{\tau_{d_{Y}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(B), A\right)$ be given. Then we get

$$
a \oplus A(x) \geq f_{\oplus}^{s \leftarrow}(B)(x)=\bigwedge_{z \in X}\left(B(f(z)) \oplus d_{X}(x, z)\right)
$$

Thus we have

$$
\begin{aligned}
a \oplus f^{s \oplus}(A)(y) & =\bigwedge_{x \in X}\left(a \oplus A(x) \oplus d_{Y}(y, f(x))\right) \\
& \geq \bigwedge_{x \in X}\left(\bigwedge_{z \in X}\left(B(f(z)) \oplus d_{X}(x, z)\right) \oplus d_{Y}(y, f(x))\right) \\
& \geq \bigwedge_{z \in X}\left(B(f(z)) \oplus \bigwedge_{x \in X}\left(d_{Y}(f(x), f(z)) \oplus d_{Y}(y, f(x))\right)\right) \\
& \geq \bigwedge_{z \in X}\left(B(f(z)) \oplus d_{Y}(y, f(z))\right) \\
& \geq B(y) \cdot\left[\text { Because } B \in \tau_{d_{Y}^{-1}}\right]
\end{aligned}
$$

So $a \geq B(y) \ominus f^{s \oplus}(A)(y)$. It implies $d_{\tau_{d_{Y}}^{-1}}\left(f_{\oplus}^{s \leftarrow}(B), A\right) \geq d_{\tau_{d_{X}^{1}}}\left(B, f^{s \oplus}(A)\right)$.
(3) and (4) are similarly proved as (1) and (2) respectively.
(5) Since $d_{\tau_{d_{Y}}}\left(B, f^{\oplus}\left(f_{\oplus}^{\leftarrow}(B)\right)\right)=d_{\tau_{d_{Y}}}\left(f_{\oplus}^{\leftarrow}(B), f_{\oplus}^{\leftarrow}(B)\right)=\perp$, by (4), we get

$$
f^{\oplus}\left(f_{\oplus}^{\leftarrow}(B)\right) \geq B \text { and } f_{\oplus}^{\leftarrow}(B) \in \tau_{d_{X}}
$$

Then $g(B) \leq f \overleftarrow{\oplus}(B)$. Since $d_{\tau_{d_{Y}}}\left(B, f^{\oplus}\left(\bigwedge_{i \in I} A_{i}\right)\right)=d_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}(B), \bigwedge_{i \in I} A_{i}\right)=$ $\bigvee_{i \in I} d_{\tau_{d_{X}}}\left(f \overleftarrow{\oplus}(B), A_{i}\right)=\bigvee_{i \in I} d_{\tau_{d_{Y}}}\left(B, f^{\oplus}\left(A_{i}\right)\right)=d_{\tau_{d_{Y}}}\left(B, \bigwedge_{i \in I} f^{\oplus}\left(A_{i}\right)\right)$, we have

$$
f^{\oplus}\left(\bigwedge_{i \in I} A_{i}\right)=\bigwedge_{i \in I} f^{\oplus}\left(A_{i}\right)
$$

Thus $f^{\oplus}(g(B)) \geq B$. So we get

$$
\top=d_{\tau_{d_{Y}}}\left(B, f^{\oplus}(g(B))\right)=d_{\tau_{d_{Y}}}\left(f_{\oplus}^{\leftarrow}(B), g(B)\right), f_{\oplus}^{\leftarrow}(B) \leq g(B)
$$

Hence the result holds.
(6) Since $d_{\tau_{d_{Y}}}\left(f_{\oplus}^{\leftarrow}\left(f^{\oplus}(A)\right), A\right)=d_{\tau_{d_{X}}}\left(f^{\oplus}(A), f^{\oplus}(A)\right)=\perp$, by (4), we have

$$
f_{\oplus}^{\leftarrow}\left(f^{\oplus}(A)\right) \leq A \text { and } f^{\oplus}(A) \in \tau_{d_{Y}}
$$

Then $h(A) \geq f^{\oplus}(B)$. Since $d_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}\left(\bigvee_{i \in I} B_{i}\right), A\right)=d_{\tau_{d_{Y}}}\left(\bigvee_{i \in I} B_{i}, f^{\oplus}(A)\right)$ $=\bigvee_{i \in I} d_{\tau_{d_{Y}}}\left(B_{i}, f^{\oplus}(A)\right)=\bigvee_{i \in I} d_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}\left(B_{i}\right), A\right)=d_{\tau_{d_{X}}}\left(\bigvee_{i \in I} f \overleftarrow{\oplus}\left(B_{i}\right), A\right)$, we get

$$
f_{\oplus}^{\leftarrow}\left(\bigvee_{i \in I} B_{i}\right)=\bigvee_{i \in I} f_{\oplus}^{\leftarrow}\left(B_{i}\right)
$$

Thus $f \overleftarrow{\oplus}(h(A)) \leq A$. So

$$
\top=d_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}(h(A)), A\right)=d_{\tau_{d_{Y}}}\left(h(A), f_{\oplus}(A)\right), h(A) \leq f_{\oplus}^{\leftarrow}(B)
$$

Hence the result holds.
(7) and (8) are similarly proved as (5) and (6) respectively.

Theorem 3.3. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces and $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be a map with $d_{X}(x, z) \geq d_{Y}(f(x), f(z))$ for each $x, z \in X$. Then the following properties hold.
(1) If $f^{s \oplus}:\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right) \rightarrow\left(\tau_{d_{Y}^{-1}}, d_{\tau_{d_{Y}^{-1}}}\right)$ and $f_{\oplus}^{s \leftarrow}:\left(\tau_{d_{Y}^{-1}}, d_{\tau_{d_{Y}^{-1}}}\right) \rightarrow\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$, then for all $\mathcal{U} \in L^{\tau_{d}^{-1}}$ and $\mathcal{W} \in L^{\tau_{d_{Y}^{-1}}}$,

$$
f^{s \oplus}\left(\sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right)=\sqcap_{\tau_{d_{Y}^{-1}}}\left(f^{s \oplus}\right)^{*}(\mathcal{U}) \text { and } \sqcup_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}\right)^{*}(\mathcal{W})=f_{\oplus}^{s \leftarrow}\left(\sqcup_{\tau_{d_{Y}^{-1}}} \mathcal{W}\right)
$$

(2) If $f^{\oplus}:\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right) \rightarrow\left(\tau_{d_{Y}}, d_{\tau_{d_{Y}}}\right)$ and $f_{\oplus}^{\leftarrow}:\left(\tau_{d_{Y}}, d_{\tau_{d_{Y}}}\right) \rightarrow\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$, then for all $\mathcal{U} \in L^{\tau_{d_{X}}}$ and $\mathcal{W} \in L^{\tau_{d_{Y}}}$,

$$
f^{\oplus}\left(\sqcap_{\tau_{d_{X}}} \mathcal{U}\right)=\sqcap_{\tau_{d_{Y}}}\left(f^{\oplus}\right)^{*}(\mathcal{U}) \text { and } \sqcup_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}\right)^{*}(\mathcal{W})=f_{\oplus}^{\leftarrow}\left(\sqcup_{\tau_{d_{Y}}} \mathcal{W}\right)
$$

Proof. (1) Let $\mathcal{U} \in L^{\tau_{d}^{-1}}$. Then We have

$$
\begin{aligned}
& d_{\tau_{d_{Y}^{-1}}^{1}}\left(C, \sqcap_{\tau_{d_{Y}^{-1}}}\left(f^{s \oplus}\right)^{*}(\mathcal{U})\right)=\bigvee_{B \in \tau_{d_{Y}^{-1}}^{1}}\left(d_{\tau_{d_{Y}^{-1}}}(C, B) \ominus\left(f^{s \oplus}\right)^{*}(\mathcal{U})(B)\right) \\
& =\bigvee_{B \in \tau_{d_{\bar{Y}}^{1}}}\left(d_{\tau_{d_{Y}^{-1}}}(C, B) \ominus \bigwedge_{f^{s \oplus(D)=B}} \mathcal{U}(D)\right) \\
& =\bigvee_{D \in \tau_{d_{\bar{X}}^{1}}}\left(d_{\tau_{d_{\bar{Y}}^{-1}}}\left(C, f^{s \oplus}(D)\right) \ominus \mathcal{U}(D)\right) \\
& =\bigvee_{D \in \tau_{d_{X}^{-1}}}\left(d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(C), D\right) \ominus \mathcal{U}(D)\right)
\end{aligned}
$$

$$
\begin{aligned}
& {[\text { By Theorem } 3.2(2)] } \\
= & \left.d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(C), \sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right)\right) \\
= & d_{\tau_{d_{Y}^{-1}}}\left(C, f^{s \oplus}\left(\sqcap_{\tau_{d_{X}^{-1}}^{-1}} \mathcal{U}\right)\right) .
\end{aligned}
$$

Thus we get $f^{s \oplus}\left(\sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right)=\sqcap_{\tau_{d_{Y}^{-1}}}\left(f^{s \oplus}\right)^{*}(\mathcal{U})$.
Now let $\mathcal{W} \in L^{\tau_{d} d_{Y}^{1}}$. Then we get

$$
\begin{aligned}
d_{\tau_{d_{X}^{-1}}}\left(\sqcup_{\tau_{d_{X}^{-1}}}\left(f_{s \oplus}^{\leftarrow}\right)^{*}(\mathcal{W}), C\right) & =\bigvee_{D \in \tau_{d_{X}^{-1}}}\left(d_{\tau_{d_{X}^{-1}}}(D, C) \ominus\left(f_{\oplus}^{s \leftarrow}\right)^{*}(\mathcal{W})(D)\right) \\
& =\bigvee_{D \in \tau_{d_{X}^{-1}}}\left(d_{\tau_{d_{X}^{-1}}}(D, C) \ominus \bigwedge_{f_{\oplus}^{s \leftarrow(E)=D}}(\mathcal{W}(E))\right. \\
& =\bigvee_{E \in \tau_{d_{Y}^{-1}}}\left(d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}(E), C\right) \ominus \mathcal{W}(E)\right) \\
& =\bigvee_{E \in \tau_{d_{Y}^{-1}}}\left(d_{\tau_{d_{Y}^{-1}}}\left(E, f^{s \oplus}(C)\right) \ominus \mathcal{W}(E)\right)
\end{aligned}
$$

[By Theorem 3.2 (2)]

$$
\begin{aligned}
& =d_{\tau_{d_{Y}^{-1}}}\left(\sqcup_{\tau_{d_{Y}^{-1}}} \mathcal{W}, f^{s \oplus}(C)\right) \\
& =d_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow}\left(\sqcup_{\tau_{d_{Y}^{-1}}} \mathcal{W}\right), C\right) .
\end{aligned}
$$

Thus we have $\sqcup_{\tau_{d_{X}^{-1}}}\left(f_{\oplus}^{s \leftarrow)}\right)^{*}(\mathcal{W})=f_{\oplus}^{s \leftarrow} \stackrel{\left.\sqcup_{\tau_{d_{Y}^{-1}}} \mathcal{W}\right) \text {. } . \text {. }{ }^{(2)}}{ }$
(2) It is similarly proved as (1).

Remark 3.4. Let $([0,1], \leq, \vee, \wedge, \oplus, \ominus, 0,1)$ be a complete co-residuated lattice defined as $n(x)=1-x$,

$$
x \oplus y=(x+y) \wedge 1, \quad x \ominus y=(x-y) \vee 0
$$

Let X, Y be sets and $f: X \rightarrow Y$ a function. Define $d_{X} \in L^{X \times X}, d_{Y} \in L^{Y \times Y}$ as

$$
d_{X}(x, z)=\left\{\begin{array}{lc}
0, & \text { if } z=x, \\
1, & \text { if } z \neq x,
\end{array} \quad d_{Y}(y, w)= \begin{cases}0, & \text { if } y=w \\
1, & \text { if } y \neq w\end{cases}\right.
$$

Then we easily show that d_{X} and d_{Y} are distance functions. Since f is a function, $d_{X}(x, z) \geq d_{Y}(f(x), f(z))$. Thus we have

$$
\tau_{d_{X}}=\left\{A \in L^{X} \mid A(x) \oplus d_{X}(x, y) \geq A(y)\right\}=L^{X}=\tau_{d_{X}^{-1}}
$$

Moreover, $\tau_{d_{Y}}=L^{Y}=\tau_{d_{Y}^{-1}}$. For f^{*} in Definition 2.9, we obtain

$$
\begin{aligned}
& f^{\oplus}(A)(y)=\bigwedge_{x \in X}\left(A(x) \oplus d_{Y}(f(x), y)\right)=f^{s \oplus}(A)(y)=f^{*}(A)(y) \\
& f_{\oplus}^{\leftarrow}(B)(x)=\bigwedge_{z \in X}\left(B(f(z)) \oplus d_{X}(z, x)\right)=B(f(x))=f_{\oplus}^{s \leftarrow}(B)(x) .
\end{aligned}
$$

For each $A \in \tau_{d_{X}}=L^{X}, B \in \tau_{d_{Y}}=L^{Y}$, we get

$$
d_{L^{Y}}\left(B, f^{\oplus}(A)\right)=d_{L^{Y}}\left(B, f^{*}(A)\right)=d_{L^{X}}\left(f_{\oplus}^{\leftarrow}(B), A\right)=d_{L^{x}}\left(f^{\leftarrow}(B), A\right)
$$

So $\left(f^{*}, f^{\leftarrow}\right)$ is an adjunction. It is the concept of Zadeh's powerset operations (See [5]).

From Theorem 3.3, it is clear that for all $\mathcal{U} \in L^{L^{X}}$ and $\mathcal{W} \in L^{L^{Y}}$,

$$
f^{\oplus}\left(\sqcap_{L^{x}} \mathcal{U}\right)=\sqcap_{L^{Y}}\left(f^{\oplus}\right)^{*}(\mathcal{U}) \text { and } \sqcup_{L^{X}}\left(f_{\oplus}^{\leftarrow}\right)^{*}(\mathcal{W})=f_{\oplus}^{\leftarrow}\left(\sqcup_{L^{Y}} \mathcal{W}\right)
$$

Remark 3.5. Let $(L, \wedge, \vee, \oplus, \ominus, \perp, \top)$ be a complete co-residuated lattice. Using adjunctions and Galois connections, we will define a formal fuzzy concept and an attribute-oriented fuzzy concept as follows:

Let $F: L^{X} \rightarrow L^{Y}, G: L^{Y} \rightarrow L^{X}$ be maps where X is a set of objects and Y is a set of attributes. If (F, G) is a Galois connection, i.e., $d_{L^{Y}}(F(A), B)=$ $d_{L^{X}}(G(B), A)$, then a formal fuzzy concept is a pair $(A, B) \in L^{X} \times L^{Y}$ such that $F(A)=B, G(B)=A$ as a Bělohlávek's sense (See [2, 3]).

If (F, G) is an adjunction, i.e., $d_{L^{Y}}(B, F(A))=d_{L^{X}}(G(B), A)$, then an attributeoriented fuzzy concept is a pair $(A, B) \in L^{X} \times L^{Y}$ such that $F(A)=B, G(B)=A$ as a Georgescu and Popescu's sense (See [16]).

Theorem 3.6. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces and $f: X \rightarrow Y$ be a map. Define $f^{\ominus}, f^{s \ominus}: L^{X} \rightarrow L^{Y}$ and $f_{\ominus}^{\leftarrow}, f_{\ominus}^{s \leftarrow}: L^{Y} \rightarrow L^{X}$ as

$$
\begin{aligned}
& f^{\ominus}(A)(y)=\bigvee_{x \in X}\left(d_{Y}(f(x), y) \ominus A(x)\right), \\
& f^{s \ominus}(A)(y)=\bigvee_{x \in X}\left(d_{Y}(y, f(x)) \ominus A(x)\right), \\
& f_{\ominus}^{\leftarrow}(B)(x)=\bigvee_{z \in X}\left(d_{X}(z, x) \ominus B(f(z))\right), \\
& f_{\ominus}^{s \leftarrow}(B)(x)=\bigvee_{z \in X}\left(d_{X}(x, z) \ominus B(f(z))\right)
\end{aligned}
$$

For each $A, C \in L^{X}$ and $B, D \in L^{Y}$, the followings hold.
(1) $d_{L^{X}}(A, C) \geq d_{L^{Y}}\left(f^{\ominus}(C), f^{\ominus}(A)\right)$ and $d_{L^{X}}(A, C) \geq d_{L^{Y}}\left(f^{s \ominus}(C), f^{s \ominus}(A)\right)$.
(2) $d_{L^{Y}}(B, D) \geq d_{L^{X}}\left(f_{\ominus}^{\leftarrow}(D), f_{\ominus}^{\leftarrow}(B)\right)$ and $d_{L^{Y}}(B, D) \geq d_{L^{X}}\left(f_{\ominus}^{s \leftarrow}(D), f_{\ominus}^{s \leftarrow}(B)\right)$.
(3) $f^{\ominus}(A) \in \tau_{d_{Y}}$ and $f^{s \ominus}(A) \in \tau_{d_{Y}^{-1}}$.
(4) $f_{\ominus}^{\leftarrow}(B) \in \tau_{d_{Y}}$ and $f_{\ominus}^{s \leftarrow}(B) \in \tau_{d_{Y}^{-1}}$.

Proof. (1) For $A, C \in L^{X}$,
$d_{L^{Y}}\left(f^{\ominus}(C), f^{\ominus}(A)\right)$
$=\bigvee_{x \in X}\left(d_{Y}(f(x), y) \ominus C(x)\right) \ominus \bigvee_{x \in X}\left(d_{Y}(f(x), y) \ominus A(x)\right)$
$\leq \bigvee_{x \in X}\left(\left(d_{Y}(f(x), y) \ominus C(x)\right) \ominus\left(d_{Y}(f(x), y) \ominus A(x)\right)\right)$ [By Lemma $2.2(8,11)$]
$\leq \bigvee_{x \in X}(A(x) \ominus C(x))$.
Similarly, $d_{L^{X}}(A, C) \geq d_{L^{Y}}\left(f^{s \ominus}(C), f^{s \ominus}(A)\right)$.
(2) For $B, C \in L^{Y}$,

$$
\begin{aligned}
& d_{L^{X}}\left(f_{\ominus}^{\leftarrow}(C), f_{\ominus}^{\leftarrow}(B)\right) \\
&= \bigvee_{x \in X}\left(d_{X}(z, x) \ominus C(f(x))\right) \ominus \bigvee_{x \in X}\left(d_{X}(x, z) \ominus B(f(x))\right) \\
& \leq \bigvee_{x \in X}\left(\left(d_{X}(x, z) \ominus C(f(x))\right) \ominus\left(d_{X}(x, z) \ominus B(f(x))\right)\right) \\
& {[\text { By Lemma } 2.2(8,11)] } \\
& \leq \bigvee_{x \in X}(B(f(x)) \ominus C(f(x))) \leq d_{L^{Y}}(B, C) .
\end{aligned}
$$

Similarly, $d_{L^{Y}}(B, C) \geq d_{L^{X}}\left(f_{\ominus}^{s \leftarrow}(C), f_{\ominus}^{s \leftarrow}(A)\right)$.
(3) For $A \in L^{X}$,

$$
A(x) \oplus f^{\ominus}(A)(y) \oplus d_{Y}(y, w)
$$

$$
=A(x) \oplus\left(\bigvee_{x \in X}\left(d_{Y}(f(x), y) \ominus A(x)\right)\right) \oplus d_{Y}(y, w)
$$

$$
\left.\geq d_{Y}(f(x), y)\right) \oplus d_{Y}(y, w) \geq d_{Y}(f(x), w)
$$

Then $f^{\ominus}(A)(y) \oplus d_{Y}(y, w) \geq f^{\ominus}(A)(w)$ and $f^{\ominus}(A) \in \tau_{d_{X}}$.
Other case is similarly proved.
(4) For $B \in L^{Y}$,

$$
\begin{aligned}
& B(f(z)) \oplus f_{\ominus}^{s \leftarrow}(B)(x) \oplus d_{X}(w, x) \\
= & B(f(z)) \oplus\left(\bigvee _ { z \in X } \left(\left(d_{X}(x, z) \ominus B(f(z))\right) \oplus d_{X}(w, x)\right.\right. \\
\geq & \left.d_{X}(x, z)\right) \oplus d_{X}(w, x) \geq d_{X}(w, z) .
\end{aligned}
$$

Then $f_{\ominus}^{s \leftarrow}(B)(x) \oplus d_{X}(w, x) \geq f_{\ominus}^{s \leftarrow}(B)(w)$ and $f_{\ominus}^{s \leftarrow}(B) \in \tau_{d_{X}^{-1}}$.
Theorem 3.7. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces and $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be a map with $d_{X}(x, y) \leq d_{Y}(f(x), f(y))$ for all $x, y \in X$. Let $f^{\ominus}, f^{s \ominus}: L^{X} \rightarrow L^{Y}$ and $f_{\ominus}^{\leftarrow}, f_{\ominus}^{s \leftarrow}: L^{Y} \rightarrow L^{X}$ be defined as Theorem 3.6. Then the following properties hold.
(1) Two operations $f^{\ominus}: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{Y}}, f_{\ominus}^{s \leftarrow}: \tau_{d_{Y}} \rightarrow \tau_{d_{X}^{-1}}$ satisfy $d_{\tau_{d_{Y}}}\left(f^{\ominus}(A), B\right) \leq$ $d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(B), A\right)$ and $f^{\ominus}\left(f_{\ominus}^{s \leftarrow}(B)\right) \leq B$. Moreover, if f is surjective and $d_{X}(x, y)=$ $d_{Y}(f(x), f(y))$ for all $x, y \in X$, then the pair $\left(f^{\ominus}, f_{\ominus}^{s \leftarrow}\right)$ is a Galois connection, i.e., $d_{\tau_{d_{Y}}}\left(f^{\ominus}(A), B\right)=d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(B), A\right)$.
(2) Two operations $f^{s \ominus}: \tau_{d_{X}} \rightarrow \tau_{d_{Y}^{-1}}, f_{\ominus}^{\leftarrow}: \tau_{d_{Y}^{-1}} \rightarrow \tau_{d_{X}}$ satisfy $d_{\tau_{d_{Y}^{-1}}}\left(f^{s \ominus}(A), B\right) \leq$ $d_{\tau_{d_{X}}}\left(f f_{\ominus}^{\leftarrow}(B), A\right)$. Moreover, if f is surjective and $d_{X}(x, y)=d_{Y}(f(x), f(y))$ for all $x, y \in X$, then the pair $\left(f^{s \ominus}, f_{\ominus}^{\leftarrow}\right)$ is a Galois connection, i.e., $d_{\tau_{d_{Y}^{-1}}}\left(f^{s \ominus}(A), B\right)=$ $d_{\tau_{d_{X}}}(f \overleftarrow{\ominus}(B), A)$.
Proof. (1) For $A \in \tau_{d_{X}^{-1}}, B \in \tau_{d_{Y}}$,

$$
\begin{aligned}
d_{\tau_{d_{Y}}}\left(f^{\ominus}(A), B\right) & =\bigvee_{y \in Y}\left(f^{\ominus}(A)(y) \ominus B(y)\right) \\
& =\bigvee_{y \in Y}\left(\bigvee_{x \in X}\left(d_{Y}(f(x), y) \ominus A(x)\right) \ominus B(y)\right) \\
& =\bigvee_{x \in X}\left(\bigvee_{y \in Y}\left(d_{Y}(f(x), y) \ominus B(y)\right) \ominus A(x)\right)
\end{aligned}
$$

[By Lemma $2.2(2,7)$]

$$
\geq \bigvee_{x \in X}\left(\bigvee_{z \in X}\left(d_{Y}(f(x), f(z)) \ominus B(f(z))\right) \ominus A(x)\right)
$$

$$
\geq \bigvee_{x \in X}\left(\bigvee_{z \in X}\left(d_{X}(x, z) \ominus B(f(z))\right) \ominus A(x)\right)
$$

Moreover, we get

$$
=\bigvee_{x \in X}\left(f_{\ominus}^{s \leftarrow}(B)(x) \ominus A(x)\right)=d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(B), A\right)
$$

$$
\perp=d_{\tau_{d_{Y}}}\left(f^{\ominus}(A), f^{\ominus}(A)\right) \geq d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}\left(f^{\ominus}(A)\right), A\right)=\perp
$$

Then $\left.f_{\ominus}^{s \leftarrow}\left(f^{\ominus}(A)\right)\right) \leq A$.
If f is surjective and $d_{X}(x, y)=d_{Y}(f(x), f(y))$ for all $x, y \in X$, then we have

$$
\begin{aligned}
d_{\tau_{d_{Y}}}\left(f^{\ominus}(A), B\right) & =\bigvee_{y \in Y}\left(f^{\ominus}(A)(y) \ominus B(y)\right) \\
& =\bigvee_{y \in Y}\left(\bigvee_{x \in X}\left(d_{Y}(f(x), y) \ominus A(x)\right) \ominus B(y)\right) \\
& =\bigvee_{x \in X}\left(\bigvee_{y \in Y}\left(d_{Y}(f(x), y) \ominus B(y)\right) \ominus A(x)\right) \\
& =\bigvee_{x \in X}\left(\bigvee_{z \in X}\left(d_{Y}(f(x), f(z)) \ominus B(f(z))\right) \ominus A(x)\right) \\
& =\bigvee_{x \in X}\left(\bigvee_{z \in X}\left(d_{X}(x, z) \ominus B(f(z))\right) \ominus A(x)\right) \\
& =\bigvee_{x \in X}\left(f_{\ominus}^{s \leftarrow}(B)(x) \ominus A(x)\right)=d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(B), A\right) .
\end{aligned}
$$

Thus $d_{\tau_{d_{Y}}}\left(f^{\ominus}(A), B\right)=d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(B), A\right)$.
(2) It is similarly proved as (1).

Theorem 3.8. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be distance spaces and $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be a surjective map with $d_{X}(x, z)=d_{Y}(f(x), f(z))$ for each $x, z \in X$. Let $f^{\ominus}, f^{s \ominus}$: $L^{X} \rightarrow L^{Y}$ and $f_{\ominus}^{\leftarrow}, f_{\ominus}^{s \leftarrow}: L^{Y} \rightarrow L^{X}$ be defined as Theorem 3.6. Then the following properties hold.
(1) If $f^{\ominus}:\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right) \rightarrow\left(\tau_{d_{Y}}, d_{\tau_{d_{Y}}}\right)$ and $f_{\ominus}^{s \leftarrow}:\left(\tau_{d_{Y}}, d_{\tau_{d_{Y}}}\right) \rightarrow\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$, then for all $\mathcal{U} \in L^{\tau_{d_{X}}^{-1}}$ and $\mathcal{W} \in L^{\tau_{d_{Y}}}$,

$$
f^{\ominus}\left(\sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right)=\sqcup_{\tau_{d_{Y}}}\left(f^{\ominus}\right)^{*}(\mathcal{U}) \text { and } \sqcup_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}\right)^{*}(\mathcal{W})=f_{\ominus}^{s \leftarrow\left(\sqcap_{\tau_{d_{Y}}} \mathcal{W}\right)}
$$

(2) If $f^{s \ominus}:\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right) \rightarrow\left(\tau_{d_{Y}^{-1}}, d_{\tau_{d_{Y}^{-1}}}\right)$ and $f \overleftarrow{\ominus}:\left(\tau_{d_{Y}^{-1}}, d_{\tau_{d_{Y}^{-1}}}\right) \rightarrow\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$, then for all $\mathcal{U} \in L^{\tau_{d_{X}}}$ and $\mathcal{W} \in L^{\tau_{d_{Y}}^{-1}}$,

$$
f^{s \ominus}\left(\sqcap_{\tau_{d_{X}}} \mathcal{U}\right)=\sqcup_{\tau_{d_{Y}^{-1}}}\left(f^{s \ominus}\right)^{*}(\mathcal{U}) \text { and } \sqcup_{\tau_{d_{X}}}\left(f_{\ominus}^{\leftarrow}\right)^{*}(\mathcal{W})=f_{\ominus}^{\leftarrow}\left(\sqcap_{\tau_{d_{Y}^{-1}}} \mathcal{W}\right)
$$

(3) Let $f^{\ominus}:\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right) \rightarrow\left(\tau_{d_{Y}}, d_{\tau_{d_{Y}}}\right)$ be a map. Define $g:\left(\tau_{d_{Y}}, d_{\tau_{d_{Y}}}\right) \rightarrow$ $\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$ as $g(B)=\bigwedge\left\{A \in \tau_{d_{X}^{-1}} \mid f^{\ominus}(A) \leq B\right\}$. Then $g=f_{\ominus}^{s \leftarrow}$.
(4) Let $f^{s \ominus}:\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right) \rightarrow\left(\tau_{d_{Y}^{-1}}, d_{\tau_{d_{Y}^{-1}}}\right)$ be a map. Define $h:\left(\tau_{d_{Y}^{-1}}, d_{\tau_{d_{Y}^{-1}}}\right) \rightarrow$ $\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$ as $h(B)=\bigwedge\left\{A \in \tau_{d_{X}} \mid f^{s \ominus}(A) \leq B\right\}$. Then $h=f_{\ominus}^{\leftarrow}$.
Proof. (1) Let $\mathcal{U} \in L^{\tau_{d_{X}^{-1}}^{-1}}$. Then we have

$$
\begin{aligned}
& d_{\tau_{d_{Y}}}\left(\sqcup_{\tau_{d_{Y}}}\left(f^{\ominus}\right)^{*}(\mathcal{U}), C\right)=\bigvee_{B \in \tau_{d_{Y}}}\left(d_{\tau_{d_{Y}}}(B, C) \ominus\left(f^{\ominus}\right)^{*}(\mathcal{U})(B)\right) \\
& =\bigvee_{B \in \tau_{d_{Y}}}\left(d_{\tau_{d_{Y}}}(B, C) \ominus \bigwedge_{f \ominus(D)=B} \mathcal{U}(D)\right) \\
& =\bigvee_{D \in \tau_{d_{X}^{-1}}}\left(d_{\tau_{d_{Y}}}\left(f^{\ominus}(D), C\right) \ominus \mathcal{U}(D)\right) \\
& =\bigvee_{D \in \tau_{d_{X}^{-1}}}\left(d _ { \tau _ { d _ { X } ^ { - 1 } } } \left(f_{\ominus}^{s \leftarrow(C), D) \ominus \mathcal{U}(D)), ~(1)]}\right.\right. \\
& \text { [By Theorem } 3.7 \text { (1)] } \\
& \left.=d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(C), \sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right)\right) \\
& =d_{\tau_{d_{Y}}}\left(f^{\ominus}\left(\sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right), C\right) \text {. }
\end{aligned}
$$

Thus we get $f^{\ominus}\left(\sqcap_{\tau_{d_{X}^{-1}}} \mathcal{U}\right)=\sqcup_{\tau_{d_{Y}}}\left(f^{\ominus}\right)^{*}(\mathcal{U})$
Now let $\mathcal{W} \in L^{\tau_{d}^{-1}}$. The we have

$$
\begin{aligned}
d_{\tau_{d_{X}^{-1}}}\left(\sqcup_{\tau_{d_{X}^{-1}}}\left(f_{s \ominus}^{\leftarrow}\right)^{*}(\mathcal{W}), C\right) & =\bigvee_{D \in \tau_{d_{X}^{-1}}}\left(d_{\tau_{d_{X}^{-1}}}(D, C) \ominus\left(f_{\ominus}^{s \leftarrow}\right)^{*}(\mathcal{W})(D)\right) \\
& =\bigvee_{D \in \tau_{d_{X}^{1}}^{1}}\left(d_{\tau_{d_{X}^{-1}}}(D, C) \ominus \bigwedge_{f_{\ominus}^{s \leftarrow(E)=D}}(\mathcal{W}(E))\right. \\
& =\bigvee_{E \in \tau_{d_{Y}}}\left(d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(E), C\right) \ominus \mathcal{W}(E)\right) \\
& 306
\end{aligned}
$$

$$
=\bigvee_{E \in \tau_{d_{Y}}}\left(d_{\tau_{d_{Y}}}\left(f^{\ominus}(C), E\right) \ominus \mathcal{W}(E)\right)
$$

$$
\text { [By Theorem } 3.7 \text { (1)] }
$$

$$
=d_{\tau_{d_{Y}}}\left(f^{\ominus}(C), \sqcap_{\tau_{d_{Y}}} \mathcal{W}\right)
$$

$$
=d_{\tau_{d_{X}^{1}}}\left(f_{\ominus}^{s \leftarrow}\left(\square_{\tau_{d_{Y}}} \mathcal{W}\right), C\right) .
$$

Thus we get $\sqcup_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}\right)^{*}(\mathcal{W})=f_{\ominus}^{s \leftarrow}\left(\sqcap_{\tau_{d_{Y}}} \mathcal{W}\right)$.
(3) Since $d_{\tau_{d_{Y}}}\left(f^{\ominus}\left(f_{\ominus}^{s \leftarrow}(B)\right), B\right)=d_{\tau_{d_{X}}}\left(f_{\ominus}^{s \leftarrow}(B), f_{\ominus}^{s \leftarrow}(B)\right)=\perp$, by (1), we have

$$
f^{\ominus}\left(f_{\ominus}^{s \leftarrow}(B)\right) \leq B \text { and } f_{\ominus}^{s \leftarrow}(B) \in \tau_{d_{x}^{-1}} .
$$

Then $g(B) \leq f_{\ominus}^{s \leftarrow}(B)$. Since $d_{\tau_{d_{Y}}}\left(f^{\ominus}\left(\bigwedge_{i \in I} A_{i}\right), B\right)=d_{\tau_{d_{X}}}\left(f_{\ominus}^{s \leftarrow}(B), \bigwedge_{i \in I} A_{i}\right)=$ $\bigvee_{i \in I} d_{\tau_{d_{X}}}\left(f_{\ominus}^{s \leftarrow}(B), A_{i}\right)=\bigvee_{i \in I} d_{\tau_{d_{Y}}}\left(f^{\ominus}\left(A_{i}\right), B\right)=d_{\tau_{d_{Y}}}\left(\bigvee_{i \in I} f^{\ominus}\left(A_{i}\right), B\right)$, we have $f^{\ominus}\left(\bigwedge_{i \in I} A_{i}\right)=\bigvee_{i \in I} f^{\ominus}\left(A_{i}\right)$. Thus $f^{\ominus}(g(B)) \leq B$. So $\mathrm{T}=d_{\tau_{d_{Y}}}\left(f^{\ominus}(g(B)), B\right)=$ $d_{\tau_{d_{\curlyvee}}}\left(f_{\ominus}^{s \leftarrow}(B), g(B)\right), f_{\ominus}^{s \leftarrow}(B) \leq g(B)$. Hence the result holds.
(2) and (4) are similarly proved as (1) and (3) respectively.

Example 3.9. Let $([0,1], \leq, \vee, \wedge, \oplus, \ominus, 0,1)$ be a complete co-residuated lattice defined as $n(x)=1-x$,

$$
x \oplus y=(x+y) \wedge 1, \quad x \ominus y=(x-y) \vee 0 .
$$

Let $X=\{a, b, c\}$ be a set and $A, B \in[0,1]^{X}$ with

$$
A(x)=0.3, A(y)=0.2, A(z)=0.5, B(x)=0.6, B(y)=0.3, B(z)=0.5 \text {. }
$$

Define $d_{X} \in L^{X \times X}$ as

$$
d_{X}=\left(\begin{array}{ccc}
0 & 0.5 & 0.8 \\
0.7 & 0 & 0.6 \\
0.4 & 0.6 & 0
\end{array}\right)
$$

Then we easily show that d_{X} is a distance function. Moreover,

$$
\begin{aligned}
& A=\bigwedge_{x \in X}\left(A(x) \oplus d_{X}(x,-)\right)=\bigwedge_{x \in X}\left(A(x) \oplus d_{X}(-, x)\right) \\
& B=\bigwedge_{x \in X}\left(B(x) \oplus d_{X}(x,-)\right)=\bigwedge_{x \in X}\left(B(x) \oplus d_{X}(-, x)\right) .
\end{aligned}
$$

Thus by Theorem 2.8 (3), $A, B \in \tau_{d_{X}}, A, B \in \tau_{d_{X}^{-1}}$.
(1) Define $f:\left(X, d_{X}\right) \rightarrow\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$ as $f(x)=\left(d_{X}\right)_{x}$, where $\left(d_{X}\right)_{x}(z)=d_{X}(x, z)$ in Theorem 2.10 (1). Moreover, $d_{X}(x, y)=d_{\tau_{d_{X}}}(f(x), f(y))$. By Theorem 3.2, we obtain $f^{\oplus}: \tau_{d_{X}} \rightarrow \tau_{d_{\tau_{X}}}, f_{\oplus}^{\leftarrow}: \tau_{d_{\tau_{d_{X}}}} \rightarrow \tau_{d_{X}}$, where $\tau_{d_{\tau_{d_{X}}}}=\left\{\alpha \in L^{L^{X}} \mid\right.$ $\left.\alpha(A) \oplus d_{\tau_{d_{X}}}(A, B) \geq \alpha(B)\right\}$. For $A, B \in \tau_{d_{X}}$,

$$
\begin{aligned}
f^{\oplus}(A)(B)= & \bigwedge_{x \in X}\left(d_{\tau_{d_{X}}}\left(\left(d_{X}\right)_{x}, B\right) \oplus A(x)\right. \\
= & (0.3 \oplus 0.3) \wedge(0.1 \oplus 0.2) \wedge(0.3 \oplus 0.5) \\
= & 0.3, \\
f_{\oplus}^{\leftarrow}(\Psi)(x)= & \bigwedge_{z \in X}\left(d_{X}(z, x) \oplus \Psi(f(z))\right), \\
f^{\oplus}(A)(f(-)) & =\bigwedge_{z \in X}\left(d_{\tau_{d_{X}}}\left(\left(d_{X}\right)_{z},\left(d_{X}\right)-\right) \oplus A(z)\right) \\
& =\bigwedge_{z \in X}\left(d_{X}(z,-) \oplus A(z)\right) \\
& =(0.3,0.2,0.5), \\
f_{\oplus}^{\leftarrow}\left(f^{\oplus}(A)\right)(-) & =\bigwedge_{z \in X}\left(d_{X}(z,-) \oplus \oplus^{\oplus}(A)(f(z))\right) \\
& =\bigwedge_{z \in X}\left(d_{X}(z,-) \oplus A(z)\right)
\end{aligned}
$$

$$
=(0.3,0.2,0.5)=A
$$

Then $d_{\tau_{d_{\tau_{d_{X}}}}}\left(\Psi, f^{\oplus}(A)\right)=d_{\tau_{d_{X}}}\left(f_{\oplus}^{\leftarrow}(\Psi), A\right)$, i.e., $\left(f^{\oplus}, f \overleftarrow{\oplus}\right)$ is an adjunction.
(2) Define $g:\left(X, d_{X}^{-1}\right) \rightarrow\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$ as $g(x)=\left(d_{X}\right)^{x}$, where $\left(d_{X}\right)^{x}(z)=$ $d_{X}(z, x)$ in Theorem 2.10 (2). Moreover, $d_{X}^{-1}(x, y)=d_{\tau_{d_{X}^{-1}}}(g(x), g(y))$. By Theorem 3.2, we obtain $g^{s \oplus}: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{\tau_{X}^{-1}}^{-1}}, g_{\oplus}^{s \leftarrow}: \tau_{d_{\tau_{d_{X}^{-1}}^{-1}}} \rightarrow \tau_{d_{X}^{-1}}$. Then

$$
\begin{aligned}
& g^{s \oplus}(A)(B)= \bigwedge_{x \in X}\left(d_{\tau_{d_{X}^{-1}}^{x}}\left(B,\left(d_{X}\right)^{x}\right) \oplus A(x)\right) \\
&=(0.6 \oplus 0.3) \wedge(0.3 \oplus 0.2) \wedge(0.5 \oplus 0.5) \\
&= 0.5, \\
& g^{s \oplus}(A)(g(-))=\bigwedge_{x \in X}\left(d_{\tau_{d_{X}^{-1}}}\left(g(-),\left(d_{X}\right)^{x}\right) \oplus A(x)\right. \\
&=\bigwedge_{x \in X}\left(d_{X}(x,-) \oplus A(x)=A,\right. \\
& g_{\oplus}^{s \leftarrow}(\Psi)(x)=\bigwedge_{z \in X}\left(d_{X}(x, z) \oplus \Psi(f(z))\right), \\
& g_{\oplus}^{s \leftarrow}\left(g^{s \oplus}(A)\right)(-)=\bigwedge_{z \in X}\left(d_{X}(-, z) \oplus A(z)\right)=A .
\end{aligned}
$$

Thus $d_{\tau_{d_{d_{X}^{-1}}^{-1}}}\left(\Psi, g^{s \oplus}(A)\right)=d_{\tau_{d_{X}^{-1}}}\left(g_{\oplus}^{s \leftarrow}(\Psi), A\right)$, i.e., $\left(g^{s \oplus}, g_{\oplus}^{s \leftarrow}\right)$ is an adjunction.
(3) Since $f:\left(X, d_{X}\right) \rightarrow\left(\tau_{d_{X}}, d_{\tau_{d_{X}}}\right)$ as $f(x)=\left(d_{X}\right)_{x}$, where $d_{X}(x, y)=d_{\tau_{d_{X}}}(f(x), f(y))$ for each $x, y \in X$, by Theorem 3.7 and (1), we obtain

$$
f^{\ominus}: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{\tau_{d_{X}}}}, f_{\ominus}^{s \leftarrow}: \tau_{d_{\tau_{d_{X}}}} \rightarrow \tau_{d_{X}^{-1}} .
$$

But f is not surjective and $d_{\tau_{d_{d_{X}}}}\left(f^{\ominus}(C), D\right) \leq d_{\tau_{d_{X}^{-1}}}\left(f_{\ominus}^{s \leftarrow}(D), C\right)$ and $f^{\ominus}\left(f_{\ominus}^{s \leftarrow}(D)\right) \leq$ D. For $A, B \in \tau_{d_{X}^{-1}}$,

$$
\begin{aligned}
f^{\ominus}(A)(B) & =\bigvee_{x \in X}\left(d_{\tau_{d_{X}}}\left(\left(d_{X}\right)_{x}, B\right) \ominus A(x)\right) \\
& =(0.3 \ominus 0.3) \vee(0.1 \ominus 0.2) \vee(0.3 \ominus 0.5) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
f^{\ominus}(A)(f(-)) & =\bigvee_{x \in X}\left(d_{\tau_{d_{X}}}\left(\left(d_{X}\right)_{x},\left(d_{X}\right)-\right) \ominus A(x)\right) \\
& \left.=\bigvee_{x \in X}\left(d_{X}\right)(x,-) \ominus A(x)\right)=(0.5,0.2,0.5), \\
f_{\ominus}^{s \leftarrow(\Psi)(x)=} & \bigvee_{z \in X}\left(d_{X}(x, z) \ominus \Psi(f(z))\right), \\
f_{\ominus}^{s \leftarrow}\left(f^{\ominus}(A)\right)(-) & =\bigvee_{z \in X}\left(d_{X}(-, z) \ominus f^{\ominus}(A)(f(z))\right) \\
& =(0.3,0.2,0.4) \\
& <A .
\end{aligned}
$$

(4) Since $g:\left(X, d_{X}^{-1}\right) \rightarrow\left(\tau_{d_{X}^{-1}}, d_{\tau_{d_{X}^{-1}}}\right)$ as $g(x)=\left(d_{X}\right)^{x}$, where $d_{X}^{-1}(x, y)=$ $d_{\tau_{d_{X}^{-1}}}(g(x), g(y))$ for each $x, y \in X$, by Theorem 3.7, we obtain

$$
g^{s \ominus}: \tau_{d_{X}^{-1}} \rightarrow \tau_{d_{d_{X}^{-1}}^{-1}}, g_{\ominus}^{\leftarrow}: \tau_{d_{d_{X}^{-1}}^{-1}} \rightarrow \tau_{d_{X}^{-1}}
$$

But g is not surjective and $d_{\tau_{\tau_{d_{X}^{-1}}^{-1}}}\left(g^{s \ominus}(C), D\right) \leq d_{\tau_{d_{X}^{-1}}}\left(g_{\ominus}^{\overleftarrow{ }}(D), C\right)$ and $g^{s \ominus}\left(g_{\ominus}^{\leftarrow}(D)\right) \leq$ D. For $A, B \in \tau_{d_{X}^{-1}}$,

$$
\begin{aligned}
g^{s \ominus}(A)(B)= & \bigvee_{x \in X}\left(d_{\tau_{d_{X}}^{-1}}\left(B,\left(d_{X}\right)^{x}\right) \ominus A(x)\right) \\
= & (0.6 \ominus 0.3) \vee(0.3 \ominus 0.2) \vee(0.5 \ominus 0.5) \\
= & 0.3, \\
g^{s \ominus}(A)(g(-)) & =\bigvee_{x \in X}\left(d_{\tau_{d_{X}}^{-1}}\left(\left(d_{X}\right)^{-},\left(d_{X}\right)^{x}\right) \ominus A(x)\right) \\
& \left.=\bigvee_{x \in X}\left(d_{X}\right)(x,-) \ominus A(x)\right) \\
& =(0.5,0.2,0.5), \\
g_{\ominus}^{\leftarrow}(\Psi)(x)= & \bigvee_{z \in X}\left(d_{X}(z, x) \ominus \Psi(g(z))\right), \\
g_{\ominus}^{\leftarrow}\left(g^{s \ominus}(A)\right)(-) & =\bigvee_{z \in X}\left(d_{X}(z,-) \ominus g^{s \ominus}(A)(g(z))\right) \\
& =(0.5,0.1,0.4) .
\end{aligned}
$$

Then $0=d_{d_{d_{\tau_{d}}^{-1}}^{d_{X}^{-1}}}\left(g^{s \ominus}(A), g^{s \ominus}(A)\right)<d_{\tau_{d_{X}}}\left(g_{\ominus}^{\leftarrow}\left(g^{s \ominus}(A)\right), A\right)=0.2$.
Let $Y=\{x, y, z\}$ and $f: X \rightarrow Y$ be a function as $f(a)=f(b)=x, f(c)=y$. Define $d_{Y} \in L^{Y \times Y}$ as

$$
d_{Y}=\left(\begin{array}{ccc}
0 & 0.4 & 0.9 \\
0.3 & 0 & 0.5 \\
0.7 & 0.4 & 0
\end{array}\right)
$$

Then $d_{X}(a, b) \geq d_{Y}(f(a), f(b))$ for all $a, b \in X$. The properties of Theorems 3.2 and 3.3 hold.

4. Conclusion

Using distance functions, we have investigated adjunctions, Galois connections and join (meet) preserving maps between various operations based on co-residuated lattices. As applications for adjunctions and Galois connections, we can define a formal fuzzy concept and an attribute-oriented fuzzy concept in Remark 3.5. As extensions of Rodabough's the adjoint function theorem using the adjunctions, we have studied various operators from Alexandrov topologies to Alexandrov topologies in co-residuated lattices.

In the future, by using the concepts of adjunctions, Galois connections and join (meet) preserving maps between various operations, information systems and decision rules are investigated in co-residuated lattices.

Funding: This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

References

[1] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335-354.
[2] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York 2002.
[3] R. Bělohlávek, Fuzzy Galois connection, Math. Log. Quart. 45 (2000) 497-504.
[4] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht 1998.
[5] U. Höhle and S. E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht 1999.
[6] Y. C. Kim, Categories of fuzzy preorders, approximation operators and Alexandrov topologies, Journal of Intelligent and Fuzzy Systems 31 (2016) 1787-1793.
[7] Y. C. Kim and J. M Ko, Fuzzy complete lattices, Alexandrov L-fuzzy topologies and fuzzy rough sets, Journal of Intelligent and Fuzzy Systems 38 (2020) 3253-3266.
[8] H. Lai and D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning 50 (2009) 695-7-07.
[9] Y. H. She and G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications 58 (2009) 189-201.
[10] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co. 1999.
[11] M. C. Zheng and G. J. Wang, Coresiduated lattice with applications, Fuzzy systems and Mathematics 19 (2005) 1-6.
[12] Q. Junsheng and Hu. Bao Qing, On $(\odot, \&)$-fuzzy rough sets based on residuated and coresiduated lattices, Fuzzy Sets and Systems 336 (2018) 54-86.
[13] Y. C. Kim and J. M Ko, Preserving maps and approximation operators in complete coresiduated lattices, Journal of the Korean Insitutute of Intelligent Systems 30 (5) (2020) 389-398.
[14] J. M. Oh and Y. C. Kim, Distance functions, upper approximation operators and Alexandrov fuzzy topologies, Journal of Intelligent and Fuzzy Systems 40 (6) (2021) 11915-11925.
[15] J. M. Oh and Y. C. Kim, Fuzzy completeness and various operations in co-residuated lattices, Ann. Fuzzy Math. Inform. 40 (1) (2021) 251-270.
[16] G. Georgescu and A. Popescue, Non-dual fuzzy connections, Arch. Math. Log. 43 (2004) 10091039.
[17] Q. Y. Zhang, Agebraic generations of some fuzzy powerset operators, Iranian Journal of Fuzzy Systems 8 (5) (2011) 31-58.
[18] Q. Y. Zhang and L. Fan, Continuity in quantitive domains, Fuzzy Sets and Systems 154 (2005) 118-131.

Ju-MOK OH (jumokoh@gwnu.ac.kr)

Department of mathematics, faculty of natural science, university of GangneungWonju, Gangneung, Gangwondo, postal code 25457, Korea

YONG CHAN KIM (yck@gwnu. ac.kr)
Department of mathemathics, faculty of natural science, university of GangneungWonju, Gangneung, Gangwondo, postal code 25457 , Korea

