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1. Introduction

The theory of fuzzy sets was introduced by Zadeh [1] in 1965. Matloka [2]
introduced in 1986 the class of bounded and convergent sequences of fuzzy numbers
with respect to the Hausdorff metric. Recently, Zararsiz [3] introduced and studied
the sequence spaces of fuzzy numbers.

Katsaras [4] first introduced in 1984 the idea of fuzzy norm on a linear space.
After that, Felbin [5], Cheng and Moderson [6] introduced the definition of fuzzy
norm on a linear space in different approach. Following Cheng and Moderson [6],
Bag and Samanta [7] introduced the definition of fuzzy norm on a linear space. The
different types of convergent sequences are investigated by Cho and Lee [8, 9] and
some geometric properties are studied in fuzzy setting [10]. Fuzzy radius, fuzzy
normal structure and fuzzy uniform convexity were studied in [10]. Mukherjee and
Bag [11] introduced the idea of strictly convex and strong strictly convex fuzzy
normed linear spaces and studied some properties of such spaces.

In this paper, we introduce the notion of uniform nonsquareness, property (Bk)
and B-convexity in fuzzy normed linear spaces and their implications.

This paper is organized, as follows. Section 2 provides some preliminary results.
In Section 3, we introduce the definition of uniform nonsquareness in fuzzy setting.
We also show that fuzzy uniform convexity implies fuzzy uniform nonsquareness
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and the converse does not hold, in general. In Section 4, we give the definitions of
property (Bk) and B-convexity in fuzzy setting and study their implications.

2. Preliminaries

Let us recall [12] that a continuous t-norms is a binary operation ∗ : [0, 1]×[0, 1]→
[0, 1] such that ([0, 1],≤, ∗) is an ordered Abelian topological monoid with unit 1.
The continuous t-norms frequently used are the minimum, a ∗ b = min {a, b}, the
usual product, a ∗ b = ab and the bounded difference, a ∗ b = max {0, a+ b− 1}.

Various definitions of fuzzy normed spaces have been investigated by several au-
thors. In this paper, we take the definition of fuzzy normed spaces introduced by
Bag and Samanta [7].

Definition 2.1. Let X be a linear space over a field F (F = R or C). Let N be a
fuzzy subset of X ×R and ∗ be a continuous t-norm. Then N is called a fuzzy norm
on X, if for all x, y ∈ X and c ∈ F,

(N1) for all t ≤ 0, N(x, t) = 0,
(N2) for all t > 0, N(x, t) = 1 if and only if x = 0,

(N3) for all t > 0 and c 6= 0, N(cx, t) = N
(
x, t
|c|

)
,

(N4) for all s, t ∈ R, N(x+ y, s+ t) ≥ N(x, s) ∗N(y, t),
(N5) N(x, ·) is a non-decreasing function of R such that lim

t→∞
N(x, t) = 1.

The pair (X,N, ∗) will be referred to as a fuzzy normed linear space.

In Definition 2.1, it is stated that N(x, ·) is a non-decreasing function of R. But
the following inequality from (N4) shows that N(x, ·) is non-decreasing: For t > s,

N(x, t) ≥ N(x, s) ∗N(0, t− s) = N(x, s) ∗ 1 = N(x, s).

In this paper, R, C and N denote the set of real numbers, complex numbers and
positive integers, respectively.

3. Fuzzy uniform nonsquareness

Let (X, ‖ · ‖) be a real Banach space and X∗ the dual space of X. By BX and
SX , we denote the closed unit ball and the unit sphere of X, respectively. (X, ‖ · ‖)
is said to be uniformly convex (UC) if for all ε > 0, there exists a δ > 0 such
that for x, y ∈ BX with ‖x − y‖ > ε,

∥∥ 1
2 (x+ y)

∥∥ ≤ 1 − δ. (X, ‖ · ‖) is said to be
uniformly nonsquare (UNS) if there exists a δ > 0 such that for x, y ∈ BX with∥∥ 1
2 (x− y)

∥∥ > 1 − δ,
∥∥ 1
2 (x+ y)

∥∥ ≤ 1 − δ. An uniformly convex Banach space is
uniformly nonsquare and the converse does not hold, in general [13, 14, 15]. The
modulus of convexity a normed space X is defined by

δ(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

The coefficient of convexity of a Banach space X is the number

ε0(X) = sup {ε ≥ 0 : δ(ε) = 0} .
It is well known fact that a Banach space X is uniformly nonsquare if and only if
ε0(X) < 2. The following example is found in [15].
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Example 3.1. Let Qi, i = 1, 2, 3, 4, denote the ith quadrant in R2, and for x =
(x1, x2) ∈ R2, set

‖x‖ =

{
(x21 + x22)

1
2 if x ∈ Q1 ∪Q3

|x1|+ |x2| if x ∈ Q2 ∪Q4

=

{
‖x‖2 if x1 · x2 ≥ 0
‖x‖1 if x1 · x2 ≤ 0.

Let (R2, ‖ · ‖) be denoted by XG. Then ε0(XG) ≤ 2
1
2 [15]. This implies that XG

is uniformly nonsquare. For x = e1 = (1, 0) and y = −e2 = (0,−1) in XG,

‖x− y‖ = 2
1
2 and ‖x+ y‖ = 2.

This means that XG is not uniformly convex.

The definition of uniform convexity in fuzzy setting is found in [10].

Definition 3.2 ([10]). A fuzzy normed space (X,N, ∗) is said to be uniformly con-
vex, if for 0 < ε ≤ 2, there exists 0 < δ < 1 such that for x, y ∈ X,

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} ≤ 1, sup
α∈(0,1)

inf {t > 0 : N(y, t) ≥ α} ≤ 1

and

sup
α∈(0,1)

inf {t > 0 : N(x− y, t) ≥ α} > ε

imply that

sup
α∈(0,1)

inf

{
t > 0 : N

(
x+ y

2
, t

)
≥ α

}
≤ 1− δ.

We now define uniform nonsquareness in fuzzy normed spaces.

Definition 3.3. A fuzzy normed space (X,N, ∗) is said to be uniformly nonsquare
if there exists 0 < δ < 1 such that for x, y ∈ X,

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} ≤ 1, sup
α∈(0,1)

inf {t > 0 : N(y, t) ≥ α} ≤ 1

and

sup
α∈(0,1)

inf

{
t > 0 : N

(
x− y

2
, t

)
≥ α

}
> 1− δ

imply that

sup
α∈(0,1)

inf

{
t > 0 : N

(
x+ y

2
, t

)
≥ α

}
≤ 1− δ.

We need the following lemmas which will be used in this paper.

Lemma 3.4. Let (X,N, ∗) be a fuzzy normed space. Then for λ ∈ R and x, y ∈ X,
supα∈(0,1) inf {t > 0 : N(λx, t) ≥ α} = |λ| supα∈(0,1) inf {t > 0 : N(x, t) ≥ α}

327



Kyugeun Cho /Ann. Fuzzy Math. Inform. 22 (2021), No. 3, 325–332

Proof. If λ = 0, then

sup
α∈(0,1)

inf {t > 0 : N(λx, t) ≥ α} = 0 = |λ| sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} .

For λ 6= 0,

|λ| sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} = sup
α∈(0,1)

inf {|λ| t > 0 : N(x, t) ≥ α}

= sup
α∈(0,1)

inf

{
s > 0 : N

(
x,

s

|λ|

)
≥ α

}
= sup

α∈(0,1)
inf {s > 0 : N (λx, s) ≥ α} .

�

Lemma 3.5. Let (X,N, ∗) be a fuzzy normed space and α ∗ α = α for all α ∈ R.
Then supα∈(0,1) inf {t > 0 : N(x+ y, t) ≥ α}

≤ supα∈(0,1) inf {t > 0 : N(x, t) ≥ α}+ supα∈(0,1) inf {t > 0 : N(y, t) ≥ α} .

Proof. Since N(x+ y, s+ t) ≥ N(x, t) ∗N(y, s) ≥ α ∗ α = α,

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α}+ sup
α∈(0,1)

inf {s > 0 : N(y, s) ≥ α}

≥ sup
α∈(0,1)

(inf {t > 0 : N(x, t) ≥ α}+ inf {s > 0 : N(y, s) ≥ α})

≥ sup
α∈(0,1)

inf {s+ t > 0 : N(x, t) ≥ α, N(y, s) ≥ α}

≥ sup
α∈(0,1)

inf {s+ t > 0 : N(x+ y, s+ t) ≥ α}

= sup
α∈(0,1)

inf {t > 0 : N(x+ y, t) ≥ α} .

�

We now investigate the relationship between uniform convexity and unform non-
squareness in fuzzy normed spaces.

Theorem 3.6. Uniform convexity implies unform nonsquareness in fuzzy normed
spaces.

Proof. Suppose that a fuzzy normed space (X,N, ∗) is uniformly convex. Then for
ε0 = 1, there exists 0 < δ0 < 1 such that for x, y ∈ X,

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} ≤ 1, sup
α∈(0,1)

inf {t > 0 : N(y, t) ≥ α} ≤ 1

and

sup
α∈(0,1)

inf {t > 0 : N(x− y, t) ≥ α} > ε0

imply that

sup
α∈(0,1)

inf

{
t > 0 : N

(
x+ y

2
, t

)
≥ α

}
≤ 1− δ0.
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Let δ = inf
{

1
2 , δ0

}
. If for x, y ∈ X,

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} ≤ 1, sup
α∈(0,1)

inf {t > 0 : N(y, t) ≥ α} ≤ 1

and

sup
α∈(0,1)

inf

{
t > 0 : N

(
x− y

2
, t

)
≥ α

}
> 1− δ,

then

sup
α∈(0,1)

inf {t > 0 : N (x− y, t) ≥ α} > 2(1− δ) ≥ ε0,

by Lemma 3.4. This implies that

sup
α∈(0,1)

inf

{
t > 0 : N

(
x+ y

2
, t

)
≥ α

}
≤ 1− δ0 ≤ 1− δ.

This completes the proof. �

The converse of Theorem 3.6 does not hold, in general.

Example 3.7. Let XG be the uniformly nonsquare normed space which is not
uniformly convex (Example 3.1). Define a function N : XG × R→ [0, 1] by

N(x, t) =

 1 if t > ‖x‖
1
2 if 0 < t ≤ ‖x‖
0 if t ≤ 0.

Then (XG, N,min) is a fuzzy normed space. We note that

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} = ‖x‖.

Since XG is the uniformly nonsquare normed space which is not uniformly con-
vex, the fuzzy normed space (XG, N,min) is not uniformly convex but uniformly
nonsquare.

By Theorem 3.6 and Example 3.7, we can get that Uniform convexity implies
unform nonsquareness in fuzzy normed spaces and the converse does not hold, in
general.

4. The property (Bk)

For k ≥ 2 and δ > 0, a normed space X is said to be (k, δ)-convex if for all
x1, x2, · · · , xk in BX , there exist εi ∈ {1,−1}, i = 1, 2, · · · , k such that ‖ε1x1 + · · ·+
εkxk‖ ≤ k(1 − δ). X is B-convex if there exists k ≥ 2 and δ > 0 for which X is
(k, δ)-convex. We now define the following.

Definition 4.1. A Banach space X has the property (Bk) for k ≥ 2, if there exists
δ > 0 such that for x1, x2, · · · , xk ∈ BX , there exist εi ∈ { 1,−1}, i = 1, · · · , k with

‖ε1x1 + · · ·+ εkxk‖ ≤ k(1− δ).
We note that X is B-convex if it has property (Bk) for some k and uniformly
nonsquare if it has property (B2).

We now define the property (Bk) in fuzzy normed spaces.
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Definition 4.2. A fuzzy normed space (X,N, ∗) has the property (Bk), k ≥ 2, if
there exists δ > 0 such that for x1, x2, · · · , xk ∈ X,

sup
α∈(0,1)

inf {t > 0 : N(xi, t) ≥ α} ≤ 1, for i = 1, 2, · · · , k

there exist εi ∈ { 1,−1}, i = 1, · · · , k with

sup
α∈(0,1)

inf

{
t > 0 : N

(
1

k

k∑
i=1

εixi, t

)
≥ α

}
≤ 1− δ.

A fuzzy normed space (X,N, ∗) is said to be B-convex if it has property (Bk) for
some k. We note that A fuzzy normed space (X,N, ∗) is uniformly nonsquare if it
has property (B2).

Theorem 4.3. Let (X,N, ∗) be a fuzzy normed space and α ∗ α = α for all α ∈ R.
Then the property (Bk) in fuzzy normed spaces implies (Bk+1) for k ≥ 2.

Proof. The proof is by contradiction. Assume the assertion were false, i.e., suppose

(X,N, ∗) has no the property (Bk+1). Then for all n ∈ N, there exist x
(n)
1 , x

(n)
2 , · · · , x(n)k+1 ∈

X with supα∈(0,1) inf
{
t > 0 : N(x

(n)
i , t) ≥ α

}
≤ 1 for i = 1, 2, · · · , k + 1 such that

sup
α∈(0,1)

inf

{
t > 0 : N

(
1

k + 1

k+1∑
i=1

εixi, t

)
≥ α

}
≥ 1− 1

n

for all εi ∈ { 1,−1}, i = 1, · · · , k + 1. By Lemma 3.4 and Lemma 3.5,

sup
α∈(0,1)

inf

{
t > 0 : N

(
k∑
i=1

εix
(n)
i , t

)
≥ α

}

≥ sup
α∈(0,1)

inf

{
t > 0 : N

(
k+1∑
i=1

εix
(n)
i , t

)
≥ α

}
− sup
α∈(0,1)

{
t > 0 : N

(
εk+1x

(n)
k+1, t

)
≥ α

}
> (k + 1)

(
1− 1

n

)
− 1 ≥ k

(
1− 2

n

)
.

This implies that (X,N, ∗) has no the property (Bk). We get the contradiction. �

Corollary 4.4. The property (Bk) in normed spaces implies (Bk+1) for k ≥ 2.

Proof. Let X be a normed space. Suppose that X has the property (Bk). Define a
function N : X × R→ [0, 1] by

N(x, t) =

 1 if t > ‖x‖
1
2 if 0 < t ≤ ‖x‖
0 if t ≤ 0.

Then (X,N,min) is a fuzzy normed space. We note that

(4.1) sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} = ‖x‖.

Thus (X,N,min) has the property (Bk). By Theorem 4.3, it has the property
(Bk+1). Therefore a normed space X has the property (Bk+1) by (4.1). �
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We now consider the converse of Corollary 4.4.

Example 4.5. Consider lk1 =
(
Rk, ‖ · ‖1

)
. Then lk1 does not have the property (Bk),

since

‖ε1e1 + · · ·+ εkek‖1 = 1

for all εi = ±1, where ei is usual unit vector of lk1 .
We show that lk1 has the property (Bk+1). Let x1, · · · , xk+1 ∈ Blk1 . We may

assume xi 6= 0 for i = 1, · · · , k+ 1. Since dim lk1 = k, there exist not all zero scalars

a1, · · · , ak+1 such that
∑k+1
i=1 aixi = 0. Without loss of generality, we may assume

max1≤i≤k+1 |ai| = ak+1. Let bi = ai
|ak+1| then |bi| ≤ 1 and

∑k+1
i=1 bixi = 0.

Let εi = sgn(bi), where sgn(·) is the sign function defined by

sgn(a) =

{ a
|a| if a 6= 0

1 if a = 0.

Then we have ∥∥∥∥∥
k+1∑
i=1

εixi

∥∥∥∥∥
1

≤

∥∥∥∥∥
k+1∑
i=1

bixi +

k+1∑
i=1

(εi − bi)xi

∥∥∥∥∥
1

=

∥∥∥∥∥
k+1∑
i=1

(εi − bi)xi

∥∥∥∥∥
1

=

∥∥∥∥∥
k∑
i=1

(εi − bi)xi

∥∥∥∥∥
1

≤ k,

since εk+1 = bk+1 and 0 ≤ εi − bi ≤ 1 . Thus we get

1

k + 1

∥∥∥∥∥
k+1∑
i=1

εixi

∥∥∥∥∥
1

≤ 1− 1

k + 1
.

This implies that lk1 has the property (Bk+1).

The converse of Theorem 4.3 does not hold.

Example 4.6. We note that lk1 =
(
Rk, ‖ · ‖1

)
has the property (Bk+1) but not (Bk),

for k ≥ 2. Define a function N : lk1 × R→ [0, 1] by

N(x, t) =

 1 if t > ‖x‖
1
2 if 0 < t ≤ ‖x‖
0 if t ≤ 0.

Then (lk1 , N,min) is a fuzzy normed space. We note that

sup
α∈(0,1)

inf {t > 0 : N(x, t) ≥ α} = ‖x‖.

Since lk1 =
(
Rk, ‖ · ‖1

)
has the property (Bk+1) but not (Bk) for k ≥ 2, the fuzzy

normed space (lk1 , N,min) has the property (Bk+1) but not (Bk) for k ≥ 2.
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By Theorem 4.3 and Example 4.6, if (X,N, ∗) be a fuzzy normed space and
α ∗ α = α, for all α ∈ R, then the property (Bk) implies the property (Bk+1) and
the converse does not hold, in general.
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and suggestions.
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