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Abstract. In this paper, we study the discrete approximation for the
following nonlinear diffusion equation with nonlinear source and singular
boundary flux

∂A(u)

∂t
= uxx + (1 − u)−α, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −B(u(1, t)), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

with α > 0.
We find some conditions under which the solution of a discrete form of
above problem quenches in a finite time and estimate its discrete quenching
time. We also establish the convergence of the discrete quenching time to
the theoretical one when the mesh size tends to zero. Finally, we give some
numerical experiments for a best illustration of our analysis.
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1. Introduction

In this paper, we consider the nonlinear diffusion equation with nonlinear source
and singular boundary flux

∂A(u)

∂t
= uxx + (1− u)−α, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, ux(1, t) = −B(u(1, t)), t > 0,(1.2)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.3)
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where A(s) is an appropriately smooth function which satisfies

A(0) = 0, A(1) = 1, A′(s) > 0, A′′(s) ≤ 0 ∀s > 0,

B(s) satisfies

B(s) > 0, B′(s) < 0, B′′(s) ≥ 0, for s > 0, lims→0+ B(s) = +∞
and u0 : [0, 1] −→ (0, 1) is nonincreasing and satisfies some compatibility conditions
and α is a nonnegative constant.

Definition 1.1. We say that the solution u of (1.1)–(1.3) quenches in a finite time
if there exists a finite time Tq such that ‖u(., t)‖∞ < 1 for t ∈ [0, Tq), but

lim
t→Tq

‖u(., t)‖∞ = 1,

where ‖u(., t)‖∞ = max
0≤x≤1

|u(x, t)|. The time Tq is called quenching time of the solu-

tion u.

When A(u) = um, the problem (1.1)–(1.3) is known as the classical porous
medium equation which shows a number of physical phenomenon in the nature
such as the flow of an isentropic gas through a porous medium [1] and heat transfer
or diffusion [2] .
The problem (1.1)–(1.3) may be rewritten in the following model

ut = γ(u)uxx + γ(u)(1− u)−α, 0 < x < 1, t > 0,(1.4)

ux(0, t) = 0, ux(1, t) = −B(u(1, t)), t > 0,(1.5)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.6)

where γ(u) =
1

A′(u)
.

In recent years, the theoretical study of quenching phenomenon for semilinear
parabolic equations has been carried out by many researchers (See [2, 3, 4, 5] and
references therein). Local in time existence and uniqueness of the solution have been
proved (See [3, 4]). Concerning problem (1.1)–(1.3), the author in [5] shows that the
solution u of (1.1)–(1.3) quenches in finite time Tq and x = 0 is the unique quenching
point. He also shows that the time derivative ut blow-up at the quenching point and
he gives a lower bound of the quenching time.

In this paper, we deal with a numerical study using a discrete form obtained by
the finite difference method. For previous study on numerical approximations of
parabolic system we refer to [6, 7, 8].

In the next section, we present a discrete scheme of (1.4)–(1.6) and give some
properties of the discrete solution. In the third section, we prove that the solution
of the discrete form of (1.4)–(1.6) quenches in a finite time and we give a estimation
of the discrete quenching time. In the fourth section, we study the convergence of
the discrete quenching time. In last section, we give some numerical results.
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2. Properties of the discrete scheme

In this section, we give some lemmas which will be used later. We start by the
construction of the discrete scheme. Let I ≥ 3 be a nonnegative integer and let

h =
1

I
. Define the grid xi = ih , 0 ≤ i ≤ I and approximate the solution u of

(1.4)–(1.6) by the solution U
(n)
h = (U

(n)
0 , U

(n)
1 , ..., U

(n)
I )T and the initial condition u0

by the initial condition ϕh = (ϕ0, ϕ1, ..., ϕI)
T of the following discrete equations

δtU
(n)
i = γ(U

(n)
i )δ2U

(n)
i + γ(U

(n)
i )(1− U (n)

i )−α, 0 ≤ i ≤ I − 1,(2.1)

δtU
(n)
I = γ(U

(n)
I )δ2U

(n)
I −

2γ(U
(n)
I )B(U

(n)
I )

h
+ γ(U

(n)
I )(1− U (n)

I )−α,(2.2)

U
(0)
i = ϕi, 0 ≤ i ≤ I,(2.3)

where

n ≥ 0, α > 0,

δtU
(n)
i =

U
(n+1)
i − U (n)

i

∆tn
, 0 ≤ i ≤ I,

δ2U
(n)
i =

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
, 1 ≤ i ≤ I − 1,

δ2U
(n)
0 =

2U
(n)
1 − 2U

(n)
0

h2
, δ2U

(n)
I =

2U
(n)
I−1 − 2U

(n)
I

h2
,

ϕi > 0, 0 ≤ i ≤ I,

δ+ϕi =
ϕi+1 − ϕi

h
, δ+ϕi < 0, 0 ≤ i ≤ I − 1.

In order to permit the discrete solution to reproduce the properties of the con-
tinuous one when the time t approaches to the quenching time Tq, we need to adapt
the size of the time step. We choose

∆tn = min

{
h2

2
, τ(1− ‖U (n)

h ‖∞)α+1

}
with τ ∈ (0, 1) and ‖U (n)

h ‖∞ = max
0≤i≤I

|U (n)
i |.

Lemma 2.1. Let b
(n)
h , V

(n)
h and f

(n)
h be three sequences with n ≥ 0, f

(n)
h > 0 and

b
(n)
h ≤ 0 such that for 0 ≤ i ≤ I

δtV
(n)
i − f (n)

i δ2V
(n)
i + b

(n)
i V

(n)
i ≥ 0,(2.4)

V
(0)
i ≥ 0.(2.5)

Then we have

V
(n)
i ≥ 0, 0 ≤ i ≤ I, n ≥ 0 when ∆tn ≤

h2

2‖f (n)
h ‖∞

.
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Proof. A straightforward computation shows that

V
(n+1)
0 ≥

(
1− 2

∆tn‖f (n)
h ‖∞
h2

)
V

(n)
0 +

2∆tn‖f (n)
h ‖∞

h2
V

(n)
1 −∆tnb

(n)
0 V

(n)
0 ,

V
(n+1)
i ≥

(
1− 2

∆tn‖f (n)
h ‖∞
h2

)
V

(n)
i +

∆tn‖f (n)
h ‖∞
h2

(
V

(n)
i+1 + V

(n)
i−1

)
−∆tnb

(n)
i V

(n)
i ,

1 ≤ i ≤ I − 1,

V
(n+1)
I ≥

(
1− 2

∆tn‖f (n)
h ‖∞
h2

)
V

(n)
I +

2∆tn‖f (n)
h ‖∞

h2
V

(n)
I−1 −∆tnb

(n)
I V

(n)
I .

If V
(n)
h ≥ 0, then using an argument of recursion, we easily see that

V
(n+1)
h ≥ 0,

because −b(n)
h ≥ 0 and ∆tn ≤

h2

2‖f (n)
h ‖∞

. This end the proof. �

Lemma 2.2. Let g
(n)
h , V

(n)
h and W

(n)
h be three sequences, with n ≥ 0 and g

(n)
h ≤ 0,

such that for 0 ≤ i ≤ I

δtV
(n)
i − γ(V

(n)
i )δ2V

(n)
i + g

(n)
i V

(n)
i ≤ δtW (n)

i − γ(W
(n)
i )δ2W

(n)
i + g

(n)
i W

(n)
i ,

V
(0)
i ≤W (0)

i .

Then we have

V
(n)
i ≤W (n)

i , 0 ≤ i ≤ I, n ≥ 0.

Proof. Define the vector Z
(n)
h = W

(n)
h − V

(n)
h . For 0 ≤ i ≤ I, a straightforward

calculation gives

δtZ
(n)
i − γ(V

(n)
i )δ2Z

(n)
i +

(
g

(n)
i − γ′(θ(n)

i )δ2W
(n)
i

)
Z

(n)
i ≥ 0.

Where θ
(n)
i is an intermediate value between V

(n)
i and W

(n)
i , 0 ≤ i ≤ I . Knowing

that Z
(0)
h ≥ 0, from Lemma (2.1), we have Z

(n)
h ≥ 0. �

Lemma 2.3. Let g
(n)
h , V

(n)
h and W

(n)
h be three sequences, with n ≥ 0 and g

(n)
h ≤ 0,

such that for 0 ≤ i ≤ I,

δtV
(n)
i − γ(V

(n)
i )δ2V

(n)
i + g

(n)
i V

(n)
i < δtW

(n)
i − γ(W

(n)
i )δ2W

(n)
i + g

(n)
i W

(n)
i ,

V
(0)
i < W

(0)
i .

Then we have

V
(n)
i < W

(n)
i , 0 ≤ i ≤ I, n ≥ 0.
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Proof. Define the vector Z
(n)
h = W

(n)
h − V

(n)
h . For 0 ≤ i ≤ I, a straightforward

calculation gives

δtZ
(n)
i − γ(V

(n)
i )δ2Z

(n)
i +

(
g

(n)
i − γ′(θ(n)

i )δ2W
(n)
i

)
Z

(n)
i > 0.

Where θ
(n)
i is an intermediate value between V

(n)
i and W

(n)
i , 0 ≤ i ≤ I. Knowing

that Z
(0)
h > 0, from Lemma (2.1), we have Z

(n)
h > 0. �

Lemma 2.4. Let U
(n)
h , n ≥ 0 be a sequence such that ‖U (n)

h ‖∞ < 1. Then we have

δt(1− U (n)
i )−α ≥ α(1− U (n)

i )−α−1δtU
(n)
i , 0 ≤ i ≤ I.

Proof. Using Taylor’s expansion, we get

δt(1− U (n)
i )−α

= α(1−U (n)
i )−α−1δtU

(n)
i +

α(α+ 1)

2
∆tn(1− θ(n)

i )−α−2(δtU
(n)
i )2, 0 ≤ i ≤ I,

where θ
(n)
i is an intermediate value between U

(n)
i and U

(n+1)
i , 0 ≤ i ≤ I. We use the

fact that ‖U (n)
h ‖∞ < 1, n ≥ 0 to complete the proof. �

Lemma 2.5. Let U
(n)
h , n ≥ 0, be the solution of the discrete problem (2.1)–(2.3)

Then

δtU
(n)
i ≥ 0, 0 ≤ i ≤ I.

Proof. Consider the vector Z
(n)
h such that Z

(n)
i = δtU

(n)
i , 0 ≤ i ≤ I. Then by using

Lemma (2.4), a straightforward calculation gives

δtZ
(n)
i − γ(U

(n)
i )δ2Z

(n)
i − αγ(U

(n)
i )(1− U (n)

i )−α−1Z
(n)
i − γ′(U (n)

i )Z
(n)
i δ2U

(n)
i

−γ′(U (n)
i )(1− U (n)

i )−αZ
(n)
i ≥ 0, 0 ≤ i ≤ I − 1,

δtZ
(n)
I − γ(U

(n)
I )δ2Z

(n)
I − αγ(U

(n)
I )(1− U (n)

I )−α−1Z
(n)
I − γ′(U (n)

I )[δ2U
(n)
I

+(1− U (n)
I )−α]Z

(n)
I +

2

h
[γ′(U

(n)
I )B(U

(n)
I ) + γ(U

(n)
I )B′(U

(n)
I )]Z

(n)
I ≥ 0.

Since Z
(0)
h ≥ 0, from Lemma (2.1), we have Z

(n)
h ≥ 0. Thus we get δtU

(n)
i ≥ 0,

0 ≤ i ≤ I. �

Lemma 2.6. Let U
(n)
h , n ≥ 0 be the solution of the discrete problem (2.1)–(2.3).

Then

U
(n)
i+1 < U

(n)
i , 0 ≤ i ≤ I − 1.(2.6)

Proof. Define the vector Z
(n)
i such that Z

(n)
i = U

(n)
i −U (n)

i+1, 0 ≤ i ≤ I − 1. Then we
have

Z
(n)
i = U

(n)
i − U (n)

i+1, 0 ≤ i ≤ I − 2,

Z
(n)
I−1 = U

(n)
I−1 − U

(n)
I .

By a straightforward computations, we have

δtZ
(n)
i = γ(U

(n)
i+1)δ2Z

(n)
i + γ′(ω

(n)
i )Z

(n)
i δ2U

(n)
i + γ′(ω

(n)
i )(1− U (n)

i )−αZ
(n)
i

+αγ(U
(n)
i+1)(1− ζ(n)

i )−α−1Z
(n)
i , 0 ≤ i ≤ I − 2,
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δtZ
(n)
I−1 = γ(U

(n)
I )δ2Z

(n)
I−1 + γ′(ω

(n)
I−1)Z

(n)
I−1δ

2U
(n)
I−1 + γ′(ω

(n)
I−1)(1−U (n)

I−1)−αZ
(n)
I−1

+αγ(U
(n)
I )(1− ζ(n)

I−1)−α−1Z
(n)
I−1 +

2γ(U
(n)
I )B(U

(n)
I )

h
.

Where ζ
(n)
i and ω

(n)
i are an intermediate values between U

(n)
i and U

(n)
i+1, 0 ≤ i ≤ I−1.

Knowing that Z
(0)
h > 0, from Lemma (2.1), we have Z

(n)
h > 0, which implies that

U
(n)
i+1 < U

(n)
i , 0 ≤ i ≤ I − 1. �

3. Quenching in the discrete problem

In this section, under some assumptions, we show that the solution U
(n)
h of the

discrete problem (2.1)–(2.3) quenches in a finite time and estimate its numerical

quenching time. Now let us set V
(n)
h = 1−U (n)

h . The problem (2.1)–(2.3) is equiva-
lent to

δtV
(n)
i = γ(1− V (n)

i )δ2V
(n)
i − γ(1− V (n)

i )(V
(n)
i )−α, 0 ≤ i ≤ I − 1,(3.1)

(3.2) δtV
(n)
I = γ(1−V (n)

I )δ2V
(n)
I +

2

h
γ(1−V (n)

I )B(1−V (n)
I )−γ(1−V (n)

I )(V
(n)
I )−α,

V
(0)
i = φi = 1− ϕi, 0 ≤ i ≤ I,(3.3)

where

n ≥ 0, α > 0.

Lemma 3.1. Let V
(n)
h , n ≥ 0 be a sequence such that ‖V (n)

h ‖inf > 0. Then we have

δt(V
(n)
i )−α ≥ −α(V

(n)
i )−α−1δtV

(n)
i , 0 ≤ i ≤ I.

Proof. Using Taylor’s expansion, we get

δt(V
(n)
i )−α = −α(V

(n)
i )−α−1δtV

(n)
i +

α(α+ 1)

2
∆tn(θ

(n)
i )−α−2(δtV

(n)
i )2, 0 ≤ i ≤ I,

where θ
(n)
i is an intermediate value between V

(n)
i and V

(n+1)
i , 0 ≤ i ≤ I. We use the

fact that ‖V (n)
h ‖inf > 0, n ≥ 0 to complete the proof. �

Lemma 3.2. Let V
(n)
h , n ≥ 0 be a sequence such that ‖V (n)

h ‖inf > 0 . Then we have

δ2(V
(n)
i )−α ≥ −α(V

(n)
i )−α−1δ2V

(n)
i , 0 ≤ i ≤ I.

Proof. Applying Taylor’s expansion, we obtain

δ2(V
(n)
i )−α = −α(V

(n)
i )−α−1δ2V

(n)
i + (V

(n)
i−1 − V

(n)
i )2α(α+ 1)

2h2
(θ

(n)
i )−α−2

+(V
(n)
i+1 − V

(n)
i )2α(α+ 1)

2h2
(ε

(n)
i )−α−2, 1 ≤ i ≤ I − 1,

δ2(V
(n)
0 )−α = −α(V

(n)
0 )−α−1δ2V

(n)
0 + (V

(n)
1 − V (n)

0 )2α(α+ 1)

h2
(θ

(n)
0 )−α−2,

δ2(V
(n)
I )−α = −α(V

(n)
I )−α−1δ2V

(n)
I + (V

(n)
I−1 − V

(n)
I )2α(α+ 1)

h2
(θ

(n)
I )−α−2,
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where θ
(n)
0 is an intermediate value between V

(n)
0 and V

(n)
1 , θ

(n)
i is an intermediate

value between V
(n)
i−1 and V

(n)
i , 1 ≤ i ≤ I − 1, θ

(n)
I is an intermediate value between

V
(n)
I−1 and V

(n)
I , ε

(n)
i is an intermediate value between V

(n)
i and V

(n)
i+1 , 1 ≤ i ≤ I − 1.

Using the fact that ‖V (n)
h ‖inf > 0, we complete the proof. �

Theorem 3.3. Let U
(n)
h be the solution of (2.1)–(2.3) Suppose that there exists a

constant λ ∈ (0, 1] such that the initial data at (3.3) satisfies

γ(1− φi)δ2φi − γ(1− φi)φ−αi ≤ −λφ−αi , 0 ≤ i ≤ I − 1,(3.4)

γ(1− φI)δ2φI +
2

h
γ(1− φI)B(1− φI)− γ(1− φI)φ−αI ≤ −λφ−αI .(3.5)

Then U
(n)
h quenches in a finite time T∆t

h =

+∞∑
n=0

∆tn, which satisfies the estimate

T∆t
h ≤ τ(1− ‖ϕh‖∞)α+1

1− (1− τ ′)α+1
,

where ∆tn = min

{
h2

2
, τ(V

(n)
hmin)α+1

}
with τ ∈ (0, 1), V

(n)
hmin = (1 − ‖U (n)

h ‖∞) and

τ ′ = λmin{h
2(φhmin)−α−1

2
, τ}.

Proof. Introduce the vector J
(n)
h defined as follows

J
(n)
i = δt(V

(n)
i ) + λ(V

(n)
i )−α, 0 ≤ i ≤ I, n ≥ 0.

A straightforward computation yields for 0 ≤ i ≤ I and n ≥ 0,

δtJ
(n)
i − γ(1− V (n)

i )δ2J
(n)
i = δt(δtV

(n)
i − γ(1− V (n)

i )δ2V
(n)
i ) + λδt(V

(n)
i )−α

−λγ(1− V (n)
i )δ2(V

(n)
i )−α.

From (3.1)–(3.2), we arrive at

δtJ
(n)
i − γ(1− V (n)

i )δ2J
(n)
i = −δtγ(1− V (n)

i )(V
(n)
i )−α + λδt(V

(n)
i )−α

−λγ(1− V (n)
i )δ2(V

(n)
i )−α, 0 ≤ i ≤ I − 1,

δtJ
(n)
I − γ(1− V (n)

I )δ2J
(n)
I = −δtγ(1− V (n)

I )(V
(n)
I )−α + λδt(V

(n)
I )−α

−λγ(1− V (n)
I )δ2(V

(n)
I )−α

+
2

h
δt

(
γ(1− V (n)

I )B(1− V (n)
I )

)
,

δtJ
(n)
i − γ(1− V (n)

i )δ2J
(n)
i = −(γ(1− V (n)

i )− λ)δt(V
(n)
i )−α

−λγ(1− V (n)
i )δ2(V

(n)
i )−α

−(V
(n)
i )−αδtγ(1− V (n)

i ), 0 ≤ i ≤ I − 1,

δtJ
(n)
I − γ(1− V (n)

I )δ2J
(n)
I = −(γ(1− V (n)

I )− λ)δt(V
(n)
I )−α

−λγ(1− V (n)
I )δ2(V

(n)
I )−α

−(V
(n)
I )−αδtγ(1− V (n)

I )
25
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+
2

h
δt

(
γ(1− V (n)

I )B(1− V (n)
I )

)
.

It follows from Lemma (3.1) and Lemma (3.2) that for n ≥ 0,

δtJ
(n)
i − γ(1− V (n)

i )δ2J
(n)
i ≤ αγ(1− V (n)

i )(V
(n)
i )−α−1δtV

(n)
i

−αλ(V
(n)
i )−α−1[δtV

(n)
i − γ(1− V (n)

i )δ2V
(n)
i ]

−(V
(n)
i )−αδtγ(1− V (n)

i ), 0 ≤ i ≤ I − 1,

δtJ
(n)
I − γ(1− V (n)

I )δ2J
(n)
I ≤ αγ(1− V (n)

I )(V
(n)
I )−α−1δtV

(n)
I

−αλ(V
(n)
I )−α−1[δtV

(n)
I

−γ(1− V (n)
I )δ2V

(n)
I ]− (V

(n)
I )−αδtγ(1− V (n)

I )

+
2

h
δt

(
γ(1− V (n)

I )B(1− V (n)
I )

)
,

δtJ
(n)
i − γ(1− V (n)

i )δ2J
(n)
i ≤ αγ(1− V (n)

i )(V
(n)
i )−α−1(δtV

(n)
i + λ(V

(n)
i )−α)

−(V
(n)
i )−αδtγ(1− V (n)

i ), 0 ≤ i ≤ I − 1,

δtJ
(n)
I − γ(1− V (n)

I )δ2J
(n)
I ≤ αγ(1− V (n)

I )(V
(n)
I )−α−1(δtV

(n)
I + λ(V

(n)
I )−α)

−(V
(n)
I )−αδtγ(1− V (n)

I )

+
2

h
δt

(
γ(1− V (n)

I )B(1− V (n)
I )

)
.

Finally, we obtain

δtJ
(n)
i −γ(1−V (n)

i )δ2J
(n)
i −αγ(1−V (n)

i )(V
(n)
i )−α−1J

(n)
i +(V

(n)
i )−αδtγ(1−V (n)

i )
≤ 0, 0 ≤ i ≤ I − 1,

δtJ
(n)
I −γ(1−V (n)

I )δ2J
(n)
I −αγ(1−V (n)

I )(V
(n)
I )−α−1J

(n)
I +(V

(n)
I )−αδtγ(1−V (n)

I )

− 2

h
δt

(
γ(1− V (n)

I )B(1− V (n)
I )

)
≤ 0.

Using inequalities (3.4) and (3.5), we have J
(0)
h ≤ 0. Applying Lemma (2.1), we get

J
(n)
h ≤ 0 for n ≥ 0, which implies that

V
(n+1)
i − V (n)

i

∆tn
≤ −λ(V

(n)
i )−α, 0 ≤ i ≤ I, n ≥ 0.

Then we get

V
(n+1)
i ≤ V (n)

i

(
1− λ∆tn(V

(n)
i )−α−1

)
, 0 ≤ i ≤ I, n ≥ 0.(3.6)

These estimates reveal that the sequence V
(n)
h is nonincreasing. By induction, we

obtain V
(n)
h ≤ V (0)

h = φh. Thus the following holds

λ∆tn(V
(n)
hmin)−α−1 ≥ λmin{h

2(φhmin)−α−1

2
, τ} = τ ′.

Let i0 be such that V
(n)
hmin = V

(n)
i0

. Replacing i by i0 in (3.6), we obtain

V
(n+1)
hmin ≤ V

(n)
hmin(1− τ ′), n ≥ 0,(3.7)

and by iteration, we arrive at

V
(n)
hmin ≤ V

(0)
hmin(1− τ ′)n = φhmin(1− τ ′)n, n ≥ 0.(3.8)
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Since the term on the right hand side of the above equality goes to zero as n ap-

proaches infinity, we conclude that V
(n)
hmin tends to zero as n approaches infinity. So

‖U (n)
h ‖∞ tends to one as n approaches infinity. Now, let us estimate the numerical

quenching time. Due to (3.8) and the restriction ∆tn ≤ τ(V
(n)
hmin)α+1, it is not hard

to see that
+∞∑
n=0

∆tn ≤
+∞∑
n=0

τφα+1
hmin[(1− τ ′)α+1]n.

Use the fact that the series on the right hand side of the above inequality converges
towards

τφα+1
hmin

1− (1− τ ′)α+1

and φhmin = (1− ‖ϕh‖∞), we get

T∆t
h =

+∞∑
n=0

∆tn ≤
τ(1− ‖ϕh‖∞)α+1

1− (1− τ ′)α+1
.

�

Remark 3.4. Using Taylor’s expansion, we get

1− (1− τ ′)α+1 = (α+ 1)τ ′ + o(τ ′),

which implies that

τ

1− (1− τ ′)α+1
=

τ

τ ′
1

(α+ 1) + o(1)
≤ τ

τ ′
2

(α+ 1)
.

If we take τ = h2, we have

τ

τ ′
=

1

λ
min{2φα+1

hmin, 1}.

Then

τ

1− (1− τ ′)α+1
≤ 2τ

τ ′(α+ 1)
=

2

λ(α+ 1)
min{2φα+1

hmin, 1}.

We conclude that
τ

1− (1− τ ′)α+1
is bounded.

Remark 3.5. From (3.8), we deduce by induction that

V
(n)
hmin ≤ V

(k)
hmin(1− τ ′)n−k, for n ≥ k,

and we see that

T∆t
h − tk =

+∞∑
n=k

∆tn ≤
+∞∑
n=k

τ(V
(k)
hmin)α+1[(1− τ ′)α+1]n−k,

which implies that

T∆t
h − tk ≤

τ(V
(k)
hmin)α+1

1− (1− τ ′)α+1
.
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Since V
(k)
hmin = (1− ‖Ukh‖∞), we get

T∆t
h − tk ≤

τ(1− ‖Ukh‖∞)α+1

1− (1− τ ′)α+1
.

In the sequel, we take τ = h2.

4. Convergence of the discrete quennching time

In this section, under some assumptions, we show that the numerical quenching
time of the discrete solution converges to the real one when the mesh size goes to
zero. We denote by

uh(tn) = (u(x0, tn), u(x1, tn), ..., u(xI , tn))T and ‖U (n)
h ‖∞ = max

0≤i≤I
|U (n)
i |.

In order to obtain the convergence of the numerical quenching time, we firstly prove
the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the continuous problem (1.4)–(1.6) has a solution u ∈
C4,2([0, 1] × [0, T ]) such that sup

t∈[0,T ]

‖u(., t)‖∞ = ι, (0 < ι < 1). Suppose the initial

condition at (2.3) satisfies

‖ϕh − uh(0)‖∞ = o(1) as h −→ 0.(4.1)

Then, for h sufficiently small, the discrete problem (2.1)–(2.3) has a solution U
(n)
h ,

0 ≤ n ≤ J, and we have the following relation

max
0≤n≤J

(‖U (n)
h − uh(tn)‖∞) = O(‖ϕh − uh(0)‖∞ + h) as h −→ 0.

Where J is such that

J−1∑
j=0

∆tj ≤ T and tn =

n−1∑
j=0

∆tj.

Proof. For each h, the discrete problem (2.1)–(2.3) has a solution U
(n)
h . Let N ≤ J ,

the greatest value of n such that there exists a positive constant β
( with ι < β < 1 ) such that

‖U (n)
h − uh(tn)‖∞ <

β − ι
2

, n < N.(4.2)

We know that N ≥ 1 because of (4.1). Using the triangular inequality, for n < N,
we have

‖U (n)
h ‖∞ ≤ ‖uh(tn)‖∞ + ‖U (n)

h − uh(tn)‖∞ ≤ ι+
β − ι

2
=
β + ι

2
< 1.(4.3)

Let e
(n)
h = U

(n)
h − uh(tn) be the error of discretization, for n < N. Using Taylor’s

expansion, we have

δte
(n)
0 − γ(u(x0, tn))δ2e

(n)
0 = [αγ(u(x0, tn))(1− θ(n)

0 )−α−1

+γ′(η
(n)
0 )(1− U (n)

0 )−α + γ′(η
(n)
0 )δ2U

(n)
0 ]e

(n)
0

+γ(u(x0, tn))

(
h

12
uxxxx(x̃0, tn) +

2

3
uxxx(x0, tn)

)
h
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−γ(u(x0, tn))
∆tn

2
utt(x0, tn),

δte
(n)
i − γ(u(xi, tn))δ2e

(n)
i = [αγ(u(xi, tn))(1− θ(n)

i )−α−1

+γ′(η
(n)
i )(1− U (n)

i )−α + γ′(η
(n)
i )δ2U

(n)
i ]e

(n)
i

+γ(u(xi, tn))
h2

12
uxxxx(x̃i, tn)

−γ(u(xi, tn))
∆tn

2
utt(xi, tn),

δte
(n)
I − γ(u(xI , tn))δ2e

(n)
I = [αγ(u(xI , tn))(1− θ(n)

I )−α−1

+γ′(η
(n)
I )(1− U (n)

I )−α

+γ′(η
(n)
I )δ2U

(n)
I − 2

h
γ′(η

(n)
I )B(U

(n)
I )

− 2

h
γ(u(xI , tn))B′(σ

(n)
I )]e

(n)
I

+γ(u(xI , tn))

(
h

12
uxxxx(x̃I , tn)− 2

3
uxxx(xI , tn)

)
h

−γ(u(xI , tn))
∆tn

2
utt(xI , tn),

where θ
(n)
i , η

(n)
i are intermediate values between U

(n)
i and u(xi, tn), 0 ≤ i ≤ I, and

σ
(n)
I is an intermediate value between U

(n)
I and u(xI , tn). Since uxxx(x, t), uxxxx(x, t)

and utt(x, t) are bounded and ∆tn = O(h2), there exist a positive constant L > 0
such that

δte
(n)
0 − δ2e

(n)
0 ≤ C(n)

0 e
(n)
0 + Lh,

δte
(n)
i − δ2e

(n)
i ≤ C(n)

i e
(n)
i + Lh2, 1 ≤ i ≤ I − 1,

δte
(n)
I − δ2e

(n)
I ≤ C(n)

I e
(n)
I + Lh,

where
C

(n)
0 = αγ(u(x0, tn))(1− θ(n)

0 )−α−1 + γ′(η
(n)
0 )(1− U (n)

0 )−α + γ′(η
(n)
0 )δ2U

(n)
0 ,

C
(n)
i = αγ(u(xi, tn))(1− θ(n)

i )−α−1 + γ′(η
(n)
i )(1− U (n)

i )−α + γ′(η
(n)
i )δ2U

(n)
i ,

1 ≤ i ≤ I − 1,

C
(n)
I = αγ(u(xI , tn))(1− θ(n)

I )−α−1 + γ′(η
(n)
I )(1− U (n)

I )−α + γ′(η
(n)
I )δ2U

(n)
I

− 2

h
γ′(η

(n)
I )B(U

(n)
I )− 2

h
γ(u(xI , tn))B′(σ

(n)
I ).

Set M = max
0≤i≤I

{C(n)
i } and introduce the vector Z

(n)
h defined as follows

Z
(n)
i = e(M+1)tn(‖ϕh − uh(0)‖∞ + Lh), 0 ≤ i ≤ I, n < N.

By a straightforward computations, we have

δtZ
(n)
0 − δ2Z

(n)
0 > C

(n)
0 Z

(n)
0 + Lh,

δtZ
(n)
i − δ2Z

(n)
i > C

(n)
i Z

(n)
i + Lh2, 1 ≤ i ≤ I − 1,
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δtZ
(n)
I − δ2Z

(n)
I > C

(n)
I Z

(n)
I + Lh,

Z
(0)
i > e

(0)
i , 0 ≤ i ≤ I.

It follows from Lemma (2.3) that

Z
(n)
i > e

(n)
i , 0 ≤ i ≤ I.

By the same way, we also prove that

Z
(n)
i > −e(n)

i , 0 ≤ i ≤ I,

which implies that

Z
(n)
i > |e(n)

i |, 0 ≤ i ≤ I.

we deduce that

‖U (n)
h − uh(tn)‖∞ ≤ e(M+1)tn(‖ϕh − uh(0)‖∞ + Lh), n < N.(4.4)

Now, let us show that N = J . Suppose that N < J . If we replace n by N in
(4.4), and taking into account the inequality (4.2), we obtain

β − ι
2
≤ ‖U (N)

h − uh(tN )‖∞ ≤ e(M+1)T (‖ϕh − uh(0)‖∞ + Lh).(4.5)

Since e(M+1)T (‖ϕh − uh(0)‖∞ + Lh) −→ 0 as h −→ 0, we deduce from (4.5) that
β − ι

2
≤ 0, which is impossible. Consequently, N = J , and we conclude the proof.

�

Theorem 4.2. Suppose that the solution u of problem (1.4)–(1.6) quenches in a
finite time Tq such that u ∈ C4,2([0, 1]×[0, Tq)) and the iniatial data at (2.3) satisfies

||ϕh − uh(0)||∞ = o(1) as h −→ 0.

Under the hypothesis of Theorem (3.3), the problem (2.1)–(2.3) has a discrete solu-

tion U
(n)
h which quenches in a finite time T∆t

h and we have

lim
h→0

T∆t
h = Tq.

Proof. We know from Remark (3.4) that
τ

1− (1− τ ′)p+1
is bounded.

Let 0 < ε <
Tq
2
, there exists a constant η = β − ι (0 < ι < β < 1) such that

τ(1− %)α+1

1− (1− τ ′)α+1
<
ε

2
, % ∈ [1− η, 1)(4.6)

Since u quenches, there exists T1 ∈ (Tq −
ε

2
, Tq) and h0(ε) > 0 such that 1 − η

2
≤

‖u(., tn)‖∞ < 1 for tn ∈ [T1, Tq). Let k be a positive integer such that tk =

k−1∑
n=0

∆tn ∈

[T1, Tq) for h ≤ h0(ε). It follows from Theorem (4.1) that the problem (2.1)–(2.3)
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has a solution U
(n)
h which verifies ‖U (n)

h − uh(tn)‖∞ <
η

2
for n ≤ k, h ≤ h0(ε). This

fact implies that

‖U (k)
h ‖∞ ≥ ‖u(., tk)‖∞ − ‖U (k)

h − uh(tk)‖∞ ≥ 1− η

2
− η

2
= 1− η, h ≤ h0(ε).

From Theorem (3.3), U
(n)
h quenches at the time T∆t

h . It follows from Remark (3.5)

and (4.6) that |T∆t
h − tk| ≤

τ(1− ‖U (k)
h ‖∞)α+1

1− (1− τ ′)α+1
<
ε

2
. We deduce that for h ≤ h0(ε),

|Tq − T∆t
h | ≤ |Tq − tk|+ |tk − T∆t

h | ≤
ε

2
+
ε

2
≤ ε.

Which leads us to the result. �

5. Numerical experiments

In this section, we present some numerical approximations of the quenching time

of the problem (1.4)–(1.6) in the case where u0(x) = 0.7− 1

2
x4,

γ(U
(n)
i ) =

(U
(n)
i )(1−p)

p
, B(U

(n)
i ) = (U

(n)
i )−q, 0 ≤ i ≤ I where 0 < p ≤ 1 and q > 0.

We consider the following explicit scheme

U
(n+1)
i − U (n)

i

∆ten
= (U

(n)
i )(1−p)U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

ph2
+

(U
(n)
i )(1−p)

p
(1−U (n)

i )−α,

1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆ten
= (U

(n)
0 )(1−p) 2U

(n)
1 − 2U

(n)
0

ph2
+

(U
(n)
0 )(1−p)

p
(1− U (n)

0 )−α,

U
(n+1)
I − U (n)

I

∆ten
= (U

(n)
I )(1−p) 2U

(n)
I−1 − 2U

(n)
I

ph2
−

2(U
(n)
I )(1−p)

ph
(U

(n)
I )−q

+
(U

(n)
I )(1−p)

p
(1− U (n)

I )−α,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ∆ten = min

{
h2

2
, h2(1− ‖U (n)

h ‖∞)α+1

}
. We also consider the implicit

scheme

U
(n+1)
i − U (n)

i

∆tn
= (U

(n)
i )(1−p)U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

ph2

+
(U

(n)
i )(1−p)

p
(1− U (n)

i )−α, 1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆tn
= (U

(n)
0 )(1−p) 2U

(n+1)
1 − 2U

(n+1)
0

ph2

+
(U

(n)
0 )(1−p)

p
(1− U (n)

0 )−α,
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U
(n+1)
I − U (n)

I

∆tn
= (U

(n)
I )(1−p) 2U

(n+1)
I−1 − 2U

(n+1)
I

ph2
−

2(U
(n)
I )(1−p)

ph
(U

(n)
I )−q

+
(U

(n)
I )(1−p)

p
(1− U (n)

I )−α,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ∆tn = h2(1− ‖U (n)
h ‖∞)α+1.

In the following tables, in rows, we present the numerical quenching times Tn,

the numbers of iterations n and the orders s =
log((T4h − T2h)/(T2h − Th))

log(2)
of

the approximations corresponding to meshes 16, 32, 64, 128, 256, 512. The numeri-

cal quenching time Tn =

n−1∑
j=0

∆tj is computed at the first time when

|Tn+1 − Tn| ≤ 10−16.

Table 1. Numerical quenching times, the numbers of iterations
and the orders obtained with the explicit Euler method α = 4,
p = 0.5 and q = 0.1

I Tn n s
16 0,0002849086616 667 -
32 0,0002819104743 2531 -
64 0,0002811654024 9562 2.01
128 0,0002809794133 35977 2.00
256 0,0002809329330 134803 2.00
512 0,0002809213121 502755 1.99

Table 2. Numerical quenching times, the numbers of iterations
and the orders obtained with the implicit Euler method α = 4,
p = 0.5 and q = 0.1

I Tn n s
16 0,0002849095211 667 -
32 0,0002819106436 2531 -
64 0,0002811654418 9562 2.01
128 0,0002809794230 35977 2.00
256 0,0002809329354 134803 2.00
512 0.0002809213128 502755 1.99

We also give some plots to illustrate our analysis. For the different plots, we
used both explicit and implicit schemes in the case where I = 64 and (α; p; q) =
(4; 0.5; 0.1). Figures 1, 2 show that the discrete solution quenches. In figures 3, 4,
we can appreciate that the discrete solution is nonincreasing and quenches at the
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first node. For figures 5, 6, we see that the discrete solution is increasing with respect
to time and quenches at finite time 2.8× 10−4.

Figure 1. Evolution
of the numerical solu-
tion (explicit scheme).

Figure 2. Evolution
of the numerical solu-
tion (implicit scheme).

Figure 3. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(explicit scheme).

Figure 4. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(implicit scheme).
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Figure 5. The pro-
fil of the approxima-

tion of ‖U (n)
h ‖∞ (ex-

plicit scheme).

Figure 6. The pro-
fil of the approxima-

tion of ‖U (n)
h ‖∞ (im-

plicit scheme).

6. Conclusion

In this paper, we have studied the numerical quenching of the solution of the
nonlinear diffusion equation with nonlinear source and singular boundary flux (1.1)–
(1.3) and we have obtained good approximations of its quenching time.

We have constructed, by the finite difference method, the discrete problem (2.1)–
(2.3) associated to the continuous problem (1.4)–(1.6). We have shown that under
some conditions, the solution of the discrete problem (2.1)–(2.3) quenches in finite
time and we have estimated its discrete quenching time. We have also established
the convergence of the discrete time towards the theoretical time when the spatial
and temporal discretionary steps tend towards zero. Finally, we have given some
numerical experiments to illustrate our analysis.
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