Annals of Fuzzy Mathematics and Informatics
Volume 23, No. 1, (February 2022) pp. 37–51
ISSN: 2093–9310 (print version)
ISSN: 2287–6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2022.23.1.37

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Alexandrov L-preuniform filter spaces

JU-MOK OH, YONG CHAN KIM

Annals of Fuzzy Mathematics and Informatics Volume 23, No. 1, (February 2022) pp. 37–51 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2022.23.1.37

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Alexandrov L-preuniform filter spaces

JU-MOK OH, YONG CHAN KIM

Received 12 September 2021; Revised 17 September 2021; Accepted 29 October 2021

ABSTRACT. In this paper, we introduce the notion of Alexandrov L-(neighborhood) filters and Alexandrov L-preuniform filters as a topological viewpoint of fuzzy rough sets. We investigate the relations among Alexandrov L-neighborhood filters, L-fuzzy preorders and Alexandrov Lpreuniform filter structures. Moreover, we investigate their topological properties and give their examples. As an application for a fuzzy information system, Alexandrov L-neighborhood filters, L-fuzzy preorders and Alexandrov L-preuniform filters are studied.

2020 AMS Classification: 03E72, 54A40, 54B10

Keywords: Fuzzy join(meet)-complete lattices, L-fuzzy preordered sets, Alexandrov L-(neighborhood) filters, Alexandrov L-preuniform filter structures, Alexandrov L-topologies.

Corresponding Author: Yong Chan Kim (yck@gwnu.ac.kr)

1. INTRODUCTION

Eklund and Gähler [1] introduced the notion of fuzzy filters as a point-based approach to fuzzy topology on completely distributive complete lattice. Gähler [2, 3] investigated the categorical relations among *L*-neighborhood filters, *L*-fuzzy topologies and *L*-fuzzy topological structures. Höhle [4, 5] introduced *L*-filters and *L*topological structures on algebraic structures (cqm lattices, quantales, MV-algebras) for many valued logics [4, 5, 6, 7, 8, 9]. Kim [10] studied *L*-filter bases on commutative quantales.

Jäger [11] developed stratified L-convergence structures based on the concepts of L-filters where L is a complete Heyting algebra. Yao [12] extended stratified L-convergence structures to complete residuated lattices and investigated between stratified L-convergence structures and L-fuzzy topological spaces.

Zhang [13, 14, 15] defined a strong *L*-topology on the concepts of fuzzy complete lattices. As an extension of Yao [12], Fang [16, 17] introduced *L*-ordered

convergence structures on *L*-ordered filters and investigated between *L*-ordered convergence structures and strong *L*-topological spaces. Many researchers developed topological structures using *L*-filters [18, 19, 20, 21, 22].

Pawlak [23, 24] introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. For an extension of classical rough sets, many researchers [25, 26, 27, 28, 29, 30] developed *L*-lower and *L*-upper approximation operators in complete residuated lattices. By using this concepts, information systems and decision rules were investigated in complete residuated lattices [6, 31].

An interesting and natural research topic in rough set theory is the study of rough set theory and topological structures. Lai [32] and Ma [33] investigated the Alexandrov *L*-topology and lattice structures of *L*-fuzzy rough sets determined by lower and upper sets.

Kim [2, 12, 13, 14, 15] introduced the notion of Alexandrov L-(neighborhood) filters as a topological viewpoint of fuzzy rough sets and studied the relations among fuzzy preorders, Alexandrov L-(neighborhood) filters, Alexandrov topologies and Alexandrov L-convergence structures in complete residuated lattices.

The aim of this paper is to study Alexandrov *L*-neighborhood filters, *L*-fuzzy preorders and Alexandrov *L*-preuniform filters in fuzzy information systems.

In this paper, we introduce the notion of Alexandrov L-(neighborhood) filters and Alexandrov L-preuniform filters as a topological viewpoint of fuzzy rough sets in a complete residuated lattice. We investigate the relations among Alexandrov Lneighborhood filters, reflexive L-fuzzy relations, Alexandrov L-topologies and Alexandrov L-preuniform filters. Moreover, we investigate their topological properties and give their examples. As an application for a fuzzy information system, Alexandrov L-neighborhood filters, L-fuzzy preorders and Alexandrov L-preuniform filters are studied in Example 3.7.

2. Preliminaries

Definition 2.1 ([4, 5, 6, 7, 8, 9]). An algebra $(L, \leq, \land, \lor, \odot, \rightarrow, \bot, \top)$ is called a *complete residuated lattice*, if it satisfies the following conditions:

(L1) $(L, \leq, \lor, \land, \bot, \top)$ is a complete lattice with the greatest element \top and the least element \bot ,

(L2) (L, \odot, \top) is a commutative monoid,

(L3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

In this paper, we always assume that $(L, \leq, \land, \lor, \odot, \rightarrow, *, \bot, \top)$ is complete residuated lattice with a negation $x^* = x \to \bot$ and $(x^*)^* = x$.

For $\alpha \in L, A \in L^X$, we denote $(\alpha \to A), (\alpha \odot A), \alpha_X \in L^X$ as $(\alpha \to A)(x) = \alpha \to A(x), (\alpha \odot A)(x) = \alpha \odot A(x), \alpha_X(x) = \alpha$.

Lemma 2.2 ([4, 5, 6, 7, 8, 9]). For each $x, y, z, x_i, y_i, w \in L$, we have the following properties.

- (1) $\top \to x = x, \perp \odot x = \perp$.
- (2) If $y \leq z$, then $x \odot y \leq x \odot z$, $x \to y \leq x \to z$ and $z \to x \leq y \to x$.
- (3) $x \leq y \text{ iff } x \rightarrow y = \top$.
- (4) $x \to (\bigwedge_i y_i) = \bigwedge_i (x \to y_i).$

(5) $(\bigvee_i x_i) \to y = \bigwedge_i (x_i \to y).$ (6) $x \odot (\bigvee_i y_i) = \bigvee_i (x \odot y_i).$ (7) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z).$ (8) $(x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w)$ and $x \to y \le (x \odot z) \to (y \odot z)$. (9) $(x \to y) \odot (y \to z) \le x \to z$. (10) $\bigvee_{i\in\Gamma} x_i \to \bigvee_{i\in\Gamma} y_i \ge \bigwedge_{i\in\Gamma} (x_i \to y_i) \text{ and } \bigwedge_{i\in\Gamma} x_i \to \bigwedge_{i\in\Gamma} y_i \ge \bigwedge_{i\in\Gamma} (x_i \to y_i)$ y_i). (11) $x \to y \le (y \to z) \to (x \to z)$ and $x \to y \le (z \to x) \to (z \to y)$. $(12 \ (x \odot y^*)^* = x \to y \text{ and } x \to y = y^* \to x^*.$

Definition 2.3 ([6, 32]). Let X be a set. A function $e_X : X \times X \to L$ is said to be: (E1) reflexive, if $e_X(x, x) = \top$ for all $x \in X$,

(E2) transitive, if $e_X(x, y) \odot e_X(y, z) \le e_X(x, z)$, for all $x, y, z \in X$,

(E3) if $e_X(x,y) = e_X(y,x) = \top$, then x = y.

If e satisfies (E1) and (E2), (X, e_X) is an L-fuzzy preordered set. If e_X satisfies (E1), (E2) and (E3), (X, e_X) is an L-fuzzy partially ordered set.

Example 2.4. (1) We define a function $e_L: L \times L \to L$ as $e_L(x, y) = x \to y$. Then (L, e_L) is an L-fuzzy partially ordered set.

(2) We define a function $e_{L^X}: L^X \times L^X \to L$ as

$$e_{L^X}(A,B) = \bigwedge_{x \in X} (A(x) \to B(x)).$$

Then (L^X, e_{L^X}) is an *L*-fuzzy partially ordered set from Lemma 2.2 (9).

Definition 2.5 ([13, 14, 15]). Let (X, e_X) be an *L*-fuzzy partially ordered set and $A \in L^X$.

(i) A point x_0 is called a *join* of A, denoted by $x_0 = \bigsqcup A$, if it satisfies (J1) $A(x) \le e_X(x, x_0),$

(J2) $\bigwedge_{x \in X} (A(x) \to e_X(x,y)) \leq e_X(x_0,y).$

- (ii) A point x_1 is called a *meet* of A, denoted by $x_1 = \Box A$, if it satisfies (M1) $A(x) \le e_X(x_1, x),$
 - (M2) $\bigwedge_{x \in X} (A(x) \to e_X(y, x)) \le e_X(y, x_1).$

Remark 2.6. Let (X, e_X) be an *L*-fuzzy partially ordered set and $\Phi \in L^X$.

(1) If x_0 is a join of Φ , then it is unique because $e_X(x_0, y) = e_X(y_0, y)$ for all $y \in X$, put $y = x_0$ or $y = y_0$, then $e_X(x_0, y) = e_X(y_0, y) = \top$ implies $x_0 = y_0$. Similarly, if a meet of Φ exist, then it is unique.

- (2) A point x_0 is a join of Φ iff $\bigwedge_{x \in X} (\Phi(x) \to e_X(x, y)) = e_X(x_0, y).$
- (3) A point x_1 is a meet of Φ iff $\bigwedge_{x \in X} (\Phi(x) \to e_X(y, x)) = e_X(y, x_1)$.

Remark 2.7. Let (L, e_L) be an L-fuzzy partially ordered set and $A \in L^L$.

(1) Since x_0 is a join of A iff $\bigwedge_{x \in L} (A(x) \to e_L(x, y))$ $= \bigwedge_{x \in L} (A(x) \to (x \to y))$ $=\bigvee_{x\in L} (x\odot A(x)) \to y$ $= e_L(x_0, y)$ $= x_0 \rightarrow y,$ we have $x_0 = \sqcup A = \bigvee_{x \in L} (x \odot A(x)).$ $\bigwedge_{x \in L} (A(x) \to e_L(x, y))$ 39 (2) Since x_0 is a join of A iff

$$= \bigwedge_{x \in L} (A(x) \to (y \to x))$$

=
$$\bigwedge_{x \in L} (y \to (A(x) \to x))$$

=
$$y \to \bigwedge_{x \in L} (A(x) \to x)$$

=
$$y \to \Box A,$$

we get $\sqcap A = \bigwedge_{x \in L} (A(x) \to x).$

Remark 2.8. Let (L^X, e_{L^X}) be an *L*-fuzzy partially ordered set and $\Phi \in L^{L^X}$. (1) $\Box \Phi = \bigvee_{A \in L^X} (\Phi(A) \odot A)$, from the following

$$e_{L^X}(\sqcup \Phi, B) = \bigwedge_{A \in L^X} (\Phi(A) \to e_{L^X}(A, B)) = e_{L^X}(\bigvee_{A \in L^X} (\Phi(A) \odot A), B).$$

$$\begin{array}{l} (2) \ \sqcap \Phi = \bigwedge_{A \in L^X} (\Phi(A) \to A), \text{ from the following} \\ e_{L^X}(B, \sqcup \Phi) = \bigwedge_{A \in L^X} (\Phi(A) \to e_{L^X}(B, A)) \\ = \bigwedge_{A \in L^X} e_{L^X}(B, (\Phi(A) \to A)) \\ = e_{L^X}(B, \bigwedge_{A \in L^X} (\Phi(A) \to A)). \end{array}$$

Definition 2.9 ([13, 14, 15]). Let (X, e_X) be an L-fuzzy partially ordered set. The pair (X, e_X) is called a fuzzy join (resp. meet) complete lattice, if $\Box \Phi$ (resp. $\Box \Phi$) exists for each $\Phi \in L^X$.

The pair (X, e_X) is called a *fuzzy complete lattice*, if $\Box \Phi$ and $\Box \Phi$ exist for each $\Phi \in L^X$.

Definition 2.10 ([13, 14, 15]). Let (X, e_X) and (Y, e_Y) be fuzzy complete lattices and $\psi: X \to Y$ a map.

(i) ψ is a join preserving map, if $\psi(\Box \Phi) = \Box \psi^{\rightarrow}(\Phi)$ for all $\Phi \in L^X$, where $\psi^{\to}(\Phi)(y) = \bigvee_{\psi(x)=y} \Phi(x).$

(ii) ψ is a meet preserving map, if $\psi(\Box \Phi) = \Box \psi^{\rightarrow}(\Phi)$ for all $\Phi \in L^X$.

(iii) ψ is an order preserving map, if $e_X(x,y) \leq e_Y(\psi(x),\psi(y))$ for all $x, y \in X$.

Definition 2.11 ([18, 22]). Let (L^X, e_{L^X}) and (L, e_L) be L-fuzzy partially ordered sets. A map $\mathcal{F}: (L^X, e_{L^X}) \to (L, e_L)$ is called an Alexandrov L-filter on X, if $\mathcal{F}(\Box \Phi) = \Box \mathcal{F}^{\rightarrow}(\Phi)$ for all $\Phi \in L^{L^X}$. Let AF(X) denote the set of all Alexandrov L-filters on X.

Theorem 2.12 ([18, 22]). A map $\mathcal{F}: L^X \to L$ is an Alexandrov L-filter on X iff it satisfies the following conditions:

(F1) $\mathcal{F}(\bigwedge_{i\in\Gamma} A_i) = \bigwedge_{i\in\Gamma} \mathcal{F}(A_i) \text{ for all } A_i \in L^X,$ (F2) $\mathcal{F}(\alpha \to A) = \alpha \to \mathcal{F}(A) \text{ for all } A \in L^X \text{ and } \alpha \in L.$

Definition 2.13 ([18, 22]). A family $\mathcal{N}_X = \{\mathcal{N}^x \mid x \in X\}$ is called an Alexandrov *L*-neighborhood system on X, if for $x \in X$, a map $\mathcal{N}^x : L^X \to L$ satisfies:

(N1) \mathcal{N}^x is an Alexandrov *L*-filter on *X*,

(N2) $\mathcal{N}^x(A) \leq A(x)$ for all $A \in L^X$.

The pair (X, \mathcal{N}_X) is called an Alexandrov L-neighborhood space.

An Alexandrov L-neighborhood system on X is topological, if (TN) $\mathcal{N}^{x}(A) \leq$ $\mathcal{N}^x(\mathcal{N}^-(A))$ for all $\mathcal{N}^-(A) \in L^X$ such that $\mathcal{N}^-(A)(y) = \mathcal{N}^y(A)$ for all $y \in X$.

Definition 2.14 ([18, 22, 26, 27]). A subset $\tau \subset L^X$ is called an Alexandrov Ltopology on X, if it satisfies the following conditions:

(AT1) $\alpha_X \in \tau$,

(AT2) if $A_i \in \tau$ for all $i \in \Gamma$, then $\bigvee_{i \in \Gamma} A_i$, $\bigwedge_{i \in \Gamma} A_i \in \tau$, (AT3) if $A \in \tau$ and $\alpha \in L$, then $\alpha \odot A, \alpha \to A \in \tau$. The pair (X, τ) is called an *Alexandrov L-topological space*.

3. Alexandrov preuniform *L*-filter spaces

Definition 3.1. (i) An Alexandrov *L*-filter $\mathcal{W}: L^{X \times X} \to L$ is called an *Alexandrov L*-preuniform filter on $X \times X$, if $\mathcal{W} \leq \bigwedge_{x \in X} [(x, x)]$, where [(x, x)](u) = u(x, x) for each $u \in L^{X \times X}$.

(ii) An Alexandrov *L*-preuniform filter \mathcal{W} is called an Alexandrov *L*-quasiuniform filter on $X \times X$, if $\bigvee_{y \in X} (\mathcal{W}^*(\top^*_{(x,y)}) \odot \mathcal{W}^*(\top^*_{(y,z)})) \leq \mathcal{W}^*(\top^*_{(x,z)})$, where $\top^*_{(x,y)}(z, w) = \bot$ if (z, w) = (x, y) and \top , otherwise.

The pair (X, W) is called an Alexandrov L-preuniform (resp. L-quasiuniform) filter space.

Theorem 3.2. (1) A map $\mathcal{W} : L^{X \times X} \to L$ is an Alexandrov L-preuniform (resp. L-quasiuniform) filter on $X \times X$ iff there exists a reflexive L-fuzzy relation (resp. L-fuzzy preorder) $e_{\mathcal{W}} \in L^{X \times X}$ with $e_{\mathcal{W}}(x, y) = \mathcal{W}^*(\top^*_{(x,y)})$ such that $\mathcal{W}(u) = \bigwedge_{x,z \in X} (e_{\mathcal{W}}(x, z) \to u(x, z))$ for all $u \in L^{X \times X}$.

(2) For each $x \in X$, a map $\mathcal{N}^x : L^X \to L$ is an Alexandrov (resp. topological) L-neighborhood filter on X iff there exists a reflexive L-fuzzy relation (resp. L-fuzzy preorder) $e_{\mathcal{N}} \in L^{X \times X}$ such that $\mathcal{N}^x(A) = \bigwedge_{z \in X} (e_{\mathcal{N}}(x, z) \to A(z))$ for all $A \in L^X$.

(3) Let $\mathcal{N}^x : L^X \to L$ be an Alexandrov L-neighborhood filter on X for each $x \in X$. Define $\mathcal{W}_{\mathcal{N}} : L^{X \times X} \to L$ as

$$\mathcal{W}_{\mathcal{N}}(u) = \bigwedge_{x \in X} \mathcal{N}^x(u(x, -)).$$

Then $\mathcal{W}_{\mathcal{N}}$ is an Alexandrov L-preuniform filter on $X \times X$ such that

$$\mathcal{W}_{\mathcal{N}}(u) = \bigwedge_{x,y \in X} ((\mathcal{N}^x(\top_y^*))^* \to u(x,y)).$$

If $\{\mathcal{N}^x \mid x \in X\}$ is topological, then $\mathcal{W}_{\mathcal{N}}$ is an Alexandrov L-quasiuniform filter on $X \times X$.

(4) Let $\mathcal{W}: L^{X \times X} \to L$ be an Alexandrov L-preuniform (resp. L-quasiuniform) filter on $X \times X$. Define $\mathcal{N}_{\mathcal{W}}^{x}: L^{X} \to L$ as

$$\mathcal{N}^{x}_{\mathcal{W}}(A) = \bigwedge_{y \in X} (\mathcal{W}^{*}(\top^{*}_{(x,y)})) \to A(y)).$$

Then $\mathcal{N}^x_{\mathcal{W}}$ is an Alexandrov (resp. topological) L-neighborhood filter on X such that

$$\mathcal{W}_{\mathcal{N}_{\mathcal{W}}} = \mathcal{W}.$$

(5) If $\mathcal{N}^x : L^X \to L$ be an Alexandrov L-neighborhood filter on X for each $x \in X$, then $\mathcal{N}^x_{\mathcal{W}_{\mathcal{N}}} = \mathcal{N}^x$.

Proof. (1) (\Rightarrow) Let \mathcal{W} be an Alexandrov *L*-quasiuniform filter on $X \times X$. For all $u \in L^{X \times X}$, since $u = \bigwedge_{x,z \in X} (u^*(x,z) \to \top^*_{(x,z)})$, by Theorem 2.12 (F1) and (F2), we have

$$\mathcal{W}(u) = \mathcal{W}(\bigwedge_{x,z \in X} (u^*(x,z) \to \top^*_{(x,z)})$$

$$41$$

 $= \bigwedge_{x,z \in X} (u^*(x,z) \to \mathcal{W}(\top^*_{(x,z)}))$ $= \bigwedge_{x,z \in X} ((\mathcal{W}^*(\top^*_{(x,z)})) \to u(x,z)).$ Put $e_{\mathcal{W}}(x,y) = \mathcal{W}^*(\top^*_{(x,y)}).$ Then we get $e_{\mathcal{W}}(x,x) = \mathcal{W}^*(\top^*_{(x,x)})$ $\ge \bigvee_{x \in X} [(x,x)]^*(\top^*_{(x,x)})$ $= \bigvee_{x \in X} [(x,x)]^*(\top^*_{(x,x)})$ $= \top_{(x,x)}(x,x)$ $= \top,$ $\bigvee_{y \in X} (e_{\mathcal{W}}(x,y) \odot e_{\mathcal{W}}(y,z)) = \bigvee_{y \in X} (\mathcal{W}^*(\top^*_{(x,y)}) \odot \mathcal{W}^*(\top^*_{(y,z)}))$ $\le \mathcal{W}^*(\top^*_{(x,z)})$ $= e_{\mathcal{W}}(x,z).$

Thus $e_{\mathcal{W}}$ is an *L*-fuzzy preorder. Moreover, $\mathcal{W}(u) = \bigwedge_{x,z \in X} (e_{\mathcal{W}}(x,z) \to u(x,z)).$ (\Leftarrow) From Theorem 2.12, the result holds $e_{\mathcal{W}}(x,y) = \mathcal{W}^*(\top^*_{(x,y)})$ and from: (E1) For all $x \in L^{X \times X}$

(F1) For all
$$u_i \in L^{X \times X}$$
,
 $\mathcal{W}(\bigwedge_{i \in \Gamma} u_i) = \bigwedge_{x,z \in X} (e_{\mathcal{W}}(x,z) \to \bigwedge_{i \in \Gamma} u_i(x,z))$
 $= \bigwedge_{i \in \Gamma} \bigwedge_{z \in X} (e_{\mathcal{W}}(x,z) \to u_i(x,z))$
 $= \bigwedge_{i \in \Gamma} \mathcal{W}(u_i).$
(F2) For all $u \in L^{X \times X}$ and $\alpha \in L$, by Lemma 2.2 (7),
 $\mathcal{W}(\alpha \to u) = \bigwedge_{x,z \in X} (e_{\mathcal{W}}(x,z) \to (\alpha \to u(x,z)))$
 $= \alpha \to \bigwedge_{x,z \in X} (e_{\mathcal{W}}(x,z) \to u(x,z)))$
 $= \alpha \to \mathcal{W}(u).$

(2) Let \mathcal{N}^x be an Alexandrov topological *L*-neighborhood filter. Then we have: for $A = \bigwedge_{y \in X} (A^*(y) \to \top_y^*)$,

$$\begin{split} \tilde{\mathcal{N}}^{x}(A) &= \mathcal{N}^{x}(\bigwedge_{y \in X}(A^{*}(y) \to \top_{y}^{*})) \\ &= \bigwedge_{y \in X}(A^{*}(y) \to \mathcal{N}^{x}(\top_{y}^{*})) \quad (\mathcal{N}^{x}(\top_{y}^{*})) \\ &= e_{\mathcal{N}}^{*}(x,y)) \\ &= \bigwedge_{y \in Y}(e_{\mathcal{N}}(x,y) \to A(y)). \end{split}$$

 $= \bigwedge_{y \in X} (e_{\mathcal{N}}(x, y) \to A(y)).$ Thus $e_{\mathcal{N}}(x, x) \ge (\mathcal{N}^{x}(\mathbb{T}_{x}^{*}))^{*} \ge \mathbb{T}_{x}(x) = \mathbb{T}$, i.e., $e_{\mathcal{N}}$ is reflexive. Since $\mathcal{N}^{x}(\mathcal{N}^{-}(\mathbb{T}_{z}^{*})) = \mathcal{N}^{x}(\mathbb{T}_{z}^{*})$ and $\mathcal{N}^{-}(\mathbb{T}_{z}^{*}) = \bigwedge_{y \in X} ((\mathcal{N}^{y}(\mathbb{T}_{z}^{*}))^{*} \to \mathbb{T}_{y}^{*}),$ $\mathcal{N}^{x}(\mathcal{N}^{-}(\mathbb{T}_{z}^{*})) = \mathcal{N}^{x}(\bigwedge_{y \in X} ((\mathcal{N}^{y}(\mathbb{T}_{z}^{*}))^{*} \to \mathbb{T}_{y}^{*})))$ $= \bigwedge_{y \in X} ((\mathcal{N}^{y}(\mathbb{T}_{z}^{*}))^{*} \to \mathcal{N}^{x}(\mathbb{T}_{y}^{*}))$ $iff \bigvee_{y \in X} ((\mathcal{N}^{y}(\mathbb{T}_{z}^{*}))^{*} \odot (\mathcal{N}^{x}(\mathbb{T}_{y}^{*}))^{*}) = (\mathcal{N}^{x}(\mathbb{T}_{z}^{*}))^{*}.$ So $e_{\mathcal{N}}$ is an *L*-fuzzy preorder, from the following: $\bigvee_{y \in X} (e_{\mathcal{N}}(y, z) \odot e_{\mathcal{N}}(x, y)) = \bigvee_{y \in X} ((\mathcal{N}^{y}(\mathbb{T}_{z}^{*}))^{*} \odot (\mathcal{N}^{x}(\mathbb{T}_{y}^{*}))^{*})$ $= (\mathcal{N}^{x}(\mathbb{T}_{z}^{*}))^{*} = e_{\mathcal{N}}(x, z).$ (\Leftarrow) It is similarly proved as in (1). (3) It is obvious that $\mathcal{W}_{\mathcal{N}}$ satisfies (F1) and (F2). Moreover, for each $u \in L^{X \times X},$ $\mathcal{W}_{\mathcal{N}}(u) = \bigwedge_{x \in X} \mathcal{N}^{x}(u(x, -))$

$$\leq \bigwedge_{x \in X} u(x, -)(x) \\ = \bigwedge_{x \in X} u(x, x) \\ = \bigwedge_{x \in X} [(x, x)](u).$$

For all $u(x, -) \in L^{X \times X}$, since $u(x, -) = \bigwedge_{y \in X} (u^*(x, y) \to \top_y^*)$, by Theorem 2.12 (F1) and (F2), we have

$$\begin{aligned} \mathcal{W}_{\mathcal{N}}(u) &= \bigwedge_{x \in X} \mathcal{N}^{x}(u(x, -)) \\ &= \bigwedge_{x \in X} \mathcal{N}^{x}(\bigwedge_{y \in X}(u^{*}(x, y) \to \top_{y}^{*})) \\ &= \bigwedge_{x, y \in X}(u^{*}(x, y) \to \mathcal{N}^{x}(\top_{y}^{*})) \\ &= \bigwedge_{x, y \in X}((\mathcal{N}^{x}(\top_{y}^{*}))^{*} \to u(x, y)). \end{aligned} \\ \text{If } \{\mathcal{N}^{x} \mid x \in X\} \text{ is topological, since } \mathcal{W}_{\mathcal{N}}(\top_{(x, y)}^{*}) = \mathcal{N}^{x}(\top_{y}^{*}), \text{ by } (2), \\ &\bigvee_{y \in X}((\mathcal{W}_{\mathcal{N}}(\top_{(x, y)}^{*}))^{*} \odot (\mathcal{W}_{\mathcal{N}}(\top_{(y, z)}^{*}))^{*}) = \bigvee_{y \in X}((\mathcal{N}^{x}(\top_{y}^{*}))^{*} \odot (\mathcal{N}^{y}(\top_{z}^{*}))^{*}) \\ &= (\mathcal{N}^{x}(\top_{z}^{*}))^{*} \\ &= (\mathcal{W}_{\mathcal{N}}(\top_{(x, z)}^{*}))^{*}. \end{aligned}$$

Then $\mathcal{W}_{\mathcal{N}}$ is an Alexandrov *L*-quasiuniform filter on $X \times X^{-,-}$.

(4) Let \mathcal{W} be an Alexandrov *L*-quasiuniform filter on $X \times X$. Then $\mathcal{N}^x_{\mathcal{W}}$ satisfies (F1) and (F2). Moreover, for each $A \in L^X$,

$$\begin{split} \mathcal{N}_{\mathcal{W}}^{x}(A) &= \bigwedge_{y \in X} (\mathcal{W}^{*}(\mathbb{T}_{(x,y)}^{*})) \to A(y)) \\ &\leq \mathcal{W}^{*}(\mathbb{T}_{(x,x)}^{*})) \to A(x) \\ &= A(x), \\ \mathcal{N}_{\mathcal{W}}^{x}(\mathcal{N}_{\mathcal{W}}^{-}(A)) &= \bigwedge_{y \in X} (\mathcal{W}^{*}(\mathbb{T}_{(x,y)}^{*})) \to \mathcal{N}_{\mathcal{W}}^{y}(A)) \\ &= \bigwedge_{y \in X} (\mathcal{W}^{*}(\mathbb{T}_{(x,y)}^{*})) \to \bigwedge_{z \in X} (\mathcal{W}^{*}(\mathbb{T}_{(y,z)}^{*})) \to A(z))) \\ &= \bigwedge_{z \in X} (\mathcal{W}^{*}(\mathbb{T}_{(x,y)}^{*})) \odot \mathcal{W}^{*}(\mathbb{T}_{(y,z)}^{*})) \to A(z)) \\ &= \bigwedge_{z \in X} (\mathcal{W}^{*}(\mathbb{T}_{(x,z)}^{*}) \to A(z)) \\ &= \mathcal{N}_{\mathcal{W}}^{x}(A). \end{split}$$
Since $\mathcal{N}_{\mathcal{W}}^{x}(\mathbb{T}_{y}^{*}) = \mathcal{W}(\mathbb{T}_{(x,y)}^{*}), \\ \mathcal{W}_{\mathcal{N}_{W}}(u) &= \bigwedge_{x,y \in X} ((\mathcal{N}_{\mathcal{W}}^{x}(\mathbb{T}_{y}^{*}))^{*} \to u(x,y)) \\ &= \bigwedge_{x,y \in X} (u^{*}(x,y) \to \mathcal{W}(\mathbb{T}_{(x,y)}^{*})) \\ &= \mathcal{W}(A_{x,y \in X}(u^{*}(x,y) \to \mathbb{T}_{(x,y)}^{*})) \\ &= \mathcal{W}(u). \end{split}$
(5) For $A \in L^{X}, \\ \mathcal{N}_{\mathcal{W}_{\mathcal{N}}}^{x}(A) &= \bigwedge_{y \in X} (\mathcal{W}_{\mathcal{N}}^{x}(\mathbb{T}_{(x,y)}^{*}) \to A(y)) \\ &= \bigwedge_{y \in X} ((\mathcal{N}^{x}(\mathbb{T}_{y}^{*}))^{*} \to A(y)) \\ &= \bigwedge_{y \in X} (A^{*} \to \mathcal{N}^{x}(\mathbb{T}_{y}^{*})) \\ &= \mathcal{N}^{x}(A). \end{split}$

Remark 3.3. For $\triangle = \{(x, x) \mid x \in X\} \subset D$, we define $\mathcal{W} = \bigwedge_{(x,y)\in D}[(x, y)]$ is an Alexandrov *L*-preuniform filter on $X \times X$. If $D \circ D = D$, then $\bigwedge_{(x,y)\in D}[(x, y)]$ is an Alexandrov *L*-quasiuniform filter on $X \times X$. Since

$$e_{\mathcal{W}}(y,z) = (\bigwedge_{(x,y)\in D} [(x,y)])^*(\top^*_{(y,z)}) = \bigvee_{(x,y)\in D} \top_{(y,z)}(x,y),$$
$$e_{\mathcal{W}}(x,y) = \begin{cases} \top, & \text{if } (x,y) \in D, \\ \bot, & \text{if } (x,y) \notin D. \end{cases}$$

By Theorem 3.2 (4), we obtain an Alexandrov *L*-neighborhood filter $\mathcal{N}^x_{\mathcal{W}}$ on *X* such that $\mathcal{N}^x_{\mathcal{W}}(A) = \bigwedge_{(x,y)\in D} (e_{\mathcal{W}}(x,y) \to A(y)).$ (1) If $D = \triangle$, then we have

$$\mathcal{N}^x_{\mathcal{W}}(A) = \bigwedge_{(x,y)\in\triangle} (e_{\mathcal{W}}(x,y) \to A(y)) = A(x) = [x](A).$$

Since $\mathcal{N}^x_{\mathcal{W}}(\top^*_y) = \top^*_y(x),$

 $\mathcal{W}_{\mathcal{N}_{\mathcal{W}}}(u) = \bigwedge_{x,y \in X} ((\mathcal{N}_{\mathcal{W}}^{x}(\top_{y}^{*}))^{*} \to u(x,y)) = \bigwedge_{x \in X} u(x,x) = \bigwedge_{x \in X} [(x,x)](u).$ (2) If $D = X \times X$, then we get $\bigwedge_{x \in X} (A) = \bigwedge_{x \in X} (a_{x}(x,y)) \to A(y)) = \bigwedge_{x \in X} (a_{x}(x,y)) = \bigwedge_{x \in X} [a_{x}(x,y)](y).$

$$\mathcal{N}^{x}_{\mathcal{W}}(A) = \bigwedge_{(x,y)\in X\times X} (e_{\mathcal{W}}(x,y)\to A(y)) = \bigwedge_{x\in X} A(x) = \bigwedge_{x\in X} [x](A).$$

Since
$$\mathcal{N}_{\mathcal{W}}^{x}(\top_{y}^{*}) = \bigwedge_{x \in X} \top_{y}^{*}(x) = \bot,$$

 $\mathcal{W}_{\mathcal{N}_{\mathcal{W}}}(u) = \bigwedge_{x,y \in X} ((\mathcal{N}_{\mathcal{W}}^{x}(\top_{y}^{*}))^{*} \to u(x,y))$
 $= \bigwedge_{(x,y) \in X \times X} u(x,y)$
 $= \bigwedge_{x,y \in X} [(x,y)](u).$

Theorem 3.4. (1) Let $\mathcal{W} : L^{X \times X} \to L$ be an Alexandrov L-preuniform filter on $X \times X$. Define $\tau_{\mathcal{W}} = \{A \in L^X \mid \bigwedge_{y \in X} (\mathcal{W}^*(\top_{(-,y)}^*)) \to A(y)) = A\}$. Then $\tau_{\mathcal{W}}$ is an Alexandrov L-topology on X. If \mathcal{W} is an Alexandrov L-quasiuniform filter on $X \times X$, $\tau_{\mathcal{W}} = \{\bigwedge_{y \in X} (\mathcal{W}^*(\top_{(-,y)}^*)) \to A(y)) \mid A \in L^X\}$.

(2) Let τ be an Alexandrov L-topology on X. Define $\mathcal{W}_{\tau}: L^{X \times X} \to L$ as

$$\mathcal{W}_{\tau}(u) = \bigwedge_{x,y \in X} (\bigwedge_{A \in \tau} (A(x) \to A(y)) \to u(x,y)).$$

Then \mathcal{W}_{τ} is an Alexandrov L-quasiuniform filter on $X \times X$ with $\tau_{\mathcal{W}_{\tau}} = \tau$.

(3) $\bigwedge_{A \in \tau_{\mathcal{W}}} (A(x) \to A(y)) \ge \bigwedge_{z \in X} (\mathcal{W}^*(\mathsf{T}^*_{(y,z)}) \to \mathcal{W}^*(\mathsf{T}^*_{(x,z)})).$ Moreover, if \mathcal{W} is an Alexandrov L-quasiuniform filter on $X \times X$, then

$$\bigwedge_{A \in \tau_{\mathcal{W}}} (A(x) \to A(y)) = \bigwedge_{z \in X} (\mathcal{W}^*(\top^*_{(y,z)}) \to \mathcal{W}^*(\top^*_{(x,z)})) = \mathcal{W}^*(\top^*_{(x,y)}).$$

(4) If W is an Alexandrov L-quasiuniform filter on $X \times X$, then $W_{\tau_W} = W$.

Proof. (1) (AT1) Since

$$\bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(x,y)})) \to \alpha_X(y)) \leq \mathcal{W}^*(\mathbb{T}^*_{(x,x)})) \to \alpha_X(x)) \\
\leq \bigvee_{x \in X} [(x,x)]^*(\mathbb{T}^*_{(x,x)}) \to \alpha_X(x) \\
= \alpha$$

and

$$\begin{split} & \bigwedge \\ & \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(x,y)})) \to \alpha_X(y)) \geq \alpha, \\ \text{we have } \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)})) \to \alpha_X(y)) = \alpha_X, \text{ i.e., } \alpha_X \in \tau_{\mathcal{W}}. \\ & (\text{AT2) If } A_i = \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to A_i(y)) \text{ for all } i \in \Gamma, \text{ we get} \\ & \bigvee_{i \in \Gamma} A_i = \bigvee_{i \in \Gamma} (\bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to A_i(y))) \\ & \leq \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to \bigvee_{i \in \Gamma} A_i(y)) \\ & \leq \bigvee_{i \in \Gamma} A_i, \\ & \bigwedge_{i \in \Gamma} A_i \in \bigcap_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to A_i(y)) \\ & = \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to \bigwedge_{i \in \Gamma} A_i(y)) \\ & = \bigwedge_{i \in \Gamma} A_i. \\ \text{Thus } \bigvee_{i \in \Gamma} A_i, \bigwedge_{i \in \Gamma} A_i \in \tau_{\mathcal{W}}. \\ & (\text{AT3) If } A = \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to A(y)), \text{ then we have} \\ & \alpha \to A = \alpha \to \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to A(y)) \\ & = \bigwedge_{y \in X} (\mathcal{W}^*(\mathbb{T}^*_{(-,y)}) \to (\alpha \to A)(y)), \\ & 44 \end{split}$$

$$\begin{array}{l} \alpha \odot A = \alpha \odot \bigwedge_{y \in X} (\mathcal{W}^*(\top^*_{(-,y)}) \to A(y)) \\ \leq \bigwedge_{y \in X} (\mathcal{W}^*(\top^*_{(-,y)}) \to \alpha \odot A(y)) \\ \leq \alpha \odot A. \end{array}$$

Thus $\alpha \odot A, \alpha \to A \in \tau_{\mathcal{W}}$. So $\tau_{\mathcal{W}}$ is an Alexandrov *L*-topology on *X*. Suppose \mathcal{W} is an Alexandrov L-quasiuniform filter on $X \times X$. Put

$$\tau = \{\bigwedge_{y \in X} (\mathcal{W}^*(\top^*_{(-,y)})) \to A(y)) \mid A \in L^X\}.$$

Let $B \in \tau_{\mathcal{W}}$. Then $B \in \tau$. Let $B = \bigwedge_{y \in X} (\mathcal{W}^*(\top_{(-,y)}^*)) \to A(y)) \in \tau$. Then we get $\bigwedge_{z \in X} (\mathcal{W}^*(\top_{(-,z)}^*)) \to B(z))$ $= \bigwedge_{z \in X} (\mathcal{W}^*(\top_{(-,z)}^*)) \to \bigwedge_{y \in X} (\mathcal{W}^*(\top_{(z,y)}^*)) \to A(y)))$ $= \bigwedge_{y \in X} (\bigvee_{z \in X} (\mathcal{W}^*(\top_{(-,z)}^*)) \odot (\mathcal{W}^*(\top_{(z,y)}^*)) \to A(y))$ $= \bigwedge_{y \in X} (\mathcal{W}^*(\top_{(-,y)}^*) \to A(y))$ $= B \in \tau_{\mathcal{W}}.$ $= B \in \tau_{\mathcal{W}}.$ (2) For $A \in L^X$, since $\mathcal{W}_{\tau}(\alpha \to u) = \alpha \to \mathcal{W}_{\tau}(u)$, $\mathcal{W}_{\tau}(\bigwedge_{i\in\Gamma} u_i) = \bigwedge_{i\in\Gamma} \mathcal{W}_{\tau}(u_i)$ and

$$\mathcal{W}_{\tau}(u) = \bigwedge_{x,y \in X} (\bigwedge_{A \in \tau} (A(x) \to A(y)) \to u(x,y)) \\ \leq \bigwedge_{x \in X} (\bigwedge_{A \in \tau} (A(x) \to A(x)) \to u(x,x)) \\ = \bigwedge_{x \in X} [(x,x)](u).$$

Since
$$\mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,y)}) = \bigwedge_{A \in \tau} (A(x) \to A(y))$$
, we have
 $\bigvee_{y \in X} (\mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,y)}) \odot \mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,y)}))$
 $= \bigvee_{y \in X} (\bigwedge_{A \in \tau} (A(x) \to A(y)) \odot \bigwedge_{A \in \tau} (A(y) \to A(z)))$
 $\leq \bigwedge_{A \in \tau} (A(x) \to A(z))$
 $= \mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,z)}),$
 $\bigvee_{y \in X} (\mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,y)}) \odot \mathcal{W}^*_{\tau}(\mathbb{T}^*_{(y,z)})) \geq \mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,x)}) \odot \mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,z)})$
 $= \mathcal{W}^*_{\tau}(\mathbb{T}^*_{(x,z)}).$

Then \mathcal{W}_{τ} is an Alexandrov *L*-quasiuniform filter on $X \times X$. Let $B \in \tau$. Then

$$\bigwedge_{y \in X} (\bigwedge_{A \in \tau} (A(x) \to A(y)) \to B(y)) \le (A(x) \to A(x)) \to B(x) = B($$

Thus we have

$$\begin{split} B(x) \odot (\bigwedge_{A \in \tau} (A(x) \to A(y))) &\leq B(x) \odot (B(x) \to B(y)) \leq B(y), \\ B(x) &\leq \bigwedge_{y \in X} (\bigwedge_{A \in \tau} (A(x) \to A(y)) \to B(y)). \end{split}$$

 $\begin{array}{l} \text{So } B = \bigwedge_{y \in X} (\mathcal{W}^*_{\tau}(\top^*_{(-,y)}) \to B(y)) \in \tau_{\mathcal{W}_{\tau}}.\\ \text{Now let } B \in \tau_{\mathcal{W}_{\tau}}. \text{ Since } \bigvee_{A \in \tau} (A^*(y) \odot A(-))) \in \tau \text{ and } \bigwedge_{y \in X} (B^*(y) \to \bigvee_{A \in \tau} (A^*(y) \odot A(-))) \in \tau \text{ and } f_{y \in X}(B^*(y) \to f_{x \in \tau}). \end{array}$ $A(-)) \in \tau$, we get $B = \bigwedge_{y \in X} (\mathcal{W}^*_\tau(\top^*_{(-,y)}) \to B(y))$ $= \bigwedge_{y \in X} (\bigwedge_{A \in \tau} (A(-) \to A(y)) \to B(y)) = \bigwedge_{y \in X} (B^*(y) \to \bigvee_{A \in \tau} (A^*(y) \odot A(-))) \in \tau.$ (3) Since $A = \bigwedge_{z \in X} (\mathcal{W}^*(\top_{(-,z)}^*) \to A(z)) \in \tau_{\mathcal{W}},$

Example 3.5. (1) For $A \in L^X$, we define $e_A(x, y) = A(x) \to A(y)$. Then e_A is an *L*-fuzzy preordered set on *X*. By a similar way in Theorem 3.4 (1), we obtain

$$\tau_X = \{\bigwedge_{y \in X} (e_A(-, y) \to B(y)) \mid B \in L^X\}.$$

Define $e_{\tau_X}(x,y) = \bigwedge_{B \in \tau_X} (B(x) \to B(y))$. Since $A \in \tau_X, e_{\tau_X}(x,y) \le e_A(x,y)$, $e_{\tau_X}(x,y) = \bigwedge_{B \in \tau_X} (B(x) \to B(y))$ $= \bigwedge_{C \in L^X} (\bigwedge_{z \in X} (e_A(x,z) \to C(z)) \to \bigwedge_{z \in X} (e_A(y,z) \to C(z)))$ $\ge \bigwedge_{z \in X} (e_A(y,z) \to e_A(x,z)) \ge A(x) \to A(y).$

Then $e_{\tau_X}(x,y) = e_A(x,y)$. Thus by Theorem 3.2 (1), \mathcal{W}_{τ_X} is an Alexandrov *L*-quasiuniform filter on $X \times X$ such that

$$\mathcal{W}_{\tau_X}(u) = \bigwedge_{x,y \in X} (e_A(x,y) \to u(x,y)).$$

Moreover, since $\mathcal{W}^*_{\tau_X}(\top^*_{(-,y)}) = e_A(-,y),$

$$\tau_{\mathcal{W}_{\tau_X}} = \{ \bigwedge_{y \in X} (e_A(-, y) \to B(y)) \mid B \in L^X \} = \tau_X.$$

(2) Let $\tau_X = L^X$. Then $e_{\tau_X}(x,y) = \bigwedge_{B \in \tau_X} (B(x) \to B(y))$. For $\top_x \in \tau_X$ and $x \neq y$, $e_{\tau_X}(x,y) = \bigwedge_{B \in \tau_X} (B(x) \to B(y)) \leq \top_x(x) \to \top_x(y) = \bot$. Thus for $e_X = \bigtriangleup_{X \times X}$ with

$$\triangle_{X \times X}(x, y) = \begin{cases} \top, & \text{if } y = x, \\ \bot, & \text{otherwise,} \end{cases}$$
$$\mathcal{W}_{\tau_X}(u) = \bigwedge_{x, y \in X} (\triangle_{X \times X}(x, y) \to u(x, y)) = \bigwedge_{x \in X} u(x, x)$$

By Theorem 3.2 (1), \mathcal{W}_{τ_X} is an Alexandrov L-quasiuniform filter on $X \times X$. Moreover, since $\mathcal{W}^*_{\tau_X}(\top^*_{(-,y)}) = \triangle_{X \times X}(-,y),$

$$\tau_{\mathcal{W}_{\tau_X}} = \{ B \in L^X \mid \bigwedge_{y \in X} (\triangle_{X \times X}(-, y) \to B(y)) = B \} = L^X = \tau_X.$$

(3) Let $\tau_X = \{ \alpha_X \mid \alpha \in L \}$. Then

$$e_{\tau_X}(x,y) = \bigwedge_{B \in \tau_X} (B(x) \to B(y)) = \top,$$

$$\mathcal{W}_{\tau_X}(u) = \bigwedge_{x,y \in X} (\top_{X \times X}(x,y) \to u(x,y)) = \bigwedge_{x,y \in X} u(x,y)$$

Thus by Theorem 3.2 (1), \mathcal{W}_{τ_X} is an Alexandrov *L*-quasiuniform filter on $X \times X$. Moreover, since $\mathcal{W}^*_{\tau_X}(\top^*_{(-,y)}) = \top_{X \times X}(-,y),$

$$\tau_{\mathcal{W}_{\tau_X}} = \{ B \in L^X \mid \bigwedge_{y \in X} (\top_{X \times X}(-, y) \to B(y)) = B \}$$
$$= \{ B \in L^X \mid \bigwedge_{y \in X} B(y) = B \}$$
$$= \{ \alpha_X \mid \alpha \in L \}$$
$$= \tau_X.$$

Example 3.6. Let $e_X \in L^{X \times X}$ be a reflexive *L*-fuzzy relation. (1) Define $\mathcal{W}_{e_X} : L^{X \times X} \to L$ as

$$\mathcal{W}_{e_X}(u) = \bigwedge_{x,y \in X} (e_X(x,y) \to u(x,y)).$$

By Theorem 3.2 (1), \mathcal{W}_{e_X} is an Alexandrov *L*-preuniform filter on $X \times X$. If e_X is an L-fuzzy preorder on X, then we have

$$\bigvee_{y \in X} (\mathcal{W}_{e_X}^*(\top_{(x,y)}^*) \odot \mathcal{W}_{e_X}^*(\top_{(y,z)}^*)) = \bigvee_{y \in X} (e_X(x,y) \odot e_X(y,z))$$
$$= e_X(x,z)$$
$$= \mathcal{W}_{e_X}^*(\top_{(x,z)}^*).$$

Thus \mathcal{W}_{e_X} is an Alexandrov *L*-quasiuniform filter on $X \times X$. (2) Define $\mathcal{N}_{e_X}^x : L^X \to L$ as

$$\mathcal{N}_{e_X}^x(A) = \bigwedge_{y \in X} (e_X(x, y) \to A(y)).$$

By Theorem 3.2 (2), $\mathcal{N}_{e_X} = \{\mathcal{N}_{e_X}^x \mid x \in X\}$ is an Alexandrov *L*-neighborhood system on *X*. If e_X is an *L*-fuzzy preorder on *X*, then \mathcal{N}_{e_X} is topological.

(3) From (2) and Theorem 3.2 (3),

$$\mathcal{W}_{\mathcal{N}_{e_X}}(u) = \bigwedge_{x \in X} \mathcal{N}_{e_X}^x(u(x, -)) = \bigwedge_{x, y \in X} (e_X(x, y) \to u(x, y)) = \mathcal{W}_{e_X}(u).$$

Then $\mathcal{W}_{\mathcal{N}_{e_X}}$ is an Alexandrov preuniform *L*-filter on $X \times X$. (4) Since $\mathcal{W}_{e_X}(\top^*_{(x,y)}) = e^*_X(x,y),$

$$\mathcal{N}^{x}_{\mathcal{W}_{e_{X}}}(A) = \bigwedge_{y \in X} (\mathcal{W}^{*}_{e_{X}}(\top^{*}_{(x,y)}) \to A(y)) = \bigwedge_{y \in X} (e_{X}(x,y) \to A(y)) = \mathcal{N}^{x}_{e_{X}}(A).$$
(5) By (3) and (4), $\mathcal{W}_{\mathcal{N}_{\mathcal{W}_{e_{X}}}} = \mathcal{W}_{\mathcal{N}_{e_{X}}} = \mathcal{W}_{e_{X}}.$ By (3) and Theorem 3.2 (5),

$$\mathcal{N}^x_{\mathcal{W}_{\mathcal{N}_{e_X}}} = \mathcal{N}^x_{\mathcal{W}_{e_X}} = \mathcal{N}^x_{e_X}.$$
47

(6) By Theorem 3.2, let $\mathcal{W}: L^{X \times X} \to L$ be an Alexandrov preuniform *L*-filter on $X \times X$ with a reflexive relation $e_{\mathcal{W}} \in L^{X \times X}$ such that $e_{\mathcal{W}}(x, z) = \mathcal{W}^*(\top^*_{(x,y)})$. Then

$$\mathcal{W}(u) = \bigwedge_{x,z \in X} (e_{\mathcal{W}}(x,z) \to u(x,z)) = \mathcal{W}_{e_{\mathcal{W}}}(u).$$

Since $\mathcal{W}_{e_{X}}(u) = \bigwedge_{x,z \in X} (e_{X}(x,z) \to u(x,z))$ and $\mathcal{W}_{e_{X}}(\top^{*}_{(x,y)}) = e^{*}_{X}(x,z),$
 $e_{\mathcal{W}_{e_{X}}}(x,y) = \mathcal{W}^{*}_{e_{X}}(\top^{*}_{(x,y)}) = e_{X}(x,y).$
(7) By Theorem 3.2, since $\mathcal{W}_{e_{X}}(\top^{*}_{(-,y)}) = e^{*}_{X}(-,y),$
 $\tau_{\mathcal{W}_{e_{X}}} = \{A \in L^{X} \mid A = \bigwedge_{y \in X} (\mathcal{W}^{*}_{e_{X}}(\top^{*}_{(-,y)}) \to A(y))$
 $= \bigwedge_{y \in X} (e_{X}(-,y) \to A(y))\},$
 $\mathcal{W}_{\tau_{\mathcal{W}_{e_{X}}}}(u) = \bigwedge_{x,y \in X} (\bigwedge_{A \in \tau_{\mathcal{W}_{e_{X}}}} (A(x) \to A(y)) \to u(x,y))$
 $= \bigwedge_{x,y \in X} (\bigwedge_{z \in X} (e_{X}(y,z) \to e_{X}(x,z)) \to u(x,y))$
 $\geq \bigwedge_{x,y \in X} ((e_{X}(y,y) \to e_{X}(x,y)) \to u(x,y))$
 $= \mathcal{W}_{e_{X}}(u).$

If e_X is an *L*-fuzzy preorder on *X*, then $\mathcal{W}_{\tau_{\mathcal{W}_{e_X}}} = \mathcal{W}_{e_X}$.

Example 3.7. Let $X = \{h_i \mid i = \{1, ..., 3\}\}$ with h_i =house and $Y = \{e, b, w, c, i\}$ with e=expensive,b= beautiful, w=wooden, c= creative, i=in the green surroundings. Let $([0, 1], \odot, \rightarrow, ^*, 0, 1)$ be a complete residuated lattice (See [6, 8, 27]) as

 $x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}, \ x^* = 1 - x.$

Let $R \in [0, 1]^{X \times Y}$ be a fuzzy information as follows:

R	e	b	w	c	i
h_1	0.7	0.6	0.5	0.9	0.2
h_2	0.6	0.8	0.4	0.3	0.5
h_3	0.4	0.9	0.8	0.6	0.6

Define an $L\text{-}\mathrm{fuzzy}$ preorder $e_X^{\{e,b\}}, e_X^Y \in [0,1]^{X \times X}$ by

$$e_X^{\{e,b\}}(h_i, h_j) = \bigwedge_{y \in \{e,b\}} (R(h_i, y) \to R(h_j, y)),$$
$$e_X^Y(h_i, h_j) = \bigwedge_{y \in Y} (R(h_i, y) \to R(h_j, y)).$$

Then we have

$$e_X^{\{e,b\}} = \begin{pmatrix} 1 & 0.9 & 0.7 \\ 0.8 & 1 & 0.8 \\ 0.7 & 0.9 & 1 \end{pmatrix} e_X^Y = \begin{pmatrix} 1 & 0.4 & 0.7 \\ 0.7 & 1 & 0.8 \\ 0.6 & 0.6 & 1 \end{pmatrix}$$

(1) We obtain Alexandrov L-quasiuniform filters $\mathcal{W}_{e_X^{\{e,b\}}}, \mathcal{W}_{e_X^Y}: L^{X \times X} \to L$ as

$$\begin{aligned} \mathcal{W}_{e_X^{\{e,b\}}}(u) &= \bigwedge_{i,j \in \{1,2,3\}} (e_X^{\{e,b\}}(h_i,h_j) \to u(h_i,h_j)), \\ \mathcal{W}_{e_X^Y}(u) &= \bigwedge_{i,j \in \{1,2,3\}} (e_X^Y(h_i,h_j) \to u(h_i,h_j)). \end{aligned}$$

(2) By Theorem 3.2, since $\mathcal{W}_{e_X}(\top^*_{(-,y)}) = e_X^*(-,y)$ for each $e_X \in \{e_X^{\{e,b\}}, e_X^Y\},$ 48

$$\begin{split} \tau_{\mathcal{W}_{e_{X}}} &= \{ \bigwedge_{j \in \{1,2,3\}} (\mathcal{W}_{e_{X}}^{*}(\top_{(-,h_{j})}^{*}) \to A(h_{j})) \mid A \in L^{X} \} \\ &= \bigwedge_{j \in \{1,2,3\}} (e_{X}(-,h_{j}) \to A(h_{j})) \mid A \in L^{X} \}, \\ \\ &\bigwedge_{j \in \{1,2,3\}} (e_{X}^{\{e,b\}}(-,h_{j}) \to A(h_{j})) = \begin{pmatrix} A(h_{1}) \wedge (0.1 + A(h_{2})) \wedge (0.3 + A(h_{3})) \\ (0.2 + A(h_{1})) \wedge A(h_{2}) \wedge (0.2 + A(h_{3})) \\ (0.3 + A(h_{1})) \wedge (0.1 + A(h_{2})) \wedge A(h_{3}) \end{pmatrix} \\ \\ &\bigwedge_{j \in \{1,2,3\}} (e_{X}^{Y}(-,h_{j}) \to A(h_{j})) = \begin{pmatrix} A(h_{1}) \wedge (0.6 + A(h_{2})) \wedge (0.3 + A(h_{3})) \\ (0.3 + A(h_{1})) \wedge A(h_{2}) \wedge (0.2 + A(h_{3})) \\ (0.4 + A(h_{1})) \wedge (0.4 + A(h_{2})) \wedge A(h_{3}) \end{pmatrix} \\ \\ (3) \text{ For each } e_{X} \in \{e_{X}^{\{e,b\}}, e_{X}^{Y}\}, \\ &\bigwedge_{A \in \tau_{\mathcal{W}_{e_{X}}}} (A(x) \to A(y)) = \bigwedge_{z \in X} (\mathcal{W}_{e_{X}}^{*}(\top_{(y,z)}^{*}) \to \mathcal{W}_{e_{X}}^{*}(\top_{(x,z)}^{*})) \\ \\ &= \mathcal{W}_{e_{X}}^{*}(\top_{(x,y)}^{*}) \\ \\ &= \mathcal{W}_{e_{X}}(\mathbb{T}_{(x,y)}^{*}) \\ \\ &= \mathcal{W}_{e_{X}}(\mathbb{T}_{(x,y)}^{*}) \\ \end{aligned}$$

and

$$\mathcal{W}_{\tau_{\mathcal{W}_{e_{\mathcal{V}}}}} = \mathcal{W}_{e_{X}}$$

(4) For each $e_X \in \{e_X^{\{e,b\}}, e_X^Y\}$, since $\mathcal{N}_{e_X}^{h_1} : L^X \to L$ as

$$\mathcal{N}_{\mathcal{W}_{e_X}}^{h_1}(A) = \bigwedge_{y \in X} (e_X(h_1, h_2) \to A(h_2)),$$
$$\mathcal{N}_{\mathcal{W}_{e_X}^{\{e,b\}}}^{h_1}(A) = \bigwedge_{y \in X} (e_X^{\{e,b\}}(h_1, h_2) \to A(h_2))$$
$$= A(h_1) \land (0.1 + A(h_2)) \land (0.3 + A(h_3)),$$
$$\mathcal{N}_{\mathcal{W}_{e_X}^{Y}}^{h_1}(A) = \bigwedge_{y \in X} (e_X^Y(h_1, h_2) \to A(h_2))$$
$$= A(h_1) \land (0.6 + A(h_2)) \land (0.3 + A(h_3)).$$

4. CONCLUSION

In this paper, we investigate the relations among Alexandrov L-neighborhood filters, Alexandrov L-topologies and Alexandrov L-preuniform filters as a viewpoint for fuzzy rough sets. The relations among Alexandrov L-neighborhood spaces, Alexandrov L-topological spaces and Alexandrov L-preunitorm filter spaces are studied. As a very important point of view for fuzzy information systems, Alexandrov Lneighborhood filters, Alexandrov L-topologies and Alexandrov L-preuniform filters can be fined in Example 3.7.

Funding: This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

References

- P. Eklund and W. G\u00e4hler, Fuzzy filter functors and convergence, Applications of Category Theory to Fuzzy Sets, Kluwer, Dordrecht, 1992 109–136.
- [2] W. Gähler, The general fuzzy filter approach to fuzzy topology, I, II, Fuzzy Sets and Systems 76 (1995) 205-246.
- [3] W. Gähler, F. Bayoumi, A. Kandil and A. Nouh, The theory of global fuzzy neighborhood structures, Fuzzy Sets and Systems 98 (1998) 175–199.
- [4] U. Höhle and E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publishers, Boston 1995.
- [5] U. Höhle and S. E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht 1999.
 [6] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York 2002.
- [7] S. E. Rodabaugh and E. P. Klement, Topological and Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Boston, Dordrecht, London 2003.
- [8] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co. 1999.

(2005) 93-113.

- [9] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354,
 [10] Y. C. Kim and J. M. Ko, Images and preimages of L-filter bases, Fuzzy Sets and Systems 173
- G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets and Systems 158 (2007) 424–435.
- [12] W. Yao, On many-valued L-fuzzy convergence spaces, Fuzzy Sets and Systems 159 (2008) 2503–2519.
- [13] W. X. Xie, Q. Y. Zhang and L. Fan, Fuzzy complete lattices, Fuzzy Sets and Systems 160 (2009) 2275–2291.
- [14] Q. Y. Zhang and L. Fan, Continuity in quantitive domains, Fuzzy Sets and Systems 154 (2005) 118–131.
- [15] Q. Y. Zhang, W. X. Xie and L. Fan, The Dedekind-MacNeille completion for fuzzy posets, Fuzzy Sets and Systems 160 (2009) 2292–2316.
- [16] J. Fang, Stratified L-order convergence structures, Fuzzy Sets and Systems 161 (2010) 2130– 2149.
- [17] J. Fang, Relationships between L-ordered convergence structures and strong L-tologies Fuzzy Sets and Systems 161 (2010) 2923–2944.
- [18] B. Davvaz and Y. C. Kim, Alexandrov L-topologies and Alexandrov L-convergence structures, Journal of Intelligent and Fuzzy Systems 35 (2018) 6393–6404.
- [19] D. Orpen and G. Jäger, Lattice-valued convergence spaces, Fuzzy Sets and Systems 162 (2011) 1–24.
- [20] B. Pang, Degrees of separation properties in stratified L-generalized convergence spaces using residuated implication, Filomat 31 (20) (2017) 6293–6305.
- [21] B. Pang, Stratified L-ordered filter spaces, Quaestiones Mathematicae 40 (5) (2017) 661–678.
- [22] J. M. Ko and Y. C. Kim, Alexandrov L-filters and Alexandrov L-convergence spaces, Journal of Intelligent and Fuzzy Systems 35 (2018) 3255–3266.
- [23] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci. 11 (1982) 341–356.
- [24] Z. Pawlak, Rough sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, Kluwer Academic Publishers, Dordrecht, The Netherlands 1991.
- [25] Q. Jin, L.Q. Li, One-axiom characterizations on lattice-valued closure(interior) operators, Journal of Intelligent and Fuzzy Systems 31 (2016) 1679–1688.
- [26] Y. C. Kim, Join-meet preserving maps and Alexandrov fuzzy topologies, Journal of Intelligent and Fuzzy Systems 28 (2015) 457–467.
- [27] Y. C. Kim, Categories of fuzzy preorders, approximation operators and Alexandrov topologies, Journal of Intelligent and Fuzzy Systems 31 (2016) 1787–1793.
- [28] A. M. Radzikowska and E. E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems 126 (2002) 137–155.

- [29] Y. H. She and G. J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications 58 (2009) 189–201.
- [30] S. P. Tiwari and A. K. Srivastava, Fuzzy rough sets, fuzzy preorders and fuzzy topologies, Fuzzy Sets and Systems 210 (2013) 63–68.
- [31] J. Zhan and W. Xu, Two types of coverings based multigranulation rough fuzzy sets and applications to decision making, Artificial Intelligence Review (2018) https://doi.org/10.1007/s10462-018-9649-8.
- [32] H. Lai and D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems 157 (2006) 1865–1885.
- [33] Z. M. Ma and B.Q. Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Inform. Sci. 218 (2013) 194–204.

<u>JU-MOK OH</u> (jumokoh@gwnu.ac.kr)

Department of Mathematics, Faculty of Natural science, University of Gangneung-Wonju, Gangneung, Gangwondo, postal code 25457, Korea

YONG CHAN KIM (yck@gwnu.ac.kr)

Department of Mathemathics, Faculty of Natural science, University of Gangneung-Wonju, Gangneung, Gangwondo, postal code 25457, Korea