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Abstract. The optimization problem with interval-valued function
is discussed in this paper. On the basis of the gH-Gâteaux derivative
and the gH-Fréchet derivative proposed by D. Ghosh et al, we study the
optimization conditions for interval-valued optimization problems. Finally,
the necessary conditions for determining the optimal solution point of the
interval-valued function are obtained, and examples are given to illustrate
the correctness of the theorem.
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1. Introduction

The theory of interval arithmetic was first systematically introduced by Moore
in 1966, marking the birth of interval analysis [1]. Interval analysis, unlike classical
mathematics which takes point variables as its object of study, is computed on
intervals. It was originally developed on the basis of the theory of computational
error [1, 2], which arises from data errors, truncation errors and rounding errors that
arise during computation [3]. Interval analysis differs from traditional probabilistic
methods in that it attempts to bring the results of the calculation within the required
or given accuracy range [1, 2]. However, in practical problems, it is often necessary
to speculate on the accuracy of the calculation results or to improve the accuracy of
the calculation as much as possible and to reduce the error rate in the calculation
process so as to ensure the accuracy of the calculation results [4, 5]. As the errors
arising from the calculation process are superimposed on each other, they may cause
the calculation results to deviate significantly and lose their meaning. To address
this problem, interval analysis provides a simple method which takes into account the
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various errors in the calculation process [1, 2, 6, 7]. Since the 1970s, interval analysis
has grown exponentially and has been used in a variety of applications, particularly
in dealing with ambiguities and incompleteness in engineering [8, 9, 10, 11, 12].

With the development and progress of the times, more and more scholars are in-
volved in the study of interval analysis and apply it to several aspects[7, 11, 13]. For
example, interval iteration can be used to discuss and study the existence uniqueness
of solutions of nonlinear equations and the convergence of interval iteration sequences
[14, 15, 16, 17, 18]. This method has significant advantages over traditional classi-
cal mathematical methods and is not possible with classical point-variable iterative
methods [19, 20]. In addition, interval analysis has been widely used in a number of
applications such as interval interpolation problems [21], linear equation problems
[22, 23], nonlinear programming problems [24], and differential equation problems
[25, 26, 27]. In 2019, Senol et al. [27] proposed a perturbative-iterative algorithm
(PIA) for solving numerical solutions of certain types of fuzzy partial differential
equations (FFPDEs) with generalized Hukuhara derivatives. The convergence of
this method in the solution process is also discussed. The advantage of this method
over other solution methods is that over calculation is eliminated in the process of
solving partial differential equations of fractional order, and the effectiveness of the
method is illustrated and verified with practical arithmetic examples.

Moreover, The interval language, similar to traditional mathematical languages,
can be used directly as a computer language. In most cases, decision information
is often uncertain due to the increasing complexity of the environment and the
inherent subjective ambiguity of the human mind. For example, data in many
practical engineering and economic problems are inaccurate [28]. It is difficult to
quantify their opinions accurately with clear numbers [1, 2]. And interval numbers,
as an important branch of fuzzy numbers, can be used to deal with the uncertainty
and imprecision of information. Therefore, the introduction of interval analysis to
deal with various uncertain phenomena, or ambiguous problems in reality is very
necessary, as well as of practical importance [29, 30, 31]. Solving interval-valued
optimization problems is an important theoretical basis and method for solving
uncertainty in optimization problems [1, 2, 32, 33, 34, 35].

Derivatives are a local property of functions. The essence of derivatives is instan-
taneous rate of change. The derivative of a function at a point describes its rate of
change near that point. It represents the slope of tangent line at a point in function
curve, instantaneous velocity in physical displacement time relationship, instanta-
neous acceleration in velocity time relationship, and marginal cost in economy.

Optimization conditions are based on the derivative definitions [36, 37, 38, 39].
The concept of generalized Hukuhara differentiablity is a more general concept than
Hukuhara differentiability [25]. In order to extend the application of generalized
Hukuhara derivative, the definition of sub-derivative is given in [40]. Based on
the above definitions, we introduce the definitions of directional sub-derivative and
partial sub-derivative. Considering the sub-differentiability of interval-valued ob-
jective functions, the necessary optimal conditions can be obtained. In the convex
environment, the necessary optimization conditions are also sufficient.
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The paper includes four parts. In Section 2, we introduce some basic concepts
which will be used throughout the paper and give new definitions of directional sub-
derivative and partial sub-derivative of interval-valued functions. In Section 3, there
are theorems to explain the optimality conditions of interval-valued functions and
examples to show that LU -minimum points of interval-valued functions. Section 4
shows some conclusions in this paper.

2. Preliminaries

Recently, DGhosh et al. [16] proposed the gH-directional derivative, the gH-
Gâteaux derivative and the gH-Fréchet derivative of interval-valued functions, and
applied them to the characterizations of efficient points of interval-valued optimiza-
tion problems. In this paper, we present some new theorems related to efficient
solutions based on the original interval number order relationships, and the defi-
nition of efficient solutions to interval optimization problems [16], and give some
examples to justify the new theorems. For the sake of convenience, we review some
basic definitions and related conclusions firstly.

Let R be the set of real numbers, I(R) be the set that with all bounded and closed
intervals. The elements of I(R) will be represented by the capital bold letters A, B,
C.

For any two elements A=[a,a], B=[b,b] of I(R), we define the following operations.
The addition of A and B is defined by A⊕B=[a+b,a+b];
the multiplication between a real number λ and an interval is denoted by λ � A,
which is defined as

λ�A =

{
[λa, λa] if λ ≥ 0
[λa, λa] if λ < 0.

Particularly, if λ = −1, then A⊕ (−1)�B=A	B=[a-b,a-b].

Definition 2.1 ([16]). For any two elements A, B ∈ I(R), there exists an interval
C belonging to I(R) that satisfies A = B⊕C or B = A	C. Here, C is called the
gH-difference between A and B, written as C = A	gH B.

In particular, if A, B are expressed as A = [a, a],B = [b, b], then

A	gH B = [min{a− b, a− b},max{a− b, a− b}].

Definition 2.2 ([16]). For any two elements A = [a, a],B = [b, b] in I(R), the fol-
lowing order relations between A and B can be defined. We re-express the intervals
A and B as

A = [a, a] = {a(t)|a(t) = a+ t(a− a), 0 ≤ t ≤ 1},

B = [b, b] = {b(t)|b(t) = b+ t(b− b), 0 ≤ t ≤ 1}.
(i) B is said to be dominated by A, if a(t) ≤ b(t) for all t ∈ [0, 1], and then we

write A ≤ B.
(ii) B is said to be strictly dominated by A, if A ≤ B and there exists a t0 ∈ [0, 1]

such that a(t0) 6= b(t0), and then we write A < B.
(iii) B is said to be not dominated by A, if a(t) > b(t) for at least one t ∈ [0, 1],

and then we write A ≮ B.
(iv) If neither A ≤ B nor B ≤ A, we say that none of A and B are comparable.
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Lemma 2.3. For any two elements A,B of I(R), the following propositions hold.

(1) A ≤ B if and only if

{
a ≤ b
a ≤ b.

(2) A < B if and only if

{
a < b

a ≤ b or

{
a ≤ b
a < b.

(3) A ≮ B if and only if a > b or a > b.

(4) A and B are not comparable if and only if

{
a > b

a < b
or

{
a < b

a > b.

Proof. Since the proofs of (3) and (4) are similar to the proofs of (1) and (2), we
only prove (1) and (2). Let f(t) = a(t)− b(t). Then by Definition 2.2, it is easy to
see that

f(t) = a(t)− b(t)
= (a+ t(a− a))− (b+ t(b− b))
= (a− b− (a− b))t+ (a− b)
= (1− t)(a− b) + t(a− b).

(1) Suppose A ≤ B, i.e., a(t) ≤ b(t) for every t ∈ [0, 1]. Then f(t) = a(t)−b(t) ≤ 0
for all t ∈ [0, 1]. Thus we have

f(0) = a− b ≤ 0 and f(1) = a− b ≤ 0, i.e.,

{
a ≤ b
a ≤ b.

On the contrary, suppose

{
a ≤ b
a ≤ b. Then f(t) = a(t)− b(t) ≤ 0 for all t ∈ [0, 1],

i.e., a(t) ≤ b(t). Thus A ≤ B.
(2) Assume A < B. Then according to Definition 2.2 (ii), A ≤ B. Thus there is

t0 ∈ [0, 1] such that a(t0) 6= b(t0). Consequently,{
f(t) = (a+ t(a− a)− (b+ t(b− b)) ≤ 0 for every t ∈ [0, 1],

f(t0) = (a+ t0(a− a)− (b+ t0(b− b)) 6= 0 t0 ∈ [0, 1].

From (1), since A ≤ B, we get that

{
a ≤ b
a ≤ b. If a = b and a = b, then f(t) = 0

for all t ∈ [0, 1], but it contradicts with f(t0) 6= 0. So a = b and a = b do not hold

concurrently. Hence

{
a < b

a ≤ b or

{
a ≤ b
a < b.

On the contrary, suppose

{
a < b

a ≤ b. Then we can obviously get that

f(0) = a− b < 0 and f(t) ≤ 0 for all t ∈ [0, 1],

which implies that a(0) < b(0) and a(t) ≤ b(t) for all t ∈ [0, 1], i.e., A < B.

Similarly, suppose

{
a ≤ b
a < b.

Then it is easy to know

f(1) = a− b < 0 and f(t) ≤ 0 for all t ∈ [0, 1],

which implies that a(1) < b(1) and a(t) ≤ b(t) for all t ∈ [0, 1], i.e., A < B. �
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Lemma 2.4 ([16]). For any two elements A, B in I(R),
(1) A ≤ B if and only if A	gH B ≤ 0,
(2) A ≮ B if and only if A	gH B ≮ 0.

Proof. Since the proof of (2) is similar to the proof of (1), we only prove (1). Let
A = [a, a], B = [b, b] in I(R) and let A ≤ B. Then from the Lemma 2.3 (1), we
have {

a ≤ b
a ≤ b,

which means a − b ≤ 0 and a − b ≤ 0. Thus by the Definition 2.1 and Lemma 2.3,
we get

A	gH B = [min{a− b, a− b},max{a− b, a− b}] ≤ 0.

�

Definition 2.5 ([16]). Let X be a convex subset of Rn. An interval-valued function
F : X→ I(R) is said to be convex on X, if

F(λ1x+ λ2y) ≤ λ1 � F(x)⊕ λ2 � F(y),

for all x, y ∈ X and for all λ1, λ2 ∈ [0, 1], where λ1 + λ2 = 1.

Definition 2.6 ([16]). Let X be a nonempty subset of Rn and F : X → I(R) be
an interval-valued function. A point x ∈ X is said to be an effective point of an
interval-valued optimization problem:

min
x∈X

F(x),

if F(x) ≮ F(x) for all x ∈ X.

Definition 2.7 ([16]). Let F be an interval-valued function on a nonempty subset
X of Rn. If the limit

lim
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

exists, then the limit is said to be gH-directional derivative of F at point x in the
direction h, and it is denoted by FD(x)(h).

Lemma 2.8 ([16]). Let X be an real linear subspace of Rn and F : X → I(R) be
a convex function on X. Then at any x ∈ X, gH-directional derivative FD(x)(h)
exists for every direction h ∈ X.

Definition 2.9 ([16]). Let X ∈ Rn be a nonempty open subset, and F be an
interval-valued function on X. If at x ∈ X, the limit

FY (x)(h) := lim
λ→0+

1

λ
� (F(x+ λh)	gHF(x))

exists for all h ∈ Rn and FY (x)(h) is a gH-continuous linear interval-valued function
from Rn to I(R), then FY (x)(h) is said be gH-Gâteaux derivative of F at x. If
the function F has gH-Gâteaux derivative at x, then F is said to be gH-Gâteaux
differentiable at x.
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3. Main Results

In this section, we will give some new valid solution-related theorems and give
some examples to illustrate their reliability. First of all, we define a new order
relation between intervals.

Definition 3.1. For any two elements A = [a, a],B = [b, b] in I(R), B is said to be

much less than dominated by A, if

{
a < b
a < b

and then we write A� B.

Theorem 3.2. For any two elements A, B in I(R), A� B if and only if

A	gH B� 0.

Proof. Suppose A = [a, a], B = [b, b]. Then by the Definition 3.1, it follows that if
A� B, then we get {

a < b
a < b

which means a − b < 0 and a − b < 0. Thus from the Definition 2.1, it is easy to
know

A	gH B� 0.

�

Theorem 3.3. Let X be a nonempty subset of Rn, and F : X→ I(R) be an interval-
valued function. x is an efficient point for the interval-valued optimization problem
(1). If for any x ∈ X, the gH-directional derivative FD(x)(x − x) of function F
exists at x in the direction x− x, then there is no x ∈ X such that

FD(x)(x− x)� 0.

Proof. Let x be an efficient point of the interval optimization problem (1). Then
from Definition 2.6, we get that for every x ∈ X,

F(x+ λ(x− x)) ≮ F(x).

According to Lemma 2.4,

F(x+ λ(x− x))	gHF(x) ≮ 0.

We re-express the function F(x) as F = [f(x), f(x)]. Thus by Definition 2.1, we
have that

F(x+ λ(x− x))	gHF (x) = [min{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)},
max{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)}].

So it can be deduced from (3) of Lemma 2.3 that

max{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)} > 0.

Since λ > 0, the inequality can be transformed as

1

λ
max{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)} > 0.
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Hence we have

lim
λ→0+

1

λ
max{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)} ≥ 0.

Therefore there is no x ∈ X such that FD(x)(x− x)� 0. �

Example 3.4. Consider the interval optimization problem

min
x∈R

F(x),

where F(x) = [x2, x2 + 1]. Then from the Definition 2.1, we get that

F(x+ λ(x− x))	gHF (x) = [min{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)},
max{f(x+ λ(x− x))− f(x), f(x+ λ(x− x)) + f(x)}]

= [min{(x+ λ(x− x))2 − x2},
max{((x+ λ(x− x))2 + 1)− (x2 + 1)}],

= [λ(x− x)(λx+ (2− λ)x), λ(x− x)(λx+ (2− λ)x)].

Thus we have

FD(x)(x− x) = lim
λ→0+

1

λ
� (F(x+ λ(x− x))	gH F(x)),

= lim
λ→0+

1

λ
� [λ(x− x)(λx+ (2− λ)x), λ(x− x)(λx+ (2− λ)x)],

= lim
λ→0+

[(x− x)(λx+ (2− λ)x), (x− x)(λx+ (2− λ)x)],

= [2x(x− x), 2x(x− x)],

= 2x(x− x).

Clearly, x = 0 is an efficient point of this interval optimization problem, and we have

FD(0)(h) = lim
λ→0+

1

λ
� (F(0 + λh)	gH F(0))

= lim
λ→0+

1

λ
� ([λ2h2, λ2h2 + 1]	gH [0, 1])

= [0, 0]

≤ [0, 0].

Obviously, there is no x in X such that FD(x)(x− x)� 0.

Theorem 3.5. Let X ⊆ Rn be a nonempty real linear subspace, and F be a convex
interval-valued function on X. Then for all x, y ∈ X,

FD(x)(y − x) ≤ F(y)	gHF(x).

Proof. According to Definition 2.1, we get that

F(x+ λ(y − x))	gH F(x) = [f(x+ λ(y − x)), f(x+ λ(y − x))]	gH [f(x), f(x)]

= [min{f(x+ λ(y − x))− f(x), f(x+ λ(y − x))− f(x)},
max{f(x+ λ(y − x))− f(x), f(x+ λ(y − x))− f(x)}],
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and

(λ� F(y)⊕ (1− λ)� F(x))	gH F(x) = [λf(y) + (1− λ)f(x), λf(y) + (1− λ)f(x)]

	gH [f(x), f(x)]

= [min{λf(y) + λ′f(x)− f(x),

λf(y) + λ′f(x)− f(x)},
max{λf(y) + λ′f(x)− f(x),

λf(y) + λ′f(x)− f(x)}]
= [min{λ(f(y)− f(x)), λ(f(y)− f(x))},

max{λ(f(y)− f(x)), λ(f(y)− f(x))}],

where λ′ = 1− λ.
Since F is convex on X, we can get that for each x, y ∈ X, λ ∈ [0, 1],

F(x+ λ(y − x)) = F(λ(y) + (1− λ)x)

≤ λ� F(y)⊕ (1− λ)� F(x).

Then by (1) of Lemma 2.4, we have{
f(x+ λ(y − x)) ≤ λf(y) + (1− λ)f(x),
f(x+ λ(y − x)) ≤ λf(y) + (1− λ)f(x).

Thus we get{
f(x+ λ(y − x))− f(x) ≤ λf(y) + (1− λ)f(x)− f(x),
f(x+ λ(y − x))− f(x) ≤ λf(y) + (1− λ)f(x)− f(x).

Namely, {
f(x+ λ(y − x))− f(x) ≤ λ(f(y)− f(x)),

f(x+ λ(y − x))− f(x) ≤ λ(f(y)− f(x)).

So

F(x+ λ(y − x))	gH F(x) ≤ (λ� F(y)⊕ (1− λ)� F(x))	gH F(x)

= λ(F(y)	gH F(x)),

which implies

1

λ
� (F(x+ λ(y − x))	gH F(x)) ≤ F(y)	gH F(x).

We also know from Lemma 2.8 that for every x, y ∈ X, the directional derivative
FD(x)(y − x) along the direction y − x exists. Hence we have that

FD(x)(y − x) = lim
λ→0+

1

λ
� (F(x+ λ(y − x))	gH F(x))

≤ F(y)	gH F(x).

�
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Example 3.6. Consider the interval-value function F(x) = [0, 1]. Then obviously,
F is convex on Rn. For any x, y ∈ X, let h = y − x ∈ Rn. Then we get

FD(x)(h) = FD(x)(y − x)

= lim
λ→0+

1

λ
� (F (x+ λ(y − x))	gHF (x))

= lim
λ→0+

1

λ
� ([0, 1]	gH [0, 1])

= 0.

Thus it can be obtained from Definition 2.7 that the function F is gH-Gâteaux
derivative at each x ∈ X. And it is easy to know that FD(x)(h) ≤ F(y) 	gH F(x)
for all x in X.

Theorem 3.7. Let F be gH-directional differentiable and convex at x. If there exists
no h ∈ Rn satisfying

FD(x)(h)� 0,

then x is an efficient point of F.

Proof. We suppose that there exists an x ∈ Rn such that

F(x)� F(x).

Then from Lemma 3.2, it follows that

F(x)	gH F(x)� 0.

Thus according to Theorem 3.5, we get that

FD(x)(x− x) ≤ F(x)	gH F(x)� 0,

which means

FD(x)(x− x)� 0.

This contradicts with the Theorem 3.3, if we let h = x− x. �

Example 3.8. Suppose F(x) = [x2 − 5, x2 − 2x], where x ∈ [0, 2]. Then it is easy
to get that x = 0 is an efficient point of F. Obviously, we have

F(λ1x+ λ2y) = [(λ1x+ λ2y)2 − 5, (λ1x+ λ2y)2 − 2(λ1x+ λ2y)],

λ1 � F (x)⊕ λ2�F (y) = λ1 � [x2 − 5, x2 − 2x]⊕ λ2 � [y2 − 5, y2 − 2y].

Thus we get

F (λ1x+ λ2y) ≤ λ1 � F (x)⊕ λ2 � F (y)

for all x, y ∈ X and for all λ1, λ2 ∈ [0, 1], where λ1 + λ2 = 1. So according to the
Definition 2.5, we know F is convex at x. At the same time, by the Lemma 2.8 and
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the Definition 2.7, we have F is gH-directional differentiable for every x ∈ X and

FD(x)(h) = lim
λ→0+

1

λ
� (F(x+ λ(x− x))	gH F(x)),

= lim
λ→0+

1

λ
� {[(x+ λh)2 − 5, (x+ λh)2 − 2(x+ λh)]	gH [x2 − 5, x2 − 2x]},

= lim
λ→0+

1

λ
� [min{2λhx+ λ2h2, 2λhx+ λ2h2 − 2λh},

max{2λhx+ λ2h2, 2λhx+ λ2h2 − 2λh}],
= lim
λ→0+

[min{2hx+ λh2, 2hx+ λh2 − 2λh},max{2hx+ λh2, 2hx+ λh2 − 2λh}],

= [min{2hx, 2hx− 2h},max{2hx, 2hx− 2h}].

Hence

FD(0)(h) = [min{−2h, 0},max{−2h, 0}].
Therefore, there is no h ∈ Rn satisfying FD(0)(h)� 0.

4. Conclusions

In this paper, we first propose a new interval number order relation based on the
interval number order relation of fuzzy relations. And according to the definition of
the gH-Gâteaux derivative and the gH-Fréchet derivative, the necessary conditions
of interval-valued optimality problem are obtained. These optimality conditions
make it easier to find the optimal solution point of the interval-valued function.
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