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Abstract. A crossing octahedron set is composed of three components :
interval-valued fuzzy set, intuitionistic fuzzy set and negative-valued func-
tion. In this paper, we first introduce the concept of crossing octahedron
set and investigate its properties. Further, we define a crossing octahedron
Q-ideal, Q-subalgebra and BCK-ideal of a Q-algebra, and we deal with
their relationships. In addition, the homomorphic images and pre-images of
a crossing octahedron Q-ideal are also studied. Related properties of cross-
ing octahedron Q-ideals are explored and discussed. Finally, the Cartesian
product of two crossing octahedron Q-ideals is investigated.
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1. Introduction

Iseki and Tanaka [1] studied the concept of BCK-algebras in 1966. As a gener-
alization of the set theoretic difference and propositional calculus proposed by Imai
and Iseki [2], Iseki [3] introduced the notion of a BCI-algebra which is a gener-
alization of BCK-algebra. Since then numerous mathematical papers have been
written investigating the algebraic properties of the BCK/BCI-algebras and their
relationship with other structures including lattices and Boolean algebras. There
is a great deal of literature that has been produced on the theory of BCK/BCI-
algebras. In particular, the emphasis seems to have been put on the ideal theory of
BCK/BCI-algebras. Hu and Li [4, 5] introduce a wide class of abstract algebras:
BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass
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of the class of BCH-algebras. Neggers et al. [6] introduced a new notion, called
Q-algebra, which is a generalization of BCH/BCI/BCK-algebras and generalizes
some theorems discussed in BCI-algebras. Fuzzy set theory is the concept and tech-
nique which lay a form of mathematical precision to human thought process that in
many ways are imprecise and ambiguous by the standards of classical mathematics.
Fuzzy sets, intuitionistic fuzzy set, interval-valued fuzzy set, bipolar fuzzy set and
other mathematical tools are often useful approaches to dealing with uncertainties.
In 1965, Zadeh [7] introduced the notion of fuzzy sets. At present, this concept
has been applied to many mathematical branches. There are several kinds of fuzzy
sets extensions in the fuzzy set theory, for example, intuitionistic fuzzy sets, interval
valued fuzzy sets, vague sets, · · · , etc. The idea of the “intuitionistic fuzzy set” was
first published by Atanassov [8, 9] as a generalization of the notion of fuzzy sets. In
1991, Xi [10] applied the concept of fuzzy sets to BCI, BCK, MV -algebras. Zadeh
[11] made an extension of the concept of fuzzy set by an interval-valued fuzzy set
(i.e., a fuzzy set with an interval-valued membership function) and he constructed
a method of approximate inference using interval-valued fuzzy sets. Lee [12] and
Zhang [13] introduced an extension of fuzzy sets named bipolar-valued fuzzy sets.
Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree
range is enlarged from the interval [0, 1] to [-1, 1]. Ejegwa et al. [14] present a
brief overview on intuitionistic fuzzy sets which cuts across some definitions, op-
erations, algebra, modal operators and normalization on intuitionistic fuzzy sets.
Mostafa et al. [15, 16, 17] discussed intuitionistic and interval-valued fuzzy Q-ideals
in Q-algebra. Mostafa et al. [18] introduced the notion of crossing intuitionistic
KU -ideals and investigated its several properties. Also, the relations between cross-
ing intuitionistic KU -ideal and crossing intuitionistic BCK-ideal are given. The
image and the pre-image of a bipolar intuitionistic KU -ideal in KU -algebras are
defined and how the image and the pre-image of a crossing intuitionistic KU -ideal
in KU -algebras become crossing intuitionistic KU -ideals are studied. Moreover,
the Cartesian product of crossing intuitionistic KU -ideals in a KU -algebras is es-
tablished. Kim et al. [19] introduced the concept of octahedron sets composed of
three components: interval-valued fuzzy set, intuitionistic fuzzy set and fuzzy set,
which will provide more information about ambiguity and uncertainty common in
everyday life, and dealt with its various properties. Recently, Jun et al. [20, 21] in-
troduced a new function which is called a negative-valued function, and constructed
N -structures. They applied N -structures to BCK/BCI-algebras, and discussed N -
subalgebras and N -ideals in BCK/BCI-algebras. Jun et al. [22, 23] established an
extension of a bipolar-valued fuzzy set, which is introduced by Lee [12] and Zhang
[13]. They called it a crossing cubic structure and studied its several properties. Also,
they applied crossing cubic structures to BCK/BCI-algebras and studied crossing
cubic subalgebras.

In this paper, we introduce the notion of a crossing octahedron set and a crossing
octahedron Q-ideal of a Q-algebra and investigate its properties. Furthermore, we
study the homomorphic image and pre-image of crossing octahedron Q-ideals under
homomorphism of Q-algebras. Moreover, the Cartesian product of two crossing
Octahedron Q-ideals in a Q-algebra is given.
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2. Preliminaries

Now we review some definitions and properties that will be useful in our results.

Definition 2.1 ([3]). Let X be a set with a binary operation “ * ” and a constant
0. Then (X, ∗, 0) is called a BCI-algebra, if it satisfies the following axioms: for any
x, y, z ∈ X,

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)] = 0,
(BCI2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI3) x ∗ x = 0,
(BCI4) x ∗ y = 0 and y ∗ x = 0 implies x = y.
If a BCI-algebra X satisfies the identity 0 ∗ x = 0, then X is called a BCK-

algebra. It is well-known that the class of BCK-algebras is a proper subclass of the
class of BCI-algebras.

Definition 2.2 ([1]). Let (X, ∗, 0) be a BCK-algebra and let S be a nonempty
subset of X. Then S is called a subalgebra of X, if x ∗ y ∈ S for any x, y ∈ S, i.e.,
S is closed under the binary operation ∗ on X.

Definition 2.3 ([6]). An algebraic system (X, ∗, 0) of type (2, 0) is called a Q-
algebra, if it satisfies the following axioms: for any x, y, z ∈ X,

(i) x ∗ x = 0,
(ii) x ∗ 0 = x,
(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
For brevity, we also call X a Q-algebra. In X, we can define a binary relation ≤

by x ≤ y if and only if x ∗ y = 0.

Example 2.4 ([6]). Let X = {0, 1, 2} be the set with Cayley Table 2.1:

∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Table 2.1

Then (X, ∗, 0) is a Q-algebra.

Theorem 2.5 ([6]). Every BCK-algebra is a Q-algebra but the converse is not true.

Example 2.6 ([6]). Let X = {0, 1, 2, 3} be the set with Cayley Table 2.2:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 3 3 0

Table 2.2

Then (X, ∗, 0) is a Q-algebra but not a BCK-algebra.
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Theorem 2.7 ([6]). Every Q-algebra X satisfying the conditions (BCI1), (BCI4)
and (iv)

(iv) (x ∗ y) ∗ x = 0 for any x, y ∈ X
is a BCK-algebra.

Definition 2.8 ([1]). Let X be a BCK-algebra and let J be a nonempty subset of
X. Then J is called an ideal of X, if it satisfies the following conditions: for any
x, y ∈ X,

(I1) 0 ∈ J ,
(I2) y ∗ x ∈ J implies y ∈ J .

Definition 2.9 ([17]). Let X be a Q-algebra and let J be a nonempty subset of
X. Then J is called a Q-ideal of X, if it satisfies the following conditions: for any
x, y, z ∈ X,

(I1) 0 ∈ J ,
(Q) (x ∗ y) ∗ z ∈ J and y ∈ J imply x ∗ z ∈ J .

For a nonempty set X, a mapping λ : X → I is called a fuzzy set in X (See [7]),
where I = [0, 1]. We denote the set of all fuzzy sets in X as IX , where I = [0, 1].

Definition 2.10 ([10]). Let X be a BCK-algebra and let λ ∈ IX . Then λ is called
a fuzzy BCK-ideal of X, if it satisfies the following conditions: for any x, y ∈ X,

(FI1) λ(0) ≥ λ(x),
(I2) λ(x) ≥ λ(x ∗ y) ∧ λ(y).

Definition 2.11 ([16]). Let X be a Q-algebra and let λ ∈ IX . Then λ is called a
fuzzy Q-ideal of X, if it satisfies the following conditions: for any x, y, z ∈ X,

(FI1) λ(0) ≥ λ(x),
(FQ) λ(x ∗ z) ≥ λ((x ∗ y) ∗ z) ∧ λ(y).

Lemma 2.12 ([16]). Every fuzzy Q-ideal of a Q-algebra X is a fuzzy BCK-ideal of
X.

Each member of a set I⊕I = {(a∈, a6∈) ∈ I×I : a∈+a6∈ ≤ 1} is called an intuition-
istic fuzzy number (briefly, IFN), and (0, 1) and (1, 0) are denoted by 0̄ and 1̄, respec-
tively (See [24]). We will denote intuitionistic fuzzy numbers (a∈, a6∈), (b∈, b6∈), (c∈, c6∈),
etc. as ā, b̄, c̄, etc.

Definition 2.13 ([8, 9, 14]). For a nonempty set X, a mapping Ā : X → I ⊕ I is
called an intuitionistic fuzzy set (briefly, IFS) in X, where for each x ∈ X, Ā(x) =
(A∈(x), A6∈(x)), and A∈(x) and A 6∈(x) represent the degree of membership and the
degree of non-membership of an element x to Ā respectively. In particular, 0̄ and 1̄
denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole set in X
defined by, respectively: for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

We will denote the set of all IFSs in X as IFS(X).

The set of all closed subintervals of I is denoted by [I], and members of [I] are

called interval numbers and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and
164



Mostafa et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 2, 161–180

0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a (See [25]). Refer
to [19] for the definitions of the order and the equality of two interval numbers, and
the infimum and the supremum of any interval numbers.

Definition 2.14 ([11, 25]). For a nonempty set X, a mapping Ã : X → [I] is called
an interval-valued fuzzy set (briefly, an IVS) in X. Let IV S(X) denote the set of all

IVSs in X. For each Ã ∈ IV S(X) and x ∈ X, Ã(x) = [A−(x), A+(x)] is called the
degree of membership of an element x to A, where A−, A+ ∈ IX are called a lower

fuzzy set and an upper fuzzy set in X, respectively. For each Ã ∈ IV S(X), we write

Ã = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty set and
the interval-valued fuzzy whole set in X defined by respectively: for each x ∈ X,

0̃(x) = 0 and 1̃(x) = 1.

We define relations ⊂ and = on IV S(X) as follows:

(∀ Ã, B̃ ∈ IV S(X))(Ã ⊂ B̃ ⇐⇒ (x ∈ X)(Ã(x) ≤ B̃(x)),

(∀ Ã, B̃ ∈ IV S(X))(Ã = B̃ ⇐⇒ (x ∈ X)(Ã(x) = B̃(x)).

For each Ã ∈ IV S(X), the complement of Ã, denoted by Ãc, is an IVS in X
defined as follows:
for each x ∈ X,

Ãc(x) = [1−A+(x), 1−A−(x)].

For any (Ãj)j∈J ⊂ IV S(X), its intersection
⋂

j∈J Ãj and union
⋃

j∈J Ãj are IVSs
in X defined respectively as follows: for each x ∈ X,

(
⋂
j∈J

Ãj)(x) =
∧
j∈J

Ãj(x) = [
∧
j∈J

A−j ,
∧
j∈J

A+
j ],

(
⋃
j∈J

Ãj)(x) =
∨
j∈J

Ãj(x) = [
∨
j∈J

A−j ,
∨
j∈J

A+
j ].

3. Crossing octahedron sets

In this section, first of all, we recall the concept of an N-function on a nonempty
set X and list some concepts related to it (for examples, the inclusion between two
N-functions, the complement of an N-function, the intersection and the union of
N-functions). Next, we define a crossing octahedron set and introduce some con-
cepts related to crossing octahedron sets (for examples, the inclusion between two
crossing octahedron sets, complement of a crossing octahedron set, the intersection
and union of arbitrary crossing octahedron sets).

For a nonempty set X, a mapping X → [−1, 0] is called a negative-valued function
from X to [−1, 0] (briefly, N -function on X) (See [20, 21]). We will writeN -functions
on X by AN , BN , CN , · · · , etc. and denote the set of all N -functions on X as
N(X). In particular, the N-function (−1)N [resp. 0N ] on X defined by (−1)N (x) =
−1 [resp. 0N (x) = 0] for each x ∈ X is called the whole N-function [resp. empty
N-function] on X.
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Definition 3.1. Let X be a nonempty set and let AN , BN ∈ N(X).
(i) We say that AN is a subset of BN , denoted by AN ⊂ BN , if for each x ∈ X,

AN (x) ≥ BN (x).

(ii) The complement of AN , denoted by c(AN ), is an N-function on X defined as:

c(AN )(x) = −1−AN (x) for each x ∈ X.
(iii) The intersection of AN and BN , denoted by AN ∩ BN , is an N-function on

X defined as: for each x ∈ X,

(AN ∩BN )(x) = AN (x) ∨BN (x).

(iv) The union of AN and BN , denoted by AN ∪ BN , is an N-function on X
defined as: for each x ∈ X,

(AN ∪BN )(x) = AN (x) ∧BN (x).

From the above definition, we have the followings.

Proposition 3.2. Let AN , BN , CN ∈ N(X). Then
(1) (Idempotent laws): AN ∩AN = AN , AN ∪AN = AN ,
(2) (Commutative laws): AN ∩BN = BN ∩AN , AN ∪BN = BN ∪AN ,
(3) (Associative laws): (AN ∩BN ) ∩ CN = AN ∩ (BN ∩ CN ),

(AN ∪BN ) ∪ CN = AN ∪ (BN ∪ CN ),
(4) (Distributive laws): AN ∪ (BN ∩ CN ) = (AN ∪BN ) ∩ (AN ∪ CN ),

AN ∩ (BN ∪ CN ) = (AN ∩BN ) ∪ (AN ∩ CN ),
(5) (Absorption laws): AN ∪ (AN ∩BN ) = AN , AN ∩ (AN ∪BN ) = AN ,
(6) (DeMorgan’s laws): c(AN ∩BN ) = c(AN ) ∪ c(BN ),

c(AN ∪BN ) = c(AN ) ∩ c(BN ),
(7) c(c(AN )) = AN ,
(8) c((−1)N ) = 0N , c(0N ) = (−1)N ,
(9) AN ∩ 0N = 0N , AN ∪ 0N = AN , AN ∩ (−1)N = AN , AN ∪ (−1)N = (−1)N ,
(10) if AN ⊂ BN and BN ⊂ CN , then AN ⊂ CN ,
(11) if AN ⊂ BN , then AN ∩ CN ⊂ BN ∩ CN , AN ∪ CN ⊂ BN ∪ CN .

Proof. We prove only (1) and (6), and the remainder’s proofs are omitted.
(1) Let x ∈ X. Then by Definition 3.1 (iii) and (iv), we have

(AN ∩AN )(x) = AN (x) ∨AN (x) = AN (x)

and
(AN ∪AN )(x) = AN (x) ∧AN (x) = AN (x).

(6) Let x ∈ X. Then by Definition 3.1 (ii), we get
c(AN ∩BN )(x) = −1− (AN ∩BN )(x) [By Definition 3.1 (ii)]

= −1− (AN (x) ∨BN (x)) [By Definition 3.1 (iii)]
= −(1−AN (x)) ∧ (−1−BN (x))
= c(AN )(x) ∧ c(BN )(x) [By Definition 3.1 (ii)]
= (c(AN ) ∪ c(BN ))(x). [By Definition 3.1 (iv)]

Thus c(AN ∩BN ) = c(AN ) ∪ c(BN ). Similarly, we can prove that

c(AN ∪BN ) = c(AN ) ∩ c(BN ).

�
166



Mostafa et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 2, 161–180

Remark 3.3. AN ∩ c(AN ) 6= 0N , AN ∪ c(AN ) 6= (−1)N in general (See Example
3.4).

From Proposition 3.2, we can easily see that (N(X),∩,∪, c, 0N , (−1)N ) forms a
Boolean algebra except the property of Remark 3.3.

Example 3.4. For any nonempty set X, consider the N-function (−0.5)N on X
defined by (−0.5)N (x) = −0.5 for each x ∈ X. Then we can easily check that

(−0.5)N ∩ c((−0.5)N ) 6= 0N , (−0.5)N ∪ c((−0.5)N ) 6= (−1)N .

Each member of [I]× (I ⊕ I)× [−1, 0] is called a crossing octahedron number and
write ˜̄a =

〈
ã, ā, aN

〉
=
〈
[a−, a+], (a∈, a6∈), aN

〉
.

Definition 3.5. Let X be a non-empty set. Then a mapping A =
〈
Ã, Ā, AN

〉
:

X → [I]× (I⊕ I)× [−1, 0] is called a crossing octahedron set (briefly, COS) in X. In
particular, the crossing octahedron empty set and the crossing octahedron whole set
are denoted by 0̆ and 1̆ respectively and are defined as respectively: for each x ∈ X,

0̆(x) = 〈[0, 0], (0, 1), 0〉 , 1̆(x) = 〈[1, 1], (1, 0),−1〉 .
The set of all COSs in X is denoted by COS(X).

Example 3.6. (1) Let X = {0, a, b, c} and let A be given by:

A(0) = 〈[0.1, 0.8], (0.6, 0.4),−0.7〉 , A(a) = 〈[0.2, 0.4], (0.5, 0.4),−0.5〉 ,

A(b) = 〈[0.1, 0.3], (0.4, 0.3),−0.3〉 , A(c) = 〈[0.1, 0.2], (0.3, 0.2),−0.1〉 .
Then clearly, A ∈ COS(X).

(2) Let Ā ∈ IFS(X). Then we can easily check that〈
[A∈, 1−A 6∈], Ā,−1 +A∈

〉
∈ COS(X).

(3) Let A = (AP , AN ) be a bipolar fuzzy set in a set X. Then clearly,〈
[AP , AP ], (AP , 1−AP ), AN

〉
∈ COS(X),〈

[AP , AP ], (AP , 1−AP ),−AP
〉
∈ COS(X),〈

[−AN ,−AN ], (AP , 1−AP ), AN
〉
∈ COS(X),

where (−AP )(x) = −AP (x) ∈ [−1, 0], (−AN )(x) = −AN (x) ∈ I for each x ∈ X.

(4) Let Ã ∈ IV S(X). Then we can easily show that〈
Ã, (A−, 1−A+),−1 +A−

〉
∈ COS(X).

From (2), (3) and (4) in Example 3.2, it is obvious that a COS is a generalization
of an IVFS, an IFS and a bipolar fuzzy set.

Definition 3.7. Let X be a non-empty set and let A, B ∈ COS(X).

(i) We say that A is a subset of B, denoted by A ⊂ B, if Ã ⊂ B̃, Ā ⊂ B̄ and
AN ⊃ BN , i.e., for each x ∈ X,

A−(x) ≤ B−(x), A+(x) ≤ B+(x), A∈(x) ≤ B∈(x), A6∈(x) ≥ B 6∈(x), AN (x) ≥ BN (x).

(ii) We say that A is equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.
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(iii) The complement of A, denoted by Ac, is a COS in X defined as: for each
x ∈ X,

Ac(x) =
〈
Ãc(x), Āc(x), c(AN )(x)

〉
.

(iv) The intersection of A and B, denoted by A ∩ B is a COS in X, defined as:
for each x ∈ X,

(A ∩ B) =
〈
Ã(x) ∧ B̃(x), Ā(x) ∧ B̄(x), AN (x) ∨BN (x)

〉
.

(v) The union of A and B, denoted by A∪B is a COS in X, defined as: for each
x ∈ X,

(A ∪ B) =
〈
Ã(x) ∨ B̃(x), Ā(x) ∨ B̄(x), AN (x) ∧BN (x)

〉
.

From Definitions 3.5 and 3.7 (i), it is obvious that 0̆ ⊂ A ⊂ 1̆ for each A ∈
COS(X).

Example 3.8. (1) Let X be a non-empt set and Consider two COSs Ã and B̃ given
by respectively: for each x ∈ X,

A(x) = 〈[0.1, 0.2], (0.5, 0.3),−0.4〉 , B(x) = 〈[0.1, 0.8], (0.7, 0.2),−0.5〉 .

Then clearly, A ⊂ B, Ac = 〈[0.8, 0.9], (0.3, 0.5),−0.6〉.
(2) Let X be a non-empt set and Consider two COSs Ã and B̃ given by respec-

tively: for each x ∈ X,

A(x) = 〈[0.1, 0.4], (0.4, 0.5),−0.3〉 , B(x) = 〈[0.2, 0.3], (0.3, 0.2),−0.4〉 .

Then clearly, A∩B = 〈[0.1, 0.3], (0.3, 0.5),−0.3〉, A∪B = 〈[0.2, 0.4], (0.4, 0.2),−0.4〉 .

From Definitions 3.5 and 3.7, we have the similar result to Proposition 3.2.

Proposition 3.9. Let X be a non-empty set, let A, B, C ∈ COS(X). Then
(1) (Idempotent laws) A ∩A = A, A ∪A = A,
(2) (Commutative laws) A ∩ B = B ∩ A, A ∪ B = B ∪ A,
(3) (Associative laws) A ∩ (B ∩ C) = (A ∩ B) ∩ C,

A ∪ (B ∪ C) = (A ∪ B) ∪ C,
(4) (Distributive laws) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(5) (Absorption laws) A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A,
(6) (DeMorgan’s laws) (A ∩ B)c = Ac ∪ Bc, (A ∪ B)c = Ac ∩ Bc,
(7) (Ac)c = A,
(8) A ∩ B ⊂ A, A ∩ B ⊂ B,
(9) A ⊂ A ∪ B, B ⊂ A ∪ B,
(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C, A ∪ C ⊂ B ∪ C,
(12) (12a) A ∪ 0̆ = A, A ∩ 0̆ = 0̆,

(12b) A ∪ 1̆ = 1̆, A ∩ 1̆ = A,
(12c) 1̆c = 0̆, 0̆c = 1̆,

(12d) A ∪Ac 6= 1̆, A ∩Ac 6= 0̆ in general (See Example 3.10).
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Proof. We show only (1) and the remainder’s proofs are omitted.

(1) From Definition 3.7 (i) and (ii), it is sufficient to prove that Ã ∩ Ã = Ã,
Ā ∩ Ā = Ā and AN ∩ AN = AN . It is obvious that AN ∩ AN = AN by Proposition
3.2 (1). Let x ∈ X. Then we have

(Ã ∩ Ã)(x) = [A−(x) ∧A−(x), A+(x) ∧A+(x)] = [A−(x), A+(x)] = Ã(x),
(Ā ∩ Ā)(x) = (A∈(x) ∧A∈(x), A6∈(x) ∨A 6∈(x)) = (A∈(x), A6∈(x)).

Thus A ∩A = A. Similarly, we can prove that A ∪A = A. �

Example 3.10. Let X be a non-empt set and Consider the COS Ã given by: for
each x ∈ X,

A(x) = 〈[0.5, 0.5], (0.5, 0.5),−0.5〉 .
Then clearly, A ∪Ac 6= 1̆ and A ∩Ac 6= 0̆.

From Proposition 3.9 and Example 3.10, we can see that (COS(X),∩,∪,c , 0̆, 1̆)
forms a Boolean algebra except (12d).

Now we define the image and pre-image of a crossing octahedron set under a
mapping and study some of its properties.

Definition 3.11. Let X, Y be two sets, let f : X → Y be a mapping and let

A =
〈
Ã, Ā, AN

〉
∈ COS(X), B =

〈
B̃, B̄, BN

〉
∈ COS(Y ).

(i) The pre-image of B under f , denoted by f−1(B) =
〈
f−1(B̃), f−1(B̄), f−1(BN )

〉
,

is a crossing octahedron set in X defined as follows: for each x ∈ X,

f−1(B̃)(x) =
〈
[(B− ◦ f)(x), (B+ ◦ f)(x))], ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)), (BN ◦ f)(x)

〉
.

(ii) The image of A under f , denoted by f(A) =
〈
f(Ã), f(Ā), f(AN )

〉
, is a

crossing octahedron set in Y defined as follows: for each y ∈ Y ,

f(Ã)(y) =

{
[
∨

x∈f−1(y)A
−(x),

∨
x∈f−1(y)A

+(x)] if f−1(y) 6= φ

[0, 0] otherwise,

f(Ā)(y) =

{
(
∨

x∈f−1(y)A
∈(x),

∧
x∈f−1(y)A

6∈(x)) if f−1(y) 6= φ

(0, 1) otherwise,

f(AN )(y) =

{ ∧
x∈f−1(y)A

N (x) if f−1(y) 6= φ

0 otherwise.

Example 3.12. Let X = {x, y, z}, Y = {a, b, c, d} and let f : X → Y be the
mapping defined by: f(x) = f(y) = a, f(z) = c.

Let A =
〈
Ã, Ā, AN

〉
be the crossing octahedron set in X defined by Table 3.1:

X Ã(t) Ā(t) AN (t)
x [0.2, 0.6] (0.6, 0.3) −0.7
y [0.3, 0.5] (0.5, 0.2) −0.6
z [0.4, 0.7] (0.7, 0.2) −0.8

Table 3.1
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Y f(Ã)(x) f(Ā)(x) f(AN )(x)
a [0.3, 0.6] (0.6, 0.2) −0.7
b [0, 0] (0, 1) 0
c [0.4, 0.7] (0.7, 0.2) −0.8
d [0, 0] (0, 1) 0

Table 3.2

Then we have easily the following Table 3.2 for f(A):

Now let B =
〈
B̃, B̄, BN

〉
be the crossing octahedron set in Y defined by Table

3.3:

Y B̃(x) B̄(x) BN

a ([0.3, 0.5] (0.5, 0.4) −0.6
b ([0.2, 0.6] (0.7, 0.2) −0.8
c ([0.4, 0.7] (0.6, 0.3) −0.7
d ([0.2, 0.5] (0.4, 0.5) −0.5

Table 3.3

Then we have easily the following Table 3.4 for f−1(B):

X f−1(B̃)(t) f−1(B̄)(t) f−1(BN )(t)
x [0.3, 0.5] (0.5, 0.4) −0.6
y [0.3, 0.5] (0.5, 0.4) −0.6
z [0.4, 0.7] (0.6, 0.3) −0.7

Table 3.4

Proposition 3.13. Let A, A1, A2 ∈ COS(X), (Aj)j∈J ⊂ COS(X), let B, B1, B2 ∈
COS(Y ), (Bj)j∈J ⊂ COS(Y ) and let f : X → Y be a mapping. Then

(1) if A1A2, then f(A1) ⊂ f(A2),
(2) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B2),
(3) A ⊂ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂ B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),
(6) f−1(

⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),
(7) f(

⋃
j∈J Aj) =

⋃
j∈J f(Aj),

(8) f(
⋂

j∈J Aj) ⊂
⋂

j∈J f(Aj) and if f is injective, then f(
⋂

j∈J Aj) =
⋂

j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂ f(Ac),
(10) f−1(Bc) = f−1(B)c,

(11) f−1(0̆) = 0̆, f−1(1̆) = 1̆,

(12) f(0̆) = 0̆ and if f is surjective, then f(1̆) = 1̆.

Proof. We prove only (2) and the remainder’s proofs are omitted.
(2) Suppose B1 ⊂ B2. Then by Definition 3.7 (i), we have

B̃1 ⊂ B̃2, B̄1 ⊂ B̄2, B
N
1 ⊃ BN

2 .
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Let x ∈ X. Then by Definitions 3.11 (i) and 3.7 (i), we get

f−1(B̃1)(x) = [B−1 (f(x)), B+
1 (f)(x))] ≤ [B−2 (f(x)), B+

2 (f)(x))] = f−1(B̃2)(x),

f−1(B̄1)(x) = (B∈1 (f(x)), B 6∈1 (f)(x))) ≤ [B∈2 (f(x)), B 6∈2 (f)(x))] = f−1(B̄2)(x),
f−1(BN

1 )(x) = BN
1 (f(x)) ≥ BN

2 (f(x)) = f−1(BN
2 )(x).

Thus f−1(B1) ⊂ f−1(B2). �

Remark 3.14. If f is not surjective, then Proposition 3.13 (9) does nor hold in
general (See Example 3.15).

Example 3.15. Let X, Y be sets, f : X → Y be the mapping and A =
〈
Ã, Ā, AN

〉
be the crossing octahedron set in X given in Example 3.12. Then clearly, f is not
sujective. Moreover, form Tables 3.1 and 3.2, we have the following Tables:

X Ãc(t) Āc(t) c(AN )(t)
x [0.4, 0.8] (0.3, 0.6) −0.3
y [0.5, 0.7] (0.2, 0.5) −0.4
z [0.3, 0.6] (0.2, 0.7) −0.2

Table 3.5

Y f(Ã)c(x) f(Ā)c(x) c(f(AN ))(x)
a [0.4, 0.7] (0.2, 0.6) −0.3
b [1, 1] (1, 0) −1
c [0.3, 0.6] (0.2, 0.7) −0.2
d [1, 1] (1, 0) −1

Table 3.6

Thus we the following Table:

Y f(Ãc)(x) f(Āc)(x) f(c(AN ))(x)
a [0.5, 0.8] (0.3, 0.5) −0.4
b [0, 0] (0, 1) 0
c [0.3, 0.6] (0.2, 0.7) −0.2
d [0, 0] (0, 1) 0

Table 3.6

So f(Ãc)(a) 6≤ f(Ã)c(a), f(Āc)(a) 6≤ f(Ā)c(a), f(c(AN ))(a) 6≤ c(f(AN ))(a). Hence
f(Ac) 6⊂ f(A)c.

The following is an immediate result of Definition 3.11 (i).

Proposition 3.16. If g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)),
for each C ∈ COS(X), where g ◦ f is the composition of f and g.
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4. A crossing octahedron Q-(subalgebra) ideal of Q-algebras

In this section, we introduce the concepts of a crossing octahedron subalgebra
[resp. BCK-ideal and Q-ideal] of a Q-algebra X and relations among them. In
particular, we give a sufficient condition that the preimage under a homomorphism
is a crossing octahedron Q-ideal (See Proposition 4.15).

In what follows, let X denotes a Q-algebra unless otherwise specified.

Definition 4.1. Let A =
〈
Ã, Ā, AN

〉
∈ COS(X). Then A is called a crossing

octahedron Q-subalgebra of X, it satisfies the following conditions: for all x, y, z ∈
X,

(IVSA) Ã(x ∗ z) ≥ Ã(x) ∧ Ã(z), i.e.,

A−(x ∗ z) ≥ A−(x) ∧A−(z), A+(x ∗ z) ≥ A+(x) ∧A+(z),

(IFSA) Ā(x ∗ z) ≥ Ā(x) ∧ Ā(z), i.e.,

A∈(x ∗ z) ≥ A∈(x) ∧A∈(z), A 6∈(x ∗ z) ≤ A 6∈(x) ∨A 6∈(z),

(NSA) AN (y ∗ z) ≤ AN (x) ∨AN (z).

Definition 4.2. Let A =
〈
Ã, Ā, AN

〉
∈ COS(X). Then A is called a crossing

octahedron BCK-ideal of X, it satisfies the following conditions: for all x, y ∈ X,

(IVBCKI) Ã(0) ≥ Ã(x) and Ã(x) ≥ Ã(x ∗ y) ∧ Ã(y), i.e.,

A−(0) ≥ A−(x), A+(0) ≥ A+(x)

and
A−(x) ≥ A−(x ∗ y) ∧A−(y), A+(x) ≥ A+(x ∗ y) ∧A+(y),

(IFBCKI) Ā(0) ≥ Ā(x) and Ā(x) ≥ Ā(x ∗ y) ∧ Ā(y), i.e.,

A∈(0) ≥ A∈(x), A 6∈(0) ≤ A 6∈(x),

and
A∈(x) ≥ A∈(x ∗ y) ∧A∈(y), A 6∈(x) ≤ A 6∈(x ∗ y) ∨A 6∈(y),

(NBCKI) AN (0) ≤ AN (x), AN (x) ≤ AN (x ∗ y) ∨AN (y).

Definition 4.3. Let A =
〈
Ã, Ā, AN

〉
∈ COS(X). Then A is called a crossing

octahedron Q-ideal of X, it satisfies the following conditions: for all x, y ∈ X,

(IVQI) Ã(0) ≥ Ã(x) and Ã(x ∗ z) ≥ Ã((x ∗ y) ∗ z) ∧ Ã(y), i.e.,

A−(0) ≥ A−(x), A+(0) ≥ A+(x)

and

A−(x ∗ z) ≥ A−((x ∗ y) ∗ z) ∧A−(y), A+(x ∗ z) ≥ A+((x ∗ y) ∗ z) ∧A+(y),

(IFQI) Ā(0) ≥ Ā(x) and Ā(x ∗ z) ≥ Ā((x ∗ y) ∗ z) ∧ Ā(y), i.e.,

A∈(0) ≥ A∈(x), A 6∈(0) ≤ A 6∈(x),

and

A∈(x ∗ z) ≥ A∈((x ∗ y) ∗ z) ∧A∈(y), A 6∈(x ∗ z) ≤ A 6∈((x ∗ y) ∗ z) ∨A 6∈(y),

(NQI) AN (0) ≤ AN (x), AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y).
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Example 4.4. Let X = {0, 1, 2, 3} be the set with Cayley Table 4.1:

∗ 0 1 2 3
0 0 0 0 3
1 1 0 0 3
2 2 2 0 3
3 3 3 3 0

Table 4.1

Then clearly, (X, ∗, 0) is a Q-algebra. Consider the COS A given by:

A(0) = 〈[0.3, 0.5], (0.6, 0.4),−0.5〉 , A(1) = 〈[0.2, 0.3], (0.5, 0.3),−0.3〉 ,
A(2) = 〈[0.1, 0.2], (0.4, 0.2),−0.2〉 , A(3) = 〈[0.01, 0.09], (0.3, 0.2),−0.1〉 .

Then we can easily check that A is a crossing octahedron Q-ideal of X.

Lemma 4.5. If A is a crossing octahedron Q-subalgebra of X, then A(0) ≥ A(x)
for each x ∈ X.

Proof. Put z = x in the Definition 4.1. Then from (SVSA) and Definition 2.3 (i),

A−(0) = A−(x ∗ x) ≥ A−(x) ∧A−(x) = A−(x),

A+(0) = A+(x ∗ x) ≥ A+(x) ∧A+(x) = A+(x).

Thus Ã(0) ≥ Ã(x). Also from (IFSA) and Definition 2.3 ((i),

A∈(0) = A∈(x ∗ x) ≥ A∈(x) ∧A∈(x) = A∈(x),

A 6∈(0) = A 6∈(x ∗ x) ≤ A 6∈(x) ∨A 6∈(x) = A 6∈(x).

So Ā(0) ≥ Ā(x). Finally from (NSA) and Definition 2.3 (i), we have AN (0) ≤ AN (x).
Hence A(0) ≥ A(x). �

Proposition 4.6. Every crossing octahedron BCK-ideal of a BCK-algebra X is a
crossing octahedron Q-ideal of X.

Proof. Let X be a BCK-algebra, let A =
〈
Ã, Ā, AN

〉
be a crossing octahedron

BCK-ideal of X and let x, y, z ∈ X. Then it is obvious that

Ã(0) ≥ Ã(x), Ā(0) ≥ Ā(x), AN (0) ≤ AN (x).

Moreover, we have

Ã(x ∗ z) ≥ Ã((x ∗ z) ∗ y) ∧ Ã(y) [By (IVBCKI)]

= Ã((x ∗ y) ∗ z) ∧ Ã(y) [By Definition 2.3 (iii)],
Ā(x ∗ z) ≥ Ā((x ∗ z) ∗ y) ∧ Ā(y) [By (IFBCKI)]

= Ā((x ∗ y) ∗ z) ∧ Ā(y),
AN (x ∗ z) ≤ AN ((x ∗ z) ∗ y) ∧AN (y) [By (NBCKI)]

= AN ((x ∗ y) ∗ z) ∧AN (y).
Thus the conditions (IVQI),(IFQI) and (NQI) hold. So the result holds. �

Proposition 4.7. Let X be a Q-algebra satisfying the conditions (BCI1), (BCI4)
and (vi). Then every crossing octahedron BCK-ideal of X is a crossing octahedron
Q-subalgebra of X.

173



Mostafa et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 2, 161–180

Proof. Let A =
〈
Ã, Ā, AN

〉
be a crossing octahedron BCK-ideal of X and let

x, y ∈ X. Then we have

Ã((x ∗ y) ∗ x) = Ã(0) [By the condition (vi)]

≥ Ã(x) [By (IVBCKI)],
Ā((x ∗ y) ∗ x) = Ā(0) [By the condition (vi)]

≥ Ā(x) [By (IFBCKI)],
AN ((x ∗ y) ∗ x) = AN (0) [By the condition (vi)]

≤ AN (x) [By (NBCKI)].
Thus we have

Ã(x ∗ y) ≥ Ã((x ∗ y) ∗ x) ∧ Ã(x) = Ã(x) ≥ Ã(x) ∧ Ã(y),

Ā(x ∗ y) ≥ Ā((x ∗ y) ∗ x) ∧ Ā(x) = Ā(x) ≥ Ā(x) ∧ Ā(y),

AN (x ∗ y) ≤ AN ((x ∗ y) ∗ x) ∨AN (x) = AN (x) ≤ AN (x) ∨AN (y).

So A is a crossing octahedron Q-subalgebra of X. �

Proposition 4.8. If A =
〈
Ã, Ā, AN

〉
is a crossing octahedron Q-ideal of X, then

the subset XA(0)
is a Q-ideal of X, where

XA(0)
= {x ∈ X : Ã(x) = Ã(0), Ā(x) = Ā(0), AN (x) = AN (0)}.

Proof. Suppose (x ∗ y) ∗ z, y ∈ XA(0)
for any x, y, z ∈ X. Then clearly,

Ã((x ∗ y) ∗ z) = Ã(0) = Ã(y), Ā((x ∗ y) ∗ z) = Ā(0) = Ā(y),

AN ((x ∗ y) ∗ z) = AN (0) = AN (y).

Thus we get

Ã(x ∗ y) ≥ Ã((x ∗ y) ∗ z) ∧ Ã(y) = Ã(0) ∧ Ã(0) = Ã(0),

Ā(x ∗ y) ≥ Ā((x ∗ y) ∗ z) ∧ Ā(y) = Ā(0) ∧ Ā(0) = Ā(0),

AN (x ∗ y) ≤ AN ((x ∗ y) ∗ z) ∨AN (y) = AN (0) ∨AN (0) = AN (0).

Since A is a crossing octahedron Q-ideal of X, we obtain

Ã(0) ≥ Ã(x), Ā(0) ≥ Ā(x), AN (0) ≤ AN (x).

So we have

Ã(x ∗ y) = Ã(0), Ā(x ∗ y) = Ā(0), AN (x ∗ y) = AN (0).

Hence x ∗ y ∈ XA(0)
. Therefore XA(0)

is a Q-ideal of X. �

Lemma 4.9. Let A =
〈
Ã, Ā, AN

〉
be a crossing octahedron Q-ideal of X. If x ≤

y ∈ X, then A(x) ≥ A(y), i.e.,

Ã(x) ≥ Ã(y), Ā(x) ≥ Ā(y), AN (x) ≤ AN (y).
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Proof. Let x, y ∈ X such that x ≤ y. Then clearly, x ∗ y = 0. Thus

Ã(x) = Ã(x ∗ 0) [By Definition 2.3 (ii)]

≥ Ã((x ∗ y) ∗ 0) ∧ Ã(y) [By (IVQI)]

≥ Ã(x ∗ y) ∧ Ã(y) [By Definition 2.3 (ii)]

= Ã(0) ∧ Ã(y) [Since x ∗ y = 0]

= Ã(y).
Similarly, we have Ā(x) ≥ Ā(y) and AN (x) ≤ AN (y). Thus A(x) ≥ A(y). �

Lemma 4.10. Let A =
〈
Ã, Ā, AN

〉
be a crossing octahedron BCK-ideal of X. If

x ∗ y ≤ z ∈ X, then we get

Ã(x) ≥ Ã(z) ∧ Ã(y), Ā(x) ≥ Ā(z) ∧ Ā(y), AN (x) ≤ AN (z) ∨AN (y).

Proof. Let x, y, ∈ X such that x ∗ y ≤ z. Then by Lemma 4.9, Ã(x ∗ y) ≥ Ã(z).
Thus we get

Ã(x) = Ã(x ∗ 0) [By Definition 2.3 (ii)]

≥ Ã((x ∗ y) ∗ 0) ∧ Ã(y) [By (IVQI)]

= Ã(x ∗ y) ∧ Ã(y) [By Definition 2.3 (ii)]

≥ Ã(z) ∧ Ã(y). [Since Ã(x ∗ y) ≥ Ã(z)]

So Ã(x) ≥ Ã(z) ∧ Ã(y). Similarly, we can prove that

Ā(x) ≥ Ā(z) ∧ Ā(y), AN (x) ≤ AN (z) ∨AN (y).

Hence the result holds. �

Proposition 4.11. Every crossing octahedron Q-ideal of a Q-algebra X is a crossing
octahedron BCK-ideal of X.

Proof. Straightforward. �

Proposition 4.12. Let X be a Q-algebra satisfying the conditions (BCI1), (BCI4)
and (vi). Then every crossing octahedron BCK-ideal of X is a crossing octahedron
Q-subalgebra of X.

Proof. Let A be a crossing octahedron BCK-ideal of a Q-algebra X and let x, y ∈
X. Then by (vi), Ã((x ∗ y) ∗ x) = Ã(0) ≥ Ã(x). Similarly, we have

Ā((x ∗ y) ∗ x) ≥ Ā(x), AN ((x ∗ y) ∗ x) ≤ AN (x).

Thus we get

Ã(x ∗ y) ≥ Ã((x ∗ y) ∗ x) ∧ Ã(x) [By (IVBCKI)]

= Ã(0) ∧ Ã(x) [By (vi)]

= Ã(x).

≥ Ã(x) ∧ Ã(y).
Similarly, we have Ā(x ∗ y) ≥ Ā(x) ∧ Ā(y), AN (x ∗ y) ≤ AN (x) ∨ AN (y). So A is a
crossing octahedron Q-subalgebra of X. �

Proposition 4.13. Let (Aj)j∈J = (
〈
Ãj , Āj , A

N
j

〉
)j∈J be a family of crossing oc-

tahedron Q-ideals of X, where J denotes a index set. Then
⋂

j∈J Aj is a crossing
octahedron Q-ideal of X.
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Proof. Let A =
⋂

j∈J Aj and let x, y, z ∈ X. Then we get

A(0) =
∧
j∈J
Aj(0) =

〈∧
j∈J

Ãj(0),
∧
j∈J

Āj(0),
∨
j∈J

AN
j (0)

〉
.

Thus we have (
⋂

j∈J Ãj)(0) =
∧

j∈J Ãj(0) ≥
∧

j∈J Ãj(x) = (
⋂

j∈J Ãj)(x). Similarly,
we get

(
⋂
j∈J

Ãj)(0) ≥ (
⋂
j∈J

Ãj)(x), (
⋃
j∈J

AN
j )(0) ≤ (

⋃
j∈J

AN
j )(x).

On the other hand,

Ã(x ∗ z) =
∧

j∈J Ãj(x ∗ z)
≥
∧

j∈J(Ãj((x ∗ y) ∗ z) ∧ Ãj(y)) [By the hypothesis]

= (
∧

j∈J Ãj((x ∗ y) ∗ z)) ∧ (
∧

j∈J Ãj)(y)

= (
⋂

j∈J Ãj)((x ∗ y) ∗ z) ∧ (
⋂

j∈J Ãj)(y).
Similarly, we have

Ā(x ∗ z) ≥ (
⋂
j∈J

Āj)((x ∗ y) ∗ z) ∧ (
⋂
j∈J

Āj)(y),

AN (x ∗ z) ≤ (
⋃
j∈J

AN
j )((x ∗ y) ∗ z) ∨ (

⋃
j∈J

AN
j )(y).

So
⋂

j∈J Aj is a crossing octahedron Q-ideal of X. �

Definition 4.14. Let (X, ∗, 0) and (Y, ∗′ , 0′) be two Q-algebras. Then a mapping

f : X → Y is called a homomorphism, if f(x ∗ y) = f(x) ∗′ f(y) for any x, y ∈ X.

It is obvious that if f : X → Y is a homomorphism of Q-algebras, then f(0) = 0
′
.

Proposition 4.15. Let (X, ∗, 0), (Y, ∗′ , 0′) be two Q-algebras and let f : X → Y
be a homomorphism. If A is a crossing octahedron Q-ideal of Y , then f−1(A) is a
crossing octahedron Q-ideal of X.

Proof. Suppose A is a crossing octahedron Q-ideal of Y and let x ∈ X. Then

f−1(Ã)(x) = Ã(f(x)) ≤ Ã(0
′
) = Ã(f(0)) = f−1(Ã)(0).

Similarly, we have f−1(Ā)(x) ≥ f−1(Ā)(0), f−1(AN )(x) ≤ f−1(AN )(0).
Now let x, y, z ∈ X. Then

f−1(Ã)(x ∗ z) = Ã(f(x ∗ z)) [By Definition 3.11]

= Ã(f(x) ∗′ f(y))
[Since f is a homomorphism]

≥ Ã(f(z) ∗′ (f(y) ∗′ f(x))) ∧ Ã(f(y)) [By the hypothesis]

= Ã(f(z ∗ (y ∗ x))) ∧ Ã(f(y))
[Since f is a homomorphism]

= f−1(Ã)(z ∗ (y ∗ x)) ∧ f−1(Ã)(y),
f−1(AN )(z ∗ x) = AN (f(z ∗ x))

= AN (f(x) ∗′ f(y))

≤ AN (f(z) ∗′ (f(y) ∗′ f(x))) ∨AN (f(y))
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= AN (f(z ∗ (y ∗ x))) ∨AN (f(y))
= f−1(AN )(z ∗ (y ∗ x)) ∨ f−1(AN )(y).

Similarly, we can prove that the following inequality holds:

f−1(Ā)(z ∗ x) ≥ f−1(Ā)(z ∗ (y ∗ x)) ∧ f−1(Ā)(y).

Thus f−1(A) is a crossing octahedron Q-ideal of X. �

The following provides a sufficient condition which the converse of Proposition
4.3 holds.

Proposition 4.16. f : X → Y be an epimorphism of Q-algebras and let A ∈
COS(Y ). If f−1(A) is a crossing octahedron Q-ideal of X, then A is a crossing
octahedron Q-ideal of Y .

Proof. Suppose f−1(A) is a crossing octahedron Q-ideal of X and let a ∈ Y . Since
f is surjective, there is x ∈ X such that a = f(x). Then

Ã(a) = Ã(f(x))

= f−1(Ã)(x) [By Definition 3.11]

≤ f−1(Ã)(0) [By the hypothesis]

= Ã(f(0))

= Ã(0
′
). [Since f is a homomorphism]

Similarly, we have

Ā(a) ≥ Ā(0
′
), AN (a) ≤ AN (0

′
).

Now let a, b, c ∈ Y . Then there are x, y, z ∈ X such that

a = f(x), b = f(y), c = f(z).

Thus we get

Ã(c ∗′ a) = Ã(f(z) ∗′ f(x))

= Ã(f(z ∗ x)) [Since f is a homomorphism]

= f−1(Ã)(z ∗ x) [By Definition 3.11]

≥ f−1(Ã)(z ∗ (y ∗ x)) ∧ f−1(Ã)(y) [By the hypothesis]

= Ã(f(z ∗ (y ∗ x))) ∧ Ã(f(y))

= Ã(f(z) ∗′ (f(y) ∗′ f(x))) ∧ Ã(f(y))

= Ã(c ∗′ (b ∗′ a)) ∧ Ã(b),

AN (c ∗′ a) = AN (f(z) ∗′ f(x))
= AN (f(z ∗ x))
= f−1(AN )(z ∗ x)
≤ f−1(AN )(z ∗ (y ∗ x)) ∨ f−1(AN )(y)
= AN (f(z ∗ (y ∗ x))) ∨AN (f(y))

= AN (f(z) ∗′ (f(y) ∗′ f(x))) ∨AN (f(y))

= AN (c ∗′ (b ∗′ a)) ∨AN (b).
Similarly, we can show that the following inequality holds:

Ā(c ∗
′
a) ≥ Ā(c ∗

′
(b ∗

′
a)) ∧ Ā(b).

So A is a crossing octahedron Q-ideal of Y . �
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Remark 4.17. If f is not surjective, then Proposition 4.16 does not hold.

Let A =
〈
Ã, Ā, AN

〉
∈ COS(Y ). In Case “A∈”, we define Xx′ = f−1(x

′
) for

each x
′ ∈ Y . Since f is a homomorphism, we have

(4.1) Xx′ ∗Xy′ ∗Xz′ ⊂ X(x′∗y′ )∗z′ .

Let x
′
, y
′
, z
′ ∈ Y and suppose (x

′ ∗y′)∗z′ 6∈ f(X). Then clearly, β((x
′ ∗y′)∗z′) = 0,

where for each y ∈ Y ,

f(A∈)(y) =

{ ∨
x∈f−1(y)A

∈(x) if f−1(y) 6= φ

0 otherwise.

Thus X(x′∗y′ )∗z′ = ∅. By (4.1), x
′ 6∈ f(X), y

′ 6∈ f(X) or z
′ 6∈ f(X). So we get

β(x
′
∗ z
′
) ≥ 0 = β((x

′
∗ y
′
) ∗ z

′
) ∧ β(y

′
).

Hence A is not a crossing octahedron Q-ideal of Y .

5. The product of crossing octahedron Q-ideals

Definition 5.1. Let A, B ∈ COS(X). Then the Cartesian product of A and B,

denoted by A×B =
〈
Ã× B̃, Ā× B̄, AN ×BN

〉
, is a COS in X ×X defined as: for

each (x, y) ∈ X ×X,

(Ã× B̃)(x, y) = Ã(x) ∧ B̃(y) = [A−(x) ∧B−(x), A+(x) ∧B+(x)],

(Ā× B̄)(x, y) = Ā(x) ∧ ȳ = (A∈(x) ∧A∈(y), A6∈(x) ∨A 6∈(y)),

AN ×BN (x, y) = AN (x) ∨BN (y).

Remark 5.2. Let X and Y be two Q-algebras. We define an binary operation ∗ on
X × Y as follows: for any (x1, y1), (x2, y2) ∈ X × Y ,

(x1, y1) ∗ (x2, y2) = (x1 ∗ x2, y1 ∗ y2).

Then we can easily check that (X × Y, ∗, (0, 0)) is a Q-algebra.

Proposition 5.3. Let A and B be two crossing octahedron Q-ideals of a Q-algebra
X. Then A× B is a crossing octahedron Q-ideal of X ×X.

Proof. Let (x, y) ∈ X ×X. Then we get

(Ã× B̃)(0, 0) = Ã(0) ∧ B̃(0) ≥ Ã(x) ∧ B̃(y) = (Ã× B̃)(x, y).

Similarly, we have the following inequalities:

(Ā× B̄)(0, 0) ≥ (Ā× B̄)(x, y), (AN ×AN )(0, 0) ≤ (AN ×AN )(x, y).

Now let (x1, x2), (y1, y2), (z1, z2) ∈ X ×X. Then

(Ã× B̃)[((x1, x2) ∗ (y1, y2)) ∗ (z1, z2)] ∧ (Ã× B̃)(y1, y2)

= (Ã× B̃)[(x1 ∗ y1, x2 ∗ y2) ∗ (z1, z2)] ∧ (Ã× B̃)(y1, y2)

= (Ã× B̃)[((x1 ∗ y1) ∗ z1), ((x2 ∗ y2) ∗ z2)] ∧ (Ã× B̃)(y1, y2)

= [Ã((x1 ∗ y1) ∗ z1) ∧ B̃((x2 ∗ y2) ∗ x2)] ∧ [Ã(y1) ∧ B̃(y2)]

= [Ã((x1 ∗ y1) ∗ z1) ∧ Ã(y1)] ∧ [B̃((x2 ∗ y2) ∗ x2) ∧ B̃(y2)]

≤ Ã(x1 ∗ z1) ∧ B̃(x2 ∗ z2)
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= (Ã× B̃)(x1 ∗ z1, x2 ∗ z2),

(AN ×BN )[((x1, x2) ∗ (y1, y2)) ∗ (z1, z2)] ∨ (AN ×BN )(y1, y2)
= (AN ×BN )[(x1 ∗ y1, x2 ∗ y2) ∗ (z1, z2)] ∨ (AN ×BN )(y1, y2)
= (AN ×BN )[((x1 ∗ y1) ∗ z1, (x2 ∗ y2) ∗ z2)] ∨ (AN ×BN )(y1, y2)
= [AN ((x1 ∗ (y1 ∗ z1) ∨BN ((x2 ∗ y2) ∗ z2)] ∨ [AN (y1) ∨BN (y2)]
= [AN ((x1 ∗ (y1 ∗ z1) ∨AN (y1)] ∨ [BN ((x2 ∗ y2) ∗ z2) ∨BN (y2)]
≥ AN (x1 ∗ z1) ∨BN (x2 ∗ z2)
= (AN ×BN )(x1 ∗ z1, x2 ∗ z2).

Similarly, we can show that the following inequality holds:

(Ā× B̄)[(((x1, x2) ∗ (y1, y2)) ∗ (z1, z2)] ∧ (Ā× B̄)(y1, y2) ≤ (Ā× B̄)(x1 ∗ z1, x2 ∗ z2).

Thus A× B is a crossing octahedron Q-ideal of X ×X. �

6. Conclusions

We have studied crossing octahedron Q-ideals of a Q-algebra. Also, we discussed
few results of the crossing octahedron Q-ideal in Q-algebras. The image and the
pre-images of a crossing octahedron Q-ideal in Q-algebras under homomorphism
are defined and how the image and the pre-image of a crossing octahedron Q-ideal
in Q-algebras become a crossing octahedron Q-ideal are studied. Moreover, the
product of two crossing octahedron Q-ideals is established. The main purpose of
our future work is to investigate topological structures based on crossing octahedron
sets, group structures via crossing octahedron sets cubic, crossing octahedron BCC-
ideals in BCC-algebras and so on.
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