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Abstract. In this paper, we study some criteria for three types of
convergence of series of fuzzy numbers, using the usual order relation ex-
tended to intervals and fuzzy numbers. Then, we prove a fuzzy version
of Abel theorem for fuzzy series, we introduce the fuzzy Cauchy product
of two fuzzy series, which we apply to prove the main properties of the
exponential of a fuzzy number. To illustrate our theoretical results, we
exhibit some examples namely the fuzzy geometric and telescopic series.
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1. Introduction

The study of the sequences of fuzzy numbers was initiated by Matloka [1], who
proved many results similar in form to the classical literature and established that
every convergent sequence was bounded and proved the elementary operations on
fuzzy convergent sequences. Then Nanda studied the spaces of bounded and conver-
gent sequences of fuzzy numbers and showed that every Cauchy sequence of fuzzy
numbers is convergent [2]. In [3], Talo and Çakan determined necessary and sufficient
Tauberian conditions under which convergence follows from Cesàro-convergence of
sequences of fuzzy numbers. Talo and Başar introduced the concept of the slow
decreasing sequence for fuzzy numbers and established that Cesàro summable se-
quence is convergent if it is slowly decreasing in [4]. Furthermore, Yavuz and Talo
introduced the Abel convergence of sequences and series of fuzzy numbers in [5]
and generalized some tauberian results in classical analysis to fuzzy analysis. In [6],
Kadak and Başar studied the the convergence of power series of fuzzy numbers and
introduced the notion of a power series of fuzzy numbers with fuzzy coefficients.
Çanak investigated the Riesz mean of sequences of fuzzy real numbers in [7]. Önder
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and Çanak in [8], then Önder et al. in [9], established some Tauberian theorems
for Cesaro summability of sequences of fuzzy numbers, and proved some Tauberian
type theorems for the weighted mean method of summability of sequences of fuzzy
numbers. Sezer and Çanak introduced the power series method of summability
for a series of fuzzy numbers and established some Tauberian conditions to obtain
convergence of a fuzzy series from its summability by power series method [10].

Recently, Mursaleen and Başar summarized the literature on some sets of fuzzy
valued sequences and series in their interesting book [11]. They introduced the
classes consisting of all bounded, convergent, null and absolutely p-summable fuzzy
valued sequences. Motivated by the later works, we establish that the absolute
convergence implies the convergence of fuzzy series. Then, we give a necessary and
sufficient condition for the convergence of a telescopic fuzzy series and we exhibit
some criteria and tests for the convergence, the convergence in norm and the absolute
convergence of series of fuzzy numbers: comparison test, ratio test and root test.
Moreover, we prove a fuzzy version of Abel theorem using a fuzzy Abel transform.
As first application, we extend the results on convergence and the sum’s expression
of the geometric series

∑
un of fuzzy numbers, given in [10] only for 0̃ < u < 1̃,

to general case −1̃ < u < 1̃ as in the classical theory. And as second application,
we define the fuzzy Cauchy product of two fuzzy series, then we introduce the
exponential of a fuzzy number and establish some of its main properties.

Please notice that our main purpose here is to enrich the theory of fuzzy series
with tools, which we can exploit in next works to study fuzzy differential equations
and develop their solutions as sum of fuzzy power series.

The main obstacle of dealing with fuzzy series (and fuzzy differential equations) is
the fact that the spaces of fuzzy numbers, fuzzy sequences and fuzzy-valued functions
are not linear spaces. In particular, they are not groups with respect to addition
and the scalar multiplication is not, in general, distributive with respect to usual
addition of scalars. To overcome all these difficulties we will take advantage of the
nice properties of the Hausdorff distances, which make all these sets complete metric
spaces [12].

The remainder of this paper is organized as follows. Section 2 is devoted for some
preliminaries. And section 3 is reserved to study convergence and absolute conver-
gence of series of fuzzy numbers. In section 4 some tests of absolute convergence for
series of fuzzy numbers are given and in section 5 some criteria of convergence for
fuzzy series are investigated. Then, section 6 treats a fuzzy version of Abel theorem.
Section 7 deals with the geometric series of fuzzy numbers (introduced in [6]), its

convergence and the calculus of its sum are extended to general case −1̃ < u < 1̃. In
section 8 we introduce the fuzzy Cauchy product of two fuzzy series and in section 9,
we define the exponential of a fuzzy number and prove some of its properties. In
the last section, we present conclusion and a further research topic.

2. Preliminaries

Let PK(R) be the family of all nonempty compact convex subsets of R. The
distance between two nonempty bounded subsets A and B of R is defined by the
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Hausdorff metric

d(A,B) = max
{

sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|

}
.

Then it is clear that (PK(R), d) becomes a complete and separable metric space [13].
A fuzzy number is a fuzzy set on the real axis, i.e., a mapping u : R −→ [0, 1]

which satisfies the following four conditions:
(i) u is normal, i.e., there exits an element x0 ∈ R for which u(x0) = 1,
(ii) u is fuzzy convex, i.e., u(λx + (1 − λ)y) ≥ min(u(x), u(y)) for any x, y ∈ R

and λ ∈ [0, 1],
(iii) u is upper semi-continuous,

(iv) The closure [u]
0

= {x ∈ R|u(x) > 0} of the support of u is compact.
We denote the set of all fuzzy numbers on R by E or E1 and called it as the space

of fuzzy numbers. For 0 < λ ≤ 1, denote [u]λ = {x ∈ R | u(x) ≥ λ}.
Then from (i)-(iv), it follows that the λ-level set [u]λ ∈ PK(R), i.e., [u]λ = [u−(λ), u+(λ)]
for all 0 ≤ λ ≤ 1.

The following properties hold true, for all u, v ∈ E, k ∈ R and λ ∈ [0, 1],

[u+ v]λ = [u]λ + [v]λ , [ku]λ = k [u]λ and [uv]λ = [u]λ [v]λ ,

Theorem 2.1 (Representation Theorem [14]). Let [u]λ = [u−(λ), u+(λ)] for all
u ∈ E and 0 ≤ λ ≤ 1. Then the following statements hold:

(1) u−(λ) is a bounded non-decreasing left continuous function in (0, 1],
(2) u+(λ) is a bounded non-increasing left continuous function in (0, 1],
(3) u−(λ) and u+(λ) are right continuous at λ = 0,
(4) u−(1) ≤ u+(1).

Conversely, if the pair of functions α and β satisfies the conditions (i)-(iv), then
there exists a unique u ∈ E such that [u]λ = [α(λ), β(λ)] for each 0 ≤ λ ≤ 1.
Moreover, u is defined by

u : R −→ [0, 1], u(x) = sup{λ;α(λ) ≤ x ≤ β(λ)}.

A crisp number k is simply represented by u−(λ) = u+(λ) = k for each 0 ≤ λ ≤ 1.

We denote 0̃ the fuzzy number defined by its membership function as follows

0̃(x) =

{
1 x = 0
0 x 6= 0.

We define the Hausdorff metric D on E by means of the Hausdorff distance d as
follows
(2.1)

D(u, v) = sup
0≤λ≤1

d
(

[u]λ , [v]λ

)
= sup

0≤λ≤1
max{|u−(λ)− v+(λ)|, |u+(λ)− v+(λ)|}.

In particular,

(2.2) D(u, 0̃) = sup
0≤λ≤1

max{|u−(λ)|, |u+(λ)|} = max{|u−(0)|, |u+(0)|}.

Proposition 2.2 ([13, 15]). Let u, v, w, z ∈ E and k ∈ R. Then

(1) (E,D) is a complete metric space,
(2) D(u+ z, v + z) = D(u, v),
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(3) D(ku, kv) = |k|D(u, v),
(4) D(u+ v, w + z) ≤ D(u,w) +D(v, z).

The natural order relation on the real line can be extended to intervals as follows:

A � B if and only if A ≤ B and A ≤ B,
where A = [A,A] and B = [B,B]. The partial ordering relation on E is defined as
follows:
u � v ⇔ [u]λ � [v]λ for all λ ∈ [0, 1], i.e., u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) ∀λ ∈
[0, 1].

Definition 2.3. An absolute value |u| of a fuzzy number u is defined by

|u|(t) =

{
max{u(t), u(−t)} (t ≥ 0)

0 (t < 0).

λ-level set [|u|]λ of |u| is in the form [|u|]λ = [|u|−(λ), |u|+(λ)], where

|u|−(λ) = max{0, u−(λ),−u+(λ)}, |u|+(λ) = max{|u−(λ)|, |u+(λ)|}.

Proposition 2.4 ([16]). Let u, v,m ∈ E with m � 0̃ and k ∈ R. Then

(1) |u| =
{

u u � 0̃

−u u ≺ 0̃,
(2) |u+ v| � |u|+ |v|,
(3) |ku| = |k||u|,
(4) |u| = 0̃ if and only if u = 0̃,
(5) |u| � m if and only if −m � u � m.

Lemma 2.5 ([17]). (1) for all u ∈ E and any a, b ∈ R such that ab ≥ 0 or
ab ≤ 0, we have (a+ b)u = au+ bu,

(2) for all u, v ∈ E and any a ∈ R, we have a(u+ v) = au+ av,
(3) for all u ∈ E and any a, b ∈ R, we have a(bu) = (ab)u.

Definition 2.6 ([18]). Let u be any non-negative fuzzy number. We define un for
non-zero real number n by

un(x) =

{
u(x1/n) (x > 0)

0 (x ≤ 0).

The λ-level set of the fuzzy number un with [u]λ = [u−λ , u
+
λ ] is determined as follows:

[un]λ = {x : un(x) ≥ λ} = {x : u(x1/n) ≥ λ} = [(u−λ )n, (u+λ )n].

In the case n = 0, we define u0 by

u0(x) =

{
1 (x > 0)
0 (x ≤ 0).

Lemma 2.7 (Basic Lemma [6]). Let u ∈ E and n ∈ N. Then the following four
statements hold: for un,

(1) if u−λ , u
+
λ > 0, then [u]nλ = [(u−λ )n, (u+λ )n],

(2) if u−λ < 0 and u+λ > 0, then [u]nλ = [(u+λ )n−1u−λ , (u
+
λ )n],

(3) if u−λ , u
+
λ < 0, then [u]nλ = [(u+λ )n, (u−λ )n] if n is even and [u]nλ = [(u−λ )n, (u+λ )n]

if n is odd,
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(4) if u−λ < 0 and u+λ = 0, then [u]nλ = [0, (u−λ )n] if n is even and [u]nλ =

[(u−λ )n, 0] if n is odd.

Now, we give some background materials concerning sequences and series of fuzzy
numbers, required throughout this work.

Definition 2.8 ([1]). A sequence u = (uk) of fuzzy numbers is a function u from
the set N into E. The fuzzy number uk is the value of the function at k ∈ N and is
called as the kth term of the sequence.

By w(F ) we denote the set of all sequences of fuzzy numbers.

Definition 2.9. A sequence (uk) ∈ w(F ) is said to be convergent with limit u ∈ E,
if for every ε > 0, there exists an n0 = n0(ε) ∈ N such that D(uk, u) < ε for all
k ≥ n0.

If the sequence (uk) ∈ w(F ) converges to a fuzzy number u then the sequences
of functions {u−k (λ)} and {u+k (λ)} are uniformly convergent to u−(λ) and u+(λ) in
[0, 1] respectively.

Lemma 2.10 ([4]). The following statements hold:

(1) D(uv, 0̃) ≤ D(u, 0̃)D(v, 0̃) for all u, v ∈ E.

(2) If (uk) ∈ w(F ) such that uk −→ u as k →∞, then D(uk, 0̃) −→ D(u, 0̃) as
k →∞.

Definition 2.11. A sequence (uk) ∈ w(F ) is said to be bounded, if the set of fuzzy
numbers consisting of the terms of the sequence (uk) is a bounded set, i.e., there
exist two fuzzy numbers m and M such that m � uk �M for all k ∈ N. This means
that m−(λ) ≤ u−k (λ) ≤M−(λ) and m+(λ) ≤ u+k (λ) ≤M+(λ) for all λ ∈ [0, 1].

Then the boundedness of the sequence (uk) ∈ w(F ) is equivalent to the uniform
boundedness of the functions u−k (λ) and u+k (λ) on [0, 1].

Definition 2.12. For u, v ∈ E, if there exists w ∈ E such that u = v + w, then w
is called the Hukuhara difference of u and v, and denoted by u	 v.

Definition 2.13 ([10]). Let (uk) ∈ w(F ) Then the expression
∑
uk is called a series

of fuzzy numbers and denotes sn =
n∑
k=0

uk for all n ∈ N.

If the sequence (sn) converges to a fuzzy number u, then we say that the series∑
uk of fuzzy numbers converges to u and write u =

∞∑
k=0

uk which implies that∑n
k=0 u

−
k (λ) −→ u−(λ) and

∑n
k=0 u

+
k (λ) −→ u+(λ), uniformly in λ ∈ [0, 1],

as n→∞.
Conversely, if

∑
u−k (λ) = u−(λ) and

∑
u+k (λ) = u+(λ) converge uniformly in λ,

then

u = {(u−(λ), u+(λ));λ ∈ [0, 1]}

defines a fuzzy number such that u =
∞∑
k=0

uk.

We say otherwise the series of fuzzy numbers diverges.
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Lemma 2.14 ([4]). If the fuzzy numbers u = {(u−(λ), u+(λ));λ ∈ [0, 1]},
∑
u−k (λ) =

u−(λ) and
∑
u+k (λ) = u+(λ) converge uniformly in λ, then u = {(u−(λ), u+(λ));λ ∈

[0, 1]} defines a fuzzy number such that u =
∞∑
k=0

uk.

Theorem 2.15 ([4]). If
∑
uk and

∑
vk converge, then D

( ∞∑
k=0

uk,
∞∑
k=0

vk

)
≤
∞∑
k=0

D(uk, vk).

3. Series of fuzzy numbers

Now we give new definitions and properties concerning fuzzy series. Set ‖u‖ =

D(u, 0̃), which we call ”norm” of u ∈ E. Please notice that since E is not a vector
space, then the mapping u 7→ ‖u‖ is not an effective norm on E, even if it verifies
all the axioms of a norm.
Some results concerning the convergence in norm were studied in [11], and we suggest
different proofs for some of them.

Lemma 3.1. Let (uk), (vk) ∈ w(F ) such that uk −→ a, vk −→ b and uk 	 vk exists
for all k ∈ N. Then a	 b exists and uk 	 vk −→ a	 b as k →∞.

Proof. Let k, p ∈ N and set wk = uk 	 vk, i.e., uk = vk + wk. Then there exists
k0 ∈ N for all k ≥ k0,

D(uk+p, uk) ≤ ε/2 and D(vk, vk+p) ≤ ε/2.

Thus for all k ≥ k0, we have
D(wk+p, wk) = D(wk+p + vk+p + vk, wk + vk+p + vk)

= D(uk+p + vk, uk + vk+p)
≤ D(uk+p, uk) +D(vk, vk+p)
≤ ε.

So (wk) is a Cauchy sequence in the complete metric space (E,D). Hence (wk)
converges to a certain c ∈ E. Furthermore uk = vk +wk −→ b+ c as k →∞. From
the uniqueness of the limit of (uk), we get a = b + c. Therefore a 	 b exists and
c = a	 b. �

Theorem 3.2 (Necessary condition [11]). If the series
∑
uk converges, then uk −→

0̃ as k →∞.

Proof. For this result, we suggest a different proof to that in [11].

Let
∑
uk be a convergent series and set sk =

k∑
i=0

ui. One can remark that

sk = sk−1 + uk for all k ≥ 1.

Then the Hukuhara difference sk 	 sk−1 exists and sk 	 sk−1 = uk. Since
∑
uk

converges, (sk) converges to u ∈ E. Thus by Lemma 3.1, sk 	 sk−1 −→ u 	 u =

0̃ as k →∞, i.e., uk −→ 0̃ as k →∞. �

Definition 3.3. We say that the series
∑
uk of fuzzy numbers is absolutely conver-

gent, if the series
∑
|uk| (of nonnegative fuzzy numbers) converges.
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Remark 3.4. Notice that our new definition of the absolute convergence is similar
to the same definition in the crisp case, it is different from the definition according
to the authors in [11], their notion of the absolute convergence is here called the
convergence in norm.

Theorem 3.5 ([11]). If the series
∑
uk of fuzzy numbers is absolutely convergent,

then
∑
uk is convergent and

(3.1)

∣∣∣∣∣
∞∑
k=0

uk

∣∣∣∣∣ �
∞∑
k=0

|uk|.

Proof. For the first part of this result, we suggest a different proof to that in [11].
Assume that

∑
uk is absolutely convergent, i.e.,

∑
|uk| converges. Then

∑
|uk|+(0)

converges. Set sn =
n∑
k=0

uk and tn =
n∑
k=0

|uk| for all n ∈ N. Then for each n, p ∈ N,

we have

D(sn+p, sn) = D
(
sn +

∑n+p
k=n+1 uk, sn

)
= D

(∑n+p
k=n+1 uk, 0̃

)
≤
∑n+p
k=n+1D(uk, 0̃)

=
∑n+p
k=n+1 |uk|+(0).

Since the numeric series
∑
|uk|+(0) converges, i.e., (tn) converges,

n+p∑
k=n+1

|uk|+(0) −→ 0 as n→∞.

Thus D(sn+p, sn) −→ 0 as n → ∞, i.e., (sn) is a Cauchy sequence in the complete
metric space (E,D). So (sn) converges, i.e.,

∑
uk is convergent. By induction and

from Proposition 2.4, we obtain |sn| � tn. Hence for all λ ∈ [0, 1],∣∣∣∣∣
n∑
k=0

u−k

∣∣∣∣∣ (λ) ≤
n∑
k=0

|uk|−(λ) and

∣∣∣∣∣
n∑
k=0

u+k

∣∣∣∣∣ (λ) ≤
n∑
k=0

|uk|+(λ).

By tending n→∞, we get∣∣∣∣∣
∞∑
k=0

u−k

∣∣∣∣∣ (λ) ≤
∞∑
k=0

|uk|−(λ) and

∣∣∣∣∣
∞∑
k=0

u+k

∣∣∣∣∣ (λ) ≤
∞∑
k=0

|uk|+(λ).

This yields the required inequality (3.1), which is not given in [11]. �

Definition 3.6. We say that the series
∑
uk of fuzzy numbers is convergent in

norm, if the numeric series
∑
‖uk‖ =

∑
D(uk, 0̃) converges.

Theorem 3.7. If the series
∑
uk of fuzzy numbers is convergent in norm, then∑

uk is convergent and we have

(3.2) D

( ∞∑
k=0

uk, 0̃

)
≤
∞∑
k=0

D(uk, 0̃), i.e.,

∥∥∥∥∥
∞∑
k=0

uk

∥∥∥∥∥ ≤
∞∑
k=0

‖uk‖.
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Proof. Assume that
∑
uk is convergent in norm, i.e.,

∑
D(uk, 0̃) converges. Set

sn =
n∑
k=0

uk and tn =
n∑
k=0

D(uk, 0̃) for all n ∈ N. Then for each n, p ∈ N, we have

D(sn+p, sn) = D
(
sn +

∑n+p
k=n+1 uk, sn

)
= D

(∑n+p
k=n+1 uk, 0̃

)
≤
∑n+p
k=n+1D(uk, 0̃)

= tn+p − tn.
Since the numeric series

∑
D(uk, 0̃) converges, i.e., (tn) converges, tn+p−tn −→ 0 as

n→∞. Thus D(sn+p, sn) −→ 0 as n→∞. So the Cauchy sequence (sn) converges
in the complete metric space (E,D), i.e.,

∑
uk is convergent. The required inequality

(3.2) follows immediately from Theorem 2.15. �

Theorem 3.8. If the series
∑
uk of fuzzy numbers is absolutely convergent, then∑

uk is convergent in norm and

(3.3) D

( ∞∑
k=0

uk, 0̃

)
≤
∞∑
k=0

D(uk, 0̃) =

n+p∑
k=n+1

|uk|+(0).

Proof. This is a rapid consequence of the identity D(uk, 0̃) = |uk|+(0). �

Example 3.9. Let x ∈ E \ {0̃} and uk = 1
kx for all k ≥ 1 the general term of fuzzy

harmonic series. Then

D(sn, 0̃) = D

(
n∑
k=1

1

k
x, 0̃

)
=

n∑
k=1

1

k
D(x, 0̃) −→∞ asn −→∞.

Thus (sn) is not bounded. So (sn) is not a Cauchy sequence. Hence
∑
uk diverges.

Example 3.10. Let x ∈ E,α ∈ R and uk = 1
kαx for all k ≥ 1 the general term of

the fuzzy Riemann series.
If α > 1, then

∑
D(uk, 0̃) =

∑
1
kαD(x, 0̃) converges. Thus

∑
uk converges, since

it is convergent in norm by Theorem 3.7.
If α ≤ 0, then D(uk, 0̃) 9 0 as k −→∞. Thus

∑
uk diverges.

If 0 < α < 1, then it is well known that
n∑
k=1

1

kα
→∞ as k −→∞.

Thus if x 6= 0̃, then we get

D(sn, 0̃) = D

(
n∑
k=1

1

kα
x, 0̃

)
=

n∑
k=1

1

kα
D(x, 0̃) −→∞ asn −→∞.

So (sn) is not bounded. Hence (sn) is not a Cauchy sequence. Therefore
∑
uk

diverges.

Definition 3.11. By a fuzzy telescopic series, we mean a fuzzy series
∑
uk with

general term in the form uk = vk 	 vk−1 for all k, where (vk) ∈ w(F ) such that the
Hukuhara difference vk 	 vk−1 exists for all k ≥ 1.
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Lemma 3.12. Under the same notations and assumptions as in Definition 3.11.
The telescopic series

∑
(vk 	 vk−1) converges if and only if the sequence (vk) con-

verges. And in this case, we have

(3.4)

∞∑
k=1

(vk 	 vk−1) = lim
k→∞

vk 	 v0.

Proof. By induction, we show that for all k ≥ 1,

sk =

k∑
i=1

ui =

k∑
i=1

(vi 	 vi−1) = vk 	 v0.

Then (sk) converges if and only if (vk) converges, i.e.,
∑
uk converges if and only if

(vk) converges. By tending k →∞ in the previous identity, we get
∞∑
k=1

(vk 	 vk−1) = lim
k→∞

sk = lim
k→∞

vk 	 v0.

�

Example 3.13. Let x ∈ E and uk = 1
k(k−1)x for all k ≥ 2. Note that

1

k(k − 1)
x+

1

k
x =

(
1

k(k − 1)
+

1

k

)
x =

1

k − 1
x.

Then the H-difference vk−1	 vk = 1
k(k−1)x	

1
k−1x exits and uk = 1

k−1x	
1
kx. Since

D( 1
kx, 0̃) = 1

kD(x, 0̃) −→ 0 as k →∞, the sequence ( 1
kx) converges to 0̃. Thus from

Lemma 3.12, we deduce that
∑
uk converges and

∞∑
k=2

1
k(k−1)x = v2 	 lim

k→∞
vk = x.

4. Criteria of convergence in norm for series of fuzzy numbers

Theorem 4.1 (Comparison Test 1). Let (uk), (vk) ∈ w(F ) such that D(uk, 0̃) ≤
D(vk, 0̃) for all k ∈ N. If

∑
vk is convergent in norm, then

∑
uk is convergent in

norm and
∞∑
k=0

D(uk, 0̃) ≤
∞∑
k=0

D(vk, 0̃).

Proof. Set tn =
n∑
k=0

D(uk, 0̃) and qn =
n∑
k=0

D(vk, 0̃) for all n ∈ N. Then it is clear

that

0 ≤ tn ≤ qn ≤
∞∑
k=1

D(vk, 0̃) <∞.

Thus (tn) is a nondecreasing bounded sequence, i.e., (tn) converges. So
∑
uk is

convergent in norm and by tending n −→∞, we get
∞∑
k=0

D(uk, 0̃) ≤
∞∑
k=0

D(vk, 0̃). �

Theorem 4.2 (Ratio Test 1 [11]). Let (uk) ∈ w(F ) such that D(uk, 0̃) > 0 and

lim
k→∞

D(uk+1, 0̃)/D(uk, 0̃) = l, where l ∈ R+ ∪ {∞}.

If l < 1, then
∑
uk is convergent in norm and if l > 1, then

∑
uk is divergent.
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Proof. This theorem is an immediate consequence of the classical ”Ratio Test” for
numeric series. �

Remark 4.3. Under the same hypothesis of Theorem 4.2, we deduce that

(1) if l < 1, then lim
k→∞

uk = 0̃,

(2) if l > 1, then lim
k→∞

D(uk, 0̃) =∞ and the sequence (uk) is divergent.

Example 4.4. Let a ∈ E and uk = 1
(2k)!

k∏
i=1

(a + i1̃) for all k ≥ 1, where 1̃(λ) =

[λ, 2 − λ] for each λ ∈ [0, 1]. Set vk = D(uk+1, 0̃)/D(uk, 0̃). Then utilizing Lemma
2.10, we get

vk =
D(

k∏
i=1

(a+i1̃)(a+(k+1)1̃),0̃)

(2k+2)(2k+1)D(
k∏
i=1

(a+i1̃),0̃)

≤
D(

k∏
i=1

(a+i1̃),0̃)D((a+(k+1)1̃),0̃)

(2k+2)(2k+1)D(
k∏
i=1

(a+i1̃),0̃)

= D((a+(k+1)1̃),0̃)
(2k+2)(2k+1)

≤ 1
(2k+2)(2k+1)D(a, 0̃) + (k+1)D(1̃,0̃)

(2k+2)(2k+1) .

It is clear that D(a,0̃)
(2k+2)(2k+1) + (k+1)D(1̃,0̃)

(2k+2)(2k+1) tends to 0 as k →∞. Thus we have

lim
k→∞

D(uk+1, 0̃)/D(uk, 0̃) = 0.

So by applying the Ratio Test 1, we deduce that
∑
uk is convergent in norm.

Theorem 4.5 (Root Test 1 [11]). Let (uk) ∈ w(F ) such that D(uk, 0̃) > 0 for all
k ∈ N and

lim
k→∞

k

√
D(uk, 0̃) = L, where L ∈ R+ ∪ {∞}.

If L < 1, then
∑
uk is convergent in norm and if L > 1 or L = ∞, then

∑
uk is

divergent.

Proof. This theorem follows from the classical ”Root Test” for series of real numbers.
�

Remark 4.6. Under the same hypothesis of Theorem 4.5, we deduce that

(1) if L < 1, then lim
k→∞

uk = 0̃,

(2) if L > 1, then lim
k→∞

D(uk, 0̃) =∞ and the sequence (uk) is divergent.

5. Criteria of convergence for series of fuzzy numbers

Theorem 5.1 (Comparison Test 2). Let (uk), (vk) ∈ w(F ) such that 0̃ ≤ uk ≤ vk
for all k ∈ N.

(1) If
∑
vk is convergent, then

∑
uk is convergent and 0̃ ≤

∞∑
k=0

uk ≤
∞∑
k=0

vk.

(2) If
∑
uk is divergent, then

∑
vk is divergent.
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Proof. Set s−n (λ) =
n∑
k=0

u−k (λ), s+n (λ) =
n∑
k=0

u+k (λ), t−n (λ) =
n∑
k=0

v−k (λ) and t+n (λ) =

n∑
k=0

v+k (λ) for all n ∈ N. From the inequalities 0 ≤ u−k (λ) ≤ v−k (λ) and 0 ≤ u+k (λ) ≤

v+k (λ), we deduce that

0 ≤
n+p∑
k=n+1

u−k (λ) ≤
n+p∑
k=n+1

v−k (λ) and 0 ≤
n+p∑
k=n+1

u+k (λ) ≤
n+p∑
k=n+1

v+k (λ), i.e.,

(5.1)
0 ≤ s−n+p(λ)−s−n (λ) ≤ t−n+p(λ)−t−n (λ) and 0 ≤ s+n+p(λ)−s+n (λ) ≤ t+n+p(λ)−t+n (λ).

(1) Assume that
∑
vk is convergent. Then using Definition 2.13, we get that

t−n (λ) −→ v−(λ) and t+n (λ) −→ v+(λ)

uniformly in λ ∈ [0, 1]. Thus t−n+p(λ) − t−n (λ) −→ 0 and t+n+p(λ) − t+n (λ) −→ 0

uniformly in λ ∈ [0, 1]. So the inequalities (5.1) yield that s−n+p(λ) − s−n (λ) −→ 0

and s+n+p(λ) − s+n (λ) −→ 0 uniformly in λ ∈ [0, 1]. Hence {s−n (λ)} and {s+n (λ)}
are Cauchy sequences uniformly in λ ∈ [0, 1]. Since R is complete, there exist
u−(λ), u+(λ) ∈ R such that s−n (λ) −→ u−(λ) and s+n (λ) −→ v+(λ), uniformly in
λ ∈ [0, 1]. Therefore by reutilizing Definition 2.13, we conclude that

∑
uk converges.

(2) The second assertion (2) is obtained by contra-posited of (1). �

Theorem 5.2 (Ratio Test 2). Let (uk) ∈ w(F ) such that uk > 0̃ and there exists
vk ∈ E such that uk+1 = ukvk for all k ∈ N and lim

k→∞
vk = l, where l ∈ E.

(1) If l < 1̃, then
∑
uk is convergent.

(2) if l > 1̃, then
∑
uk is divergent.

Where 1̃(t) = 1 if t = 1 and 1̃(t) = 0 otherwise.

Proof. Let ε > 0. Then there exists k0 ∈ N such that for all k ∈ N with k ≥
k0, D(vk, l) ≤ ε, i.e.,

for all k ≥ k0, sup
0≤λ≤1

max{|v−k (λ)− l−(λ)|, |v+k (λ)− l+(λ)|} ≤ ε.

Thus we have for all k ≥ k0,

l−(0)− ε ≤ l−(λ)− ε ≤ v−k (λ) ≤ l−(λ) + ε ≤ l+(0) + ε

and

l−(0)− ε ≤ l+(λ)− ε ≤ v+k (λ) ≤ l+(λ) + ε ≤ l+(0) + ε.

One can verify that v−k (λ) = u−k+1(λ)/u−k (λ) and v+k (λ) = u+k+1(λ)/u+k (λ) (See [6]).
So by induction, we get for all k ≥ k0,
(5.2)
ak−k0u−k0(0) ≤ u−k (λ) ≤ bk−k0u+k0(0), and ak−k0u+k0(0) ≤ u+k (λ) ≤ bk−k0u+k0(0),

where a = l−(0)− ε, b = l+(0) + ε.

(1) Assume that l < 1̃ and let ε > 0 verifying b = l+(0) + ε < 1. Then from (5.2),
the geometric series

∑
ak−k0 and

∑
bk−k0 converge. This implies that

∑
u−k (λ) and
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∑
u+k (λ) converge uniformly in λ ∈ [0, 1]. Thus by Definition 2.13, we deduce that∑
uk is convergent.

(2) Suppose that l > 1̃ and let ε > 0 verifying a = l−(0)−ε > 1. Then using (5.2)

and the fact that lim
k→∞

ak−k0u+k0(0) = ∞, we get lim
k→∞

D(uk, 0̃) = lim
k→∞

u+k (0) = ∞.

Thus by application of Theorem 3.2, we conclude that
∑
uk is divergent. �

Remark 5.3. Under the same hypothesis of Theorems 4.2 and 5.2, one can not
conclude in the case l = 1. Indeed, we reconsider the fuzzy Riemann series

∑
uk =∑

1
kαx studied in Example 3.10, where the fuzzy number x is chosen such that x > 0̃.

One can show that it verifies all the hypothesis of both Theorems 4.2 and 5.2, but∑
uk converges if α > 1 and diverges otherwise.

Definition 5.4. For a nonnegative fuzzy number u , if there exists a nonnegative
fuzzy number v such that uk = v, we say that v is the k-th root of u, which we
denote by k

√
u or (uk)1/k. The uniqueness of v is obvious according to Definition

2.6.

Theorem 5.5 (Root Test 2). Let (uk) ∈ w(F ) such that uk > 0̃ for all k ∈ N and
limk→∞(uk)1/k = L, where L ∈ E.

(1) If L < 1̃ then,
∑
uk is convergent.

(2) if L > 1̃ then,
∑
uk is divergent.

Proof. Let ε > 0. Then there exists k0 ∈ N such that for all k ∈ N with k ≥ k0,
D((uk)1/k, L) ≤ ε. Thus for all k ≥ k0, we have

sup
0≤λ≤1

max{|[u−k (λ)]1/k − L−(λ)|, |[u+k (λ)]1/k − L+(λ)|} ≤ ε.

So for all k ≥ k0, we get

L−(0)− ε ≤ L−(λ)− ε ≤ [u−k (λ)]1/k ≤ L−(λ) + ε ≤ L+(0) + ε

and
L−(0)− ε ≤ L+(λ)− ε ≤ [u+k (λ)]1/k ≤ L+(λ) + ε ≤ L+(0) + ε

Hence for all k ≥ k0, we obtain
(5.3)
(L−(0)− ε)k ≤ u−k (λ) ≤ (L+(0) + ε)k and (L−(0)− ε)k ≤ u+k (λ) ≤ (L+(0) + ε)k.

(1) Assume that L < 1̃ and let ε > 0 verifying L+(0)+ε < 1. Then by using (5.3),
the geometric series

∑
(L−(0) + ε)k and

∑
(L+(0) + ε)k converge. This implies that∑

u−k (λ) and
∑
u+k (λ) converge uniformly in λ ∈ [0, 1]. Thus by Definition 2.13, we

deduce that
∑
uk is convergent.

(2) Suppose that L > 1̃ and let ε > 0 verifying L−(0)−ε > 1. Since lim
k→∞

(L−(0)−

ε)k = ∞, from the inequalities (5.3), uk 9 0̃. By application of Theorem 3.2, we
conclude that

∑
uk is divergent. �

Remark 5.6. Under the same hypothesis of Theorems 4.5 and 5.5, one can not
conclude in the case L = 1. Indeed, we reconsider the fuzzy Riemann series

∑
uk =∑

1
kαx studied in Example 3.10, where the fuzzy number x is chosen such that x > 0̃.

One can show that it verifies all the hypothesis of both Theorems 4.5 and 5.5, but∑
uk converges if α > 1 and diverges otherwise.

204



Eljaoui et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 2, 193–212

6. Fuzzy Abel theorem

Theorem 6.1 (Fuzzy Abel theorem). Let (ak) ∈ w(F ) and (vk) be a decreasing

sequence of nonnegative real numbers such that lim
k→∞

vk = 0. Set An =
n∑
k=0

ak and

assume that the sequence (Ak) is bounded, i.e.,

∃M > 0, D(Ak, 0̃) ≤M, for k ∈ N.

Then the series
∑
vkak is convergent.

Proof. Set sn =
n∑
k=0

vkak. It is obvious that the Hukuhara difference Ak 	 Ak−1
exists and is equal to ak for all k ≥ 1. Then for each n ≥ 1 and p ∈ N, one can
obtain the following Abel transformation∑n+p

k=n+1 vkak =
∑n+p
k=n+1 vk(Ak 	Ak−1)

=
∑n+p
k=n+1(vkAk)	 (vkAk−1)

=
(∑n+p

k=n+1 vkAk

)
	
(∑n+p

k=n+1 vkAk−1

)
.

That is, we have∑n+p
k=n+1 vkak =

(∑n+p
k=n+1 vkAk

)
	
(∑n+p−1

k=n vk+1Ak

)
=
(
vn+pAn+p +

∑n+p−1
k=n+1 vkAk

)
	
(
vn+1An +

∑n+p−1
k=n+1 vk+1Ak

)
.

Thus we get

D(sn+p, sn) = D

(
n∑
k=0

vkak +

n+p∑
k=n+1

vkak,

n∑
k=0

vkak

)
= D

(
n+p∑
k=n+1

vkak, 0̃

)

= D

((
vn+pAn+p +

n+p−1∑
k=n

vkAk

)
	

(
vn+1An +

n+p−1∑
k=n

vk+1Ak

)
, 0̃

)

= D

(
vn+pAn+p +

n+p−1∑
k=n

vkAk, vn+1An +

n+p−1∑
k=n

vk+1Ak

)

≤ D
(
vn+pAn+p, 0̃

)
+D

(
0̃, vn+1An

)
+D

(
n+p−1∑
k=n+1

vkAk,

n+p−1∑
k=n+1

vk+1Ak

)
.

Since the sequence (vk) is decreasing, vk = vk+1 + wk with wk = vk − vk+1 ≥ 0.
Since vk+1 ≥ 0 and wk ≥ 0, vkAk = (vk+1 + wk)Ak = vk+1Ak + wkAk. So the H-
difference vkAk	vk+1Ak exists and is equal to (vk−vk+1)Ak. Hence the H-difference(
n+p−1∑
k=n+1

vkAk

)
	

(
n+p−1∑
k=n+1

vk+1Ak

)
exists and

(
n+p−1∑
k=n+1

vkAk

)
	

(
n+p−1∑
k=n+1

vk+1Ak

)
=

n+p−1∑
k=n+1

(vk − vk+1)Ak.

And so, we obtain

D
(∑n+p−1

k=n+1 vkAk,
∑n+p−1
k=n+1 vk+1Ak

)
= D

(∑n+p−1
k=n+1 vkAk 	

∑n+p−1
k=n+1 vk+1Ak, 0̃

)
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= D
(∑n+p−1

k=n+1(vk − vk+1)Ak, 0̃
)
.

Therefore we get

D(sn+p, sn) ≤ |vn+p|D
(
An+p, 0̃

)
+ |vn+1|D

(
An, 0̃

)
+D

(
n+p−1∑
k=n+1

(vk − vk+1)Ak, 0̃

)

≤ M(|vn+p|+ |vn+1|) +

n+p−1∑
k=n+1

(vk − vk+1)D
(
Ak, 0̃

)

≤ M

(
|vn+p|+ |vn+1|+

n+p−1∑
k=n+1

(vk − vk+1)

)
≤ M (|vn+p|+ |vn+1|+ vn+1 − vn+p) .

Since |vn+p|+ |vn+1|+ vn+1 − vn+p −→ 0 as n→∞, D(sn+p, sn) −→ 0 as n→∞.
That is, (sn) is a Cauchy sequence in the complete space E. Hence the series

∑
vkak

is convergent. �

Example 6.2. Consider the series
∑

1
k+1u

k , where

u(t) =

{
1 (1/3 ≤ t ≤ 1/2)
0 otherwise,

i.e., [u]λ = [1/3, 1/2] for all λ ∈ [0, 1].

Then by using the Basic Lemma 2.7,

[An]λ =

n∑
k=0

[uk]λ =

[
3(1− (1/3)n+1)

2
, 2(1− (1/2)n+1)

]
.

Thus we get

D(An, 0̃) ≤ 3(1− (1/3)n+1)

2
+ 2(1− (1/2)n+1) ≤ 7/2.

Furthermore, the sequence (vk) = (1/(k + 1)) is decreasing. So, by utilizing Fuzzy
Abel Theorem 6.1, we deduce that the fuzzy series

∑
1
k+1u

k is convergent.

7. Geometric series of fuzzy numbers

Now, we extend the results on convergence and sum of the geometric series
∑
un

of fuzzy numbers given in [6] only for 0̃ < u < 1̃ to general case −1̃ < u < 1̃.

Theorem 7.1. The geometric fuzzy series
∑
un is convergent if and only if −1̃ <

u < 1̃, i.e., |u| < 1̃. Moreover, the following four statements hold: for
∞∑
n=0

un,

(1) if 0 < u−λ ≤ u
+
λ < 1, then

∞∑
n=0

[u]nλ =
[

1
1−u−

λ

, 1
1−u+

λ

]
,

(2) if −1 < u−λ < 0 < u+λ < 1, then
∞∑
n=0

[u]nλ =
[
1+u−

λ−u
+
λ

1−u+
λ

, 1
1−u+

λ

]
,

(3) if −1 < u−λ ≤ u
+
λ < 0, then

∞∑
n=0

[u]nλ =
[

1
1−(u+

λ )2
+

u−
λ

1−(u−
λ )2

, 1
1−(u−

λ )2
+

u+
λ

1−(u+
λ )2

]
,

(4) if −1 < u−λ < 0 = u+λ , then
∞∑
n=0

[u]nλ =
[
1+u−

λ−(u
−
λ )2

1−(u−
λ )2

, 1
1−(u−

λ )2

]
.
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Proof. If −1̃ < u < 1̃, then D(u, 0̃) = max{|u−(0)|, |u+(0)|} < 1. Thus the classic

geometric series
∑

(D(u, 0̃))k converges. On the other hand, we have D(uk, 0̃) ≤
(D(u, 0̃))k for all k ∈ N. So the fuzzy geometric series

∑
uk is convergent in norm,

and by Theorem 3.7, it is convergent.
If u ≥ 1̃ or u ≤ −1̃, then max{|u−(0)|, |u+(0)|} ≥ 1 and from the Basic Lemma,

D(uk, 0̃) = max{|u−(0)|k, |u+(0)|k}9 0 as k →∞.

Thus uk 9 0̃ as k →∞. So from Theorem 3.2, we deduce that
∑
uk diverges.

Assume that −1̃ < u < 1̃. By application of the Basic Lemma, we obtain:
(1) Suppose 0 < u−λ ≤ u

+
λ < 1. Then we have

∞∑
n=0

[u]nλ =

[ ∞∑
n=0

(u−λ )n,
∞∑
n=0

(u+λ )n

]
=

[
1

1− u−λ
,

1

1− u+λ

]
.

(2) Suppose −1 < u−λ < 0 < u+λ < 1. Then we get

∞∑
n=0

[u]nλ =

[
1 +

∞∑
n=1

(u+λ )n−1u−λ ,

∞∑
n=0

(u+λ )n

]
=

[
1 + u−λ − u

+
λ

1− u+λ
,

1

1− u+λ

]
.

(3) Suppose −1 < u−λ ≤ u
+
λ < 0. Then we obtain

∞∑
n=0

[u]nλ =

[ ∞∑
n=0

(u+λ )2n,
∞∑
n=0

(u−λ )2n
]

+

[ ∞∑
n=0

(u−λ )2n+1,
∞∑
n=0

(u+λ )2n+1

]
=
[

1
1−(u+

λ )2
+

u−
λ

1−(u−
λ )2

, 1
1−(u−

λ )2
+

u+
λ

1−(u+
λ )2

]
.

(4) Suppose −1 < u−λ < 0 = u+λ . Then we get

∞∑
n=0

[u]nλ =

[
1,

∞∑
n=0

(u−λ )2n

]
+

[ ∞∑
n=0

(u−λ )2n+1, 0

]
=

[
1 + u−λ − (u−λ )2

1− (u−λ )2
,

1

1− (u−λ )2

]
.

�

8. Fuzzy Cauchy product of two fuzzy series

Definition 8.1. Let (uk) and (vk) be two sequences of fuzzy numbers and define

the sequence (wk) by wk =
k∑
i=0

uivk−i for all k ∈ N.
∑
wk is called the fuzzy Cauchy

product of the two fuzzy series
∑
uk and

∑
vk.

Theorem 8.2. If the fuzzy series
∑
uk and

∑
vk are convergent in norm, then∑

wk is also convergent in norm. Additionally, if
∑
uk is a series of positive real

numbers, we have

(8.1)
( ∞∑
k=0

uk

)( ∞∑
k=0

vk

)
=

∞∑
k=0

wk.
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Proof. By application of Lemma 2.10, we have for each k ∈ N,

n∑
k=0

D(wk, 0̃) =

n∑
k=0

D(

k∑
i=0

uivk−i, 0̃)

≤
n∑
k=0

k∑
i=0

D(ui, 0̃)D(vk−i, 0̃) =

n∑
k=0

∑
i+j=k

D(ui, 0̃)D(vj , 0̃)

≤
∑
i+j≤n

D(ui, 0̃)D(vj , 0̃) = An ≤
∑
i ≤ n
j ≤ n

D(ui, 0̃)D(vj , 0̃)

≤

(
n∑
i=0

D(ui, 0̃)

)  n∑
j=0

D(vj , 0̃)


≤

( ∞∑
i=0

D(ui, 0̃)

)  ∞∑
j=0

D(vj , 0̃)

 <∞.

Then the sequence {
n∑
k=0

D(wk, 0̃)} is convergent, since it is nondecreasing and upper

bounded. Thus the series
∑
wk is convergent in norm and the sequence (An) is also

convergent. Furthermore, assume that uk ≥ 0 for all k ∈ N. Set sn =
n∑
k=0

uk, tn =

n∑
k=0

vk and qn =
n∑
k=0

wk. Recall that if a, b ∈ R such that ab ≥ 0 and x ∈ E, (a+b)x =

ax+bx. This result can be easily generalized by induction to a finite family of positive
real numbers. Denote Cn = {(i, j) ∈ N2; i ≤ n, j ≤ n} and Tn = {(i, j) ∈ N2; i+ j ≤
n}. Then we have

D(sntn, qn) = D

(

n∑
i=0

ui)(

n∑
j=0

vj),

n∑
i=0

uivn−i

 = D

 n∑
i=0

(

n∑
j=0

uivj),
∑
i+j=n

uivj


= D

 ∑
(i,j)∈Cn\Tn

uivj +
∑
i+j=n

uivj ,
∑
i+j=n

uivj

 = D

 ∑
(i,j)∈Cn\Tn

uivj , 0̃


≤

∑
(i,j)∈Cn\Tn

D
(
uivj , 0̃

)
≤

∑
(i,j)∈Cn\Tn

D
(
ui, 0̃

)
D
(
vj , 0̃

)
≤

∑
(i,j)∈T2n\Tn

D
(
ui, 0̃

)
D
(
vj , 0̃

)
= A2n −An,

where we used the inclusion Cn ⊂ T2n. Since (An) is convergent, A2n − An −→ 0.
Thus D(sntn, qn) −→ 0 as n −→∞. So

D

(( ∞∑
k=0

uk

)( ∞∑
k=0

vk

)
,

∞∑
k=0

wk

)
= lim
n→∞

D(sntn, qn) = 0.
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By consequence ( ∞∑
k=0

uk

)( ∞∑
k=0

vk

)
=

∞∑
k=0

wk.

�

Remark 8.3. Unfortunately, equation (8.1) doesn’t hold for each couple of fuzzy
series, because in general, distributivity of multiplication is not valid in the set of
fuzzy numbers. Moreover, it is well known that if u, v, w ∈ E such that vw ≥ 0̃, i.e.,
ab ≥ 0 for all a ∈ v, a ∈ w, then u(v + w) = uv + uw.
So by a similar way, one can prove that equation (8.1) is in particular true, if we

assume that vkvk+1 ≥ 0̃ for all k ∈ N.

9. Exponential of a fuzzy number

Definition 9.1. Let u ∈ E and define the fuzzy exponential of u by exp(u) =
∞∑
k=0

1
k!u

k.

Lemma 9.2. exp(u) is well defined for all u ∈ E and verifies

D(exp(u), 0̃) ≤ exp
(
D(u, 0̃)

)
.

Proof. One can verify by induction and using Lemma 2.10, that for all k ∈ N,

D(uk, 0̃) ≤
(
D(u, 0̃)

)k
.

Then D
(

1
k!u

k, 0̃
)
≤ 1

k!

(
D(u, 0̃)

)k
. Since the series of real numbers

∑
1
k!

(
D(u, 0̃)

)k
converges, by the Comparison Test 1, we conclude that

∑
1
k!u

k is convergent in norm.
Thus exp(u) exists as sum of a convergent series and we get

D(exp(u), 0̃) = D

( ∞∑
k=0

1

k!
uk, 0̃

)
≤
∞∑
k=0

1

k!

(
D(u, 0̃)

)k
= exp

(
D(u, 0̃)

)
.

�

Lemma 9.3. For all u, v ∈ E such that uv ≥ 0̃, the fuzzy binomial formula holds:
for all k ∈ N,

(u+ v)k =

k∑
i=0

(
k
i

)
uk−ivi.

Proof. This formula is obvious for k = 0 and k = 1. Assume, for a fixed k ∈ N, that

(u+ v)k =
k∑
i=0

(
k
i

)
uk−ivi.
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Since uv ≥ 0̃, we have

(u+ v)k+1 = (u+ v)k(u+ v) = (u+ v)ku+ (u+ v)kv

=

k∑
i=0

(
k
i

)
uk+1−i vi +

k∑
i=0

(
k
i

)
uk−i vi+1

=

k∑
i=0

(
k
i

)
uk+1−i vi +

k+1∑
i=1

(
k

i− 1

)
uk+1−i vi

= uk+1 +

k∑
i=1

[(
k
i

)
+

(
k

i− 1

)]
uk+1−i vi + vk+1.

It is well known that

(
k
i

)
+

(
k

i− 1

)
=

(
k + 1
i

)
. Then

(u+ v)k+1 =

k+1∑
i=0

(
k + 1
i

)
uk+1−ivi.

Thus the fuzzy binomial formula holds true, for all k ∈ N. �

Theorem 9.4. For all u, v ∈ E such that uv ≥ 0̃, we have

exp(u+ v) = exp(u) exp(v).

Furthermore, if u ≥ v and the Hukuhara difference u 	 v exists then the Hukuhara
quotient exp(u)� exp(v) of u and v exists and we have

exp(u	 v) = exp(u)� exp(v).

Proof. Due to the convergence in norm of the following series and to the assumption
uv ≥ 0̃, we have

exp(u) exp(v) =
( ∞∑
k=0

1

k!
uk
)( ∞∑

k=0

1

k!
vk
)

=

∞∑
k=0

wk,

where

wk =

k∑
i=0

1

i!
ui

1

(k − i)!
uk−i =

1

k!

k∑
i=0

(
k
i

)
ui vk−i.

Then from Lemma 9.3, we get wk = 1
k! (u+ v)k for all k ∈ N. Thus

exp(u) exp(v) = exp(u+ v).

Now, assume that u ≥ v and the Hukuhara difference w = u	v exists, i.e., u = v+w.
Then

exp(u) = exp(v + w) = exp(v) exp(w).

Thus the Hukuhara quotient exp(u)� exp(v) exists and

exp(u)� exp(v) = exp(w) = exp(u	 v).

�

For more details about the Hukuhara quotient of u and v one can see [19].
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Conclusion

In this work, we gave the fuzzy comparison, some tests and criteria for the (simple)
convergence, the convergence in norm and the absolute convergence of series of fuzzy
numbers. We investigate the relationship between this three kinds of convergence,
and introduce a fuzzy version of Abel theorem and the Cauchy product for fuzzy
series. Finally, we extend the convergence of the fuzzy geometric series

∑
uk (studied

in [4] only for 0̃ < u < 1̃) to the fuzzy open interval −1̃ < u < 1̃, then we define the
exponential of a fuzzy number and present some of its properties.
For future research we will use these results to study function series and power series
of fuzzy numbers.
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[6] U. Kadak and F. Başar, Power series of fuzzy numbers with real or fuzzy coefficients, Filomat
26 (3) (2012) 519–528.

[7] I. Çanak, On the Riesz mean of sequences of fuzzy real numbers, Journal of Intelligent and
Fuzzy Systems 26 (6) (2014) 2685–2688.

[8] Z. Onder and I. Çanak, Tauberian conditions under which convergence follows from the

weighted mean summability and its statistical extension for fuzzy numbers, Ukranian Mathe-
matical Journal 73 (8) (2021) 1085–1101.
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